DOMINATING FUNCTIONS OF GRAPHS WITH TWO VALUES

Bohdan Zelinka, Liberec

(Received March 6, 1997)

Abstract. The Y-domination number of a graph for a given number set Y was introduced by D. W. Bange, A. E. Barkauskas, L. H. Host and P. J. Slater as a generalization of the domination number of a graph. It is defined using the concept of a Y-dominating function. In this paper the particular case where \(Y = \{0, 1/k\} \) for a positive integer \(k \) is studied.

Keywords: Y-dominating function of a graph, Y-domination number of a graph

MSC 1991: 05C35

This paper will concern a certain generalization of the domination number of a graph. All graphs considered will be finite undirected graphs without loops and multiple edges.

A subset \(D \) of the vertex set \(V(G) \) of a graph \(G \) is called dominating in \(G \), if for each vertex \(x \in V(G) - D \) there exists a vertex \(y \in D \) adjacent to \(x \). The minimum number of vertices of a dominating set in \(G \) is called the domination number of \(G \) and denoted by \(\gamma(G) \).

This well-known concept can be defined in another way, using domination functions. We will speak about functions \(f \) which map \(V(G) \) into some set of numbers. If \(S \subseteq V(G) \), then we denote \(f(S) = \sum_{x \in S} f(x) \). If \(x \in V(G) \), then by \(N(x) \) we denote the closed neighbourhood of \(x \) in \(G \), i.e. the set consisting of \(x \) and all vertices which are adjacent to \(x \) in \(G \). Besides, we will also consider the open neighbourhood \(N(x) = N[x] - \{ x \} \). Now we can formulate the alternative definition of the domination number.

An function \(f : V(G) \to \{0, 1\} \) is called a dominating function of \(G \), if \(f(N[x]) \geq 1 \) for each \(x \in V(G) \). The minimum sum \(\sum_{x \in V(G)} f(x) \) taken over all dominating functions \(f \) of \(G \) is called the domination number of \(G \) and denoted by \(\gamma(G) \).
It is evident that these two definitions are equivalent. Namely, if \(D \) is a dominating set in \(G \), then the function \(f \) defined so that \(f(x) = 1 \) for \(x \in D \) and \(f(x) = 0 \) for \(x \in V(G) - D \) is a dominating function of \(G \). Conversely, if \(f \) is a dominating function of \(G \), then the set \(D = \{ x \in V(G) ; f(x) = 1 \} \) is a dominating set in \(D \).

The concept of a dominating function and obviously also the related concept of the domination number were generalized by some authors in such a way that the set of values \(\{0, 1\} \) was replaced by another number set. In [1] the signed dominating function and the signed domination number were defined by replacing the set \(\{0, 1\} \) by \(\{-1, 1\} \) and in [2] the minus dominating function and the minus domination number were defined by using the set \(\{-1, 0, 1\} \). The fractional dominating function and the fractional domination number were introduced in [3] by using the set of real numbers. The most general case is the \(Y \)-dominating function and the \(Y \)-domination number, where a quite arbitrary set \(Y \) of values of \(f \) is used [4].

Therefore, following [4], a function \(f : V(G) \to Y \), where \(Y \) is a given set of numbers, is called a \(Y \)-dominating function of \(G \), if \(f(N[x]) \geq 1 \) for each \(x \in V(G) \). The minimum of \(f(V(G)) \) taken over all \(Y \)-dominating functions \(f \) of \(G \) is called the \(Y \)-dominating number of \(G \) and is denoted by \(\gamma_Y(G) \).

We will not treat the domination is such a general way. We restrict our considerations to natural generalizations of the set \(\{0, 1\} \), namely to two-element number sets \(\{0, t\} \), where \(t \) is a positive real number.

The following proposition is easy to prove.

Proposition 1. Let \(Y = \{0, t\} \), where \(t \) is a positive real number. Let \(G \) be a graph. The \(Y \)-domination number \(\gamma_Y(G) \) of \(G \) is defined and at least one \(Y \)-dominating function of \(G \) exists if and only if \(\delta(G) \geq 1/t - 1 \), where \(\delta(G) \) denotes the minimum degree of a vertex of \(G \).

Let \(f \) be a function which maps \(V(G) \) into the set of real numbers and let \(x \in V(G) \). The vertex set \(x \) will be called a zero vertex of \(f \), if \(f(x) = 0 \).

The following theorem enables us to restrict our consideration to numbers \(t \) which are inverses of positive integers.

Theorem 1. Let \(t \) be a positive real number, let \(G \) be a graph with \(\delta(G) \geq 1/t - 1 \). Let \(k = \lfloor 1/t \rfloor \) and \(Y_1 = \{0, t\} \), \(Y_2 = \{0, 1/k\} \). Then \(\gamma_{Y_1}(G) = k \gamma_{Y_2}(G) \) and there exists a one-to-one correspondence between \(Y_1 \)-dominating functions of \(G \) and \(Y_2 \)-dominating functions of \(G \) such that the corresponding functions have the same set of zero vertices.

Proof. Let \(f : V(G) \to Y_1 \), \(g : V(G) \to Y_2 \) and suppose that \(f, g \) have the same set of zero vertices. Then \(f(x) = k g(x) \) and also \(f(N[x]) = k g(N[x]) \) for
each \(x \in V(G) \). Suppose that \(g \) is a \(Y_2 \)-dominating function of \(G \): then \(g(N[x]) \geq 1 \) for each \(x \in V(G) \). Evidently \(kt \geq 1 \) and thus \(f(N[x]) \geq g(N[x]) \geq 1 \) for each \(x \in V(G) \) and \(f \) is a \(Y_1 \)-dominating function of \(G \). Now suppose that \(g \) is not a \(Y_2 \)-dominating function of \(G \). There exists \(x \in V(G) \) such that \(g(N[x]) < 1 \). If \(k = 1 \), then \(g(N[x]) \) must be a non-negative integer and therefore \(g(N[x]) = 0 \). This is possible only if \(f(y) = 0 \) for each \(y \in N[x] \). But then also \(f(y) = 0 \) for each \(y \in N[x] \) and \(f(N[x]) = 0 \); the function \(f \) is not a \(Y_1 \)-dominating function of \(G \). If \(k \geq 2 \), then the number of vertices of \(N[x] \) which are not zero vertices of \(g \) is at most \(k - 1 \). But these vertices are exactly those vertices which are not zero vertices of \(f \). We have \(f(N[x]) \leq (k - 1)t \). Evidently \(1/t > k - 1 \) and thus \(f(N[x]) = (k - 1)t < 1 \); the function \(f \) is not a \(Y_1 \)-dominating function of \(G \). If \(g_0 \) is a minimal (i.e. with the minimum sum on \(V(G) \)) \(Y_2 \)-dominating function, then the corresponding function \(f_0 \) is a minimal \(Y_1 \)-dominating function. We have
\[
\gamma_{Y_1}(G) = \sum_{x \in V(G)} f_0(x) = \sum_{x \in V(G)} kt g_0(x) = kt \sum_{x \in V(G)} g_0(x) = kt \gamma_{Y_2}(G).
\]

\[\square\]

For each positive integer \(k \) we denote \(Y(k) = \{0, 1/k\} \) and \(\gamma(k, G) = \gamma_Y(k)G \). From Proposition 1 we have the following corollary.

Corollary 1. Let \(k \) be a positive integer, let \(G \) be a graph. The \(Y(k) \)-domination number \(\gamma(k, G) \) is defined and at least one \(Y(k) \)-dominating function of \(G \) exists if and only if \(\delta(G) \geq k - 1 \).

Note that \(\gamma(1, G) = \gamma(G) \), the usual domination number of \(G \).

If we speak about a function \(f : V(G) \to Y(k) \), we will use the notation \(V^0 = \{x \in V(G); f(x) = 0\} \), \(V^+ = \{x \in V(G); f(x) = 1/k\} \).

Theorem 2. Let \(G \) be a regular graph of degree \(k - 1 \) with \(n \) vertices. Then \(\gamma(k, G) = n/k \).

Proof. The neighbourhood \(N[x] \) for each \(x \in V(G) \) has exactly \(k \) vertices. If \(f \) is a \(Y(k) \)-dominating function, then \(f \) must assign the value \(1/k \) to all vertices of \(N[x] \). As \(x \) was chosen arbitrarily, it assigns \(1/k \) to all vertices of \(G \), which implies the assertion. \[\square\]

By \(G^2 \) we denote the square of the graph \(G \), i.e. the graph such that \(V(G^2) = V(G) \) and two vertices are adjacent in \(G^2 \) if and only if their distance in \(G \) is at most \(2 \). The symbol \(\alpha_0(G) \) denotes the independence number of \(G \), i.e. the maximum number of pairwise non-adjacent vertices in \(G \).

Theorem 3. Let \(G \) be a regular graph of degree \(k \) with \(n \) vertices. Then \(\gamma(k, G) = (n - \alpha_0(G^2))/k \).

265
Proof. For each vertex \(x \) of \(G \) the set \(N[x] \) has \(k + 1 \) vertices. If \(f \) is a \(Y(k) \)-dominating function of \(G \), then \(N[x] \) contains at most one zero vertex of \(f \). The distance between two zero vertices of \(f \) cannot be 1; then the closed neighbourhood of either of them would contain them both. This distance cannot be 2; then there would exist a vertex adjacent to both of them and its closed neighbourhood would contain them both. Therefore the distance between two zero vertices of \(f \) in \(G \) is at least 3 and in \(G^2 \) at least 2; they form an independent set in \(G^2 \). Therefore there are at most \(a_0(G^2) \) zero vertices of \(f \) and at least \(n - a_0(G^2) \) vertices \(x \) such that \(f(x) = 1/k \). This implies the assertion. \(\square \)

Corollary 2. Let \(C_n \) be the circuit of length \(n \). Then \(\gamma(3, C_n) = n/3 \) and \(\gamma(2, C_n) = n/3 \) for \(n \equiv 0(\text{mod } 3) \), \(\gamma(2, C_n) = n/3 - 1/6 \) for \(n \equiv 1(\text{mod } 3) \), \(\gamma(2, C_n) = n/3 + 1/3 \) for \(n \equiv 2(\text{mod } 3) \).

A path is a similar case. If \(f \) is a \(Y(2) \)-dominating function of a path \(P_n \) of length \(n \), then again the distance between any two zero vertices of \(f \) is at least 3 and moreover neither the vertices of degree 1, not the vertices adjacent to them may be zero vertices of \(f \). This yields the result.

Proposition 2. Let \(P_n \) be a path of length \(n \). Then \(\gamma(2, P_n) = n/3 + 1 \) for \(n \equiv 0(\text{mod } 3) \), \(\gamma(2, P_n) = n/3 + 2/3 \) for \(n \equiv 1(\text{mod } 3) \), \(\gamma(2, P_n) = n/3 + 5/6 \) for \(n \equiv 2(\text{mod } 3) \).

Now we turn to complete graphs and complete bipartite graphs.

Theorem 4. Let \(k, n \) be positive integers, \(k \leq n \). Then \(\gamma(k, K_n) = 1 \).

Proof. In the complete graph \(K_n \) we have \(N[x] = V(K_n) \) for each vertex \(x \). If \(f \) is a \(Y(k) \)-dominating function, then \(f(V(K_n)) = f(N[x]) \geq 1 \). Moreover, there exists a function \(f \) which assigns the value \(1/k \) to \(k \) vertices and the value \(0 \) to the remaining \(n - k \) vertices: then \(f(V(K_n)) = 1 \). \(\square \)

Theorem 5. Let \(k, m, n \) be positive integers, \(k - 1 \leq m \leq n \). If \(k < m \), then \(\gamma(k, K_{m,n}) = 2 \). If \(m = k - 1 \), then \(\gamma(k, K_{m,n}) = (m + n)/k = (k + n - 1)/k \). If \(m = k \), then \(\gamma(k, K_{m,n}) = 2 - 1/k \).

Proof. Let \(k < m \). Let \(A, B \) be the bipartition classes of \(K \), \(|A| = m \), \(|B| = n \). For each vertex \(x \in A \), its open neighbourhood satisfies \(N(x) \subseteq B \). As \(N[x] = \{x\} \cup N(x) \) and \(f(N[x]) \geq 1 \) for a \(Y(k) \)-dominating function \(f \), there are at least \(k - 1 \) vertices \(y \in N(x) \subseteq A \) which are in \(V^+ \). If moreover \(f(x) = 0 \), then there are at least \(k \) such vertices. Therefore either \(f(x) = 1/k \) for all \(x \in A \) and
$f(y) = 1/k$ for at least $k-1$ vertices of B, or $f(y) = 1/k$ for at least k vertices of B. In the former case $f(V(K_m)) \geq (m + k - 1)/k \geq 2$. In the latter case analogously either $f(x) = 1/k$ for all $x \in B$ and $f(y) = 1/k$ for at least $k-1$ vertices of A, or $f(y) = 1/k$ for at least k vertices of A. In both these cases again $f(V(K_m)) \geq 2$. A function f which assigns $1/k$ to exactly k vertices of A and to exactly k vertices of B has $f(V(K_m)) = 2$.

Now suppose $m = k - 1$. Then $|A| = k - 1$. Let $x \in B$ and again let f be a $Y(k)$-dominating function of K_m. The set $N[x]$ has exactly k vertices and thus $f(x) = 1/k$ for each $y \in N[x]$. This means that $f(y) = 1/k$ for each $y \in A$ and also $f(x) = 1/k$. As x is an arbitrary vertex of B, we have $f(x) = 1/k$ for all $x \in V(K_m)$ and $f(V(K_m)) = (k - 1 + n)/k$. Another $Y(k)$-dominating function does not exist and thus $\gamma(k, K_m) = (k - 1 + n)/k$.

Finally, let $k = m$. If f is a $Y(k)$-dominating function, then either $f(x) = 1/k$ for each $x \in A$ and for at least $k - 1$ vertices x of B, or $f(x) = 1/k$ for exactly $k - 1$ vertices of A and all vertices $x \in B$. In the former case $f(V(K_m)) \geq (2k - 1)/k = 2 - 1/k$, in the latter case $f(V(K_m)) \geq (k - 1 + n)/k \geq (2k - 1)/k = 2 - 1/k$. If f assigns the value $1/k$ to all vertices of A and to exactly $k - 1$ vertices of B, then $f(V(K_m)) = 2 - 1/k$, therefore $\gamma(k, K_m) = 2 - 1/k$.

By the symbol $G \oplus H$ we denote the Zykov sum of graphs G and H, i.e. the graph obtained from vertex-disjoint graphs G and H by joining all vertices of G with all vertices of H by edges.

Theorem 6. Let k, q be positive integers, let G, H be two graphs such that $\gamma(k, G)$, $\gamma(k, H)$ are defined and $q \leq 1 + \min(\gamma(k, G), \gamma(k, H))$. Then $\gamma(kq, G \oplus H) \leq (\gamma(k, G) + \gamma(k, H))/q$.

Proof. Let g and h be minimal $Y(k)$-dominating functions of G and H, respectively. Let $f : V(G) \cup V(H) \to Y(kq)$ be defined so that $f(x) = g(x)/q$ for $x \in V(G)$ and $f(x) = h(x)/q$ for $x \in V(H)$. Consider $x \in V(G)$. The closed neighbourhood of x in $G \oplus H$ is the disjoint union of the closed neighbourhood of x in G and of $V(H)$. The sum of values of f over the closed neighbourhood of x in G is at least $1/q$, its sum over $V(H)$ is at least $\gamma(k, H)/q$. It follows from the assumption that $1/q + \gamma(k, H)/q \geq 1$. For $x \in V(H)$ this may be proved quite analogously. Therefore f is a $Y(kq)$-dominating function of $G \oplus H$. This implies the assertions.

For the particular case $k = 1$ we have a corollary.

Corollary 3. Let q be a positive integer, let G, H be two graphs such that $q \leq 1 + \min(\gamma(G), \gamma(H))$. Then $\gamma(q, G \oplus H) \leq (\gamma(G) + \gamma(H))/q$.

267
A similar assertion holds for $G \oplus K_1$, i.e. the graph which is obtained from G by adding a new vertex and joining it with all vertices of G by edges.

Theorem 7. Let k be a positive integer, let G be a graph for which $\gamma(k, G)$ is defined. Then

$$\gamma(k + 1, G \oplus K_1) = \gamma(k, G) \cdot \frac{k}{k+1} + \frac{1}{k+1}.$$

Proof. Let f be a minimal $Y(k)$-dominating function of G. Let w be the added vertex. Let $g : V(G) \cup \{w\} \to Y(k + 1)$ be defined so that $g(x) = kf(x)/(k + 1)$ for $x \in V(G)$ and $g(w) = 1/(k + 1)$. Then the sum of $g(x)$ over the closed neighbourhood of x in $G \oplus K_1$ is equal to the sum of g over the closed neighbourhood of x in G plus $g(w)$. The sum of g over the closed neighbourhood of x in G is at least $k/(k + 1)$ and $g(w) = 1/(k + 1)$, therefore the sum of g over the closed neighbourhood of x in $G \oplus K_1$ is at least 1. The closed neighbourhood of w in $G \oplus K_1$ is $V(G) \cup \{w\}$ and the sum of g over it is greater than or equal to this sum over the closed neighbourhood of any other vertex, therefore it is also at least 1 and

$$\sum_{x \in V(G) \cup \{w\}} g(x) = \frac{k}{k+1} \sum_{x \in V(G)} f(x) + g(w) = \frac{k}{k+1} \gamma(k, G) + \frac{1}{k+1}.$$

Hence $\gamma(k + 1, G \oplus K_1) \leq \frac{k}{k+1} \gamma(k, G) + \frac{1}{k+1}$. On the other hand, let g_0 be a minimal $Y(k + 1)$-dominating function of $G \oplus K_1$ and let $f_0 : V(G) \to Y(k)$ be defined so that $f_0(x) = (k + 1)g_0(x)/k$ for each $x \in V(G)$. The sum of values of g over the closed neighbourhood of any vertex $x \in V(G)$ in G is at least $1 - 1/(k + 1)$ and thus such a sum of f_0 is at least 1. We have

$$\sum_{x \in V(G)} f_0(x) = \sum_{x \in V(G)} (k + 1)g_0(x)/k = \frac{k+1}{k} \sum_{x \in V(G)} g_0(x) = \frac{k+1}{k} \gamma(k + 1, G \oplus K_1) - \frac{1}{k}$$

and thus

$$\gamma(k, G) \leq \frac{k+1}{k} \gamma(k + 1, G \oplus K_1) - \frac{1}{k},$$

which yields $\gamma(k + 1, G \oplus K_1) \geq \frac{k}{k+1} \gamma(k, G) + \frac{1}{k+1}$. Hence we have the equality $\gamma(k + 1, G \oplus K_1) = \frac{k}{k+1} \gamma(k, G) + \frac{1}{k+1}$. \qed

In the end we will consider the number $\gamma(k, G)$ for different numbers k and for the same graph G.

Theorem 8. Let k, q be positive integers. Then there exists a graph G such that $\gamma(k + 1, G) - \gamma(k, G) = q$.

Proof. Denote $p = kq + q + 1$ and let G be the Zykov sum $K_2 \oplus \overline{K}_p$, where \overline{K}_p denotes the complement of the complete graph K_p, i.e. the graph consisting of p isolated vertices. If f is a function such that $f(x) = 0$ for $x \in V(\overline{K}_p)$ and $f(x) = 1/k$ for $x \in V(K_2)$, then f is a $Y(k)$-dominating function of G; namely, we have $V(K_2) \subseteq N[x]$ for each $x \in V(G)$ and $f(V(K_2)) = 1$. We have $\gamma(k, G) = 1$. Each vertex of
\(K_p\) has degree \(k\) in \(G\) and therefore for each \(Y(k+1)\)-dominating function \(g\) we have
\(g(y) = 1/(k+1)\) for each \(y \in V(G)\) and
\(\gamma(k+1, G) = (p+k)/(k+1) = q + 1. \)

The next theorem is not expressed for \(k\) in general, but only for \(\gamma(1,G)\) and \(\gamma(2,G)\).

Theorem 9. Let \(q\) be a positive integer. Then there exists a graph \(G\) such that
\(\gamma(1,G) - \gamma(2,G) = q.\)

Proof. Let \(H\) be a graph obtained from the circuit of length 4 by adding a new vertex \(u\) and joining it to a vertex \(v\) of the circuit by an edge. Take \(2q\) pairwise vertex-disjoint copies \(H_1, \ldots, H_{2q}\) of \(H\). Take a vertex \(w\) and join it by edges with the vertex corresponding to \(u\) in each of the graphs \(H_1, \ldots, H_{2q}\). Finally, take a new vertex \(x\) and join it with \(w\) by an edge. The resulting graph will be \(G\). For \(q = 4\) this graph is shown Fig. 1. The number \(\gamma(1,G)\) is the usual domination number \(\gamma(G)\) of \(G\),

![Diagram](image-url)

i.e. the minimum number of vertices of a dominating set \(D\) in \(G\). Evidently such a dominating set must contain at least one of the vertices \(w, x\) and at least two vertices from each \(H\) for \(i = 1, \ldots, 2q\); hence \(\gamma(G) \geq 4q + 1\). If \(D\) consists of \(w, x\) of the vertices corresponding to \(v\) in \(H\) and of one other vertex of the circuit in \(H\) for \(i = 1, \ldots, 2q\), then \(D\) is dominating in \(G\) and \(|D| = 4q + 1\), which implies \(\gamma(G) = 4q + 1\). Now let \(V^+\) be the set consisting of all vertices of \(D\) and, moreover, of \(x\) and of one more vertex of the circuit in each \(H\) for \(i = 1, \ldots, 2q\). We have \(|V^+| = 6q + 2\). If \(f(x) = \frac{1}{2}\) for \(x \in V^+\) and \(f(x) = 0\) for \(x \in V(G) - V^+\), then \(f\) is a \(V(2)\)-dominating function of \(G\) and is evidently minimal. We have \(\gamma(2,G) = f(V(G)) = \frac{1}{2}|V^+| = 3q + 1\). Hence
\(\gamma(1,G) - \gamma(2,G) = q.\) \(\Box\)
Problem. Can Theorem 10 be generalized to a theorem analogous to Theorem 9?

A final remark. The $Y(k)$-domination number of a graph can be defined in another way, without using the concept of a $Y(k)$-dominating function:

A subset D of $V(G)$ is called k-tuply dominating in G, if for each $x \in V(G) - D$ there exist k vertices y_1, \ldots, y_k od D adjacent to x and for each $y \in D$ there exist $k - 1$ vertices z_1, \ldots, z_{k-1} adjacent to y. The minimum number of vertices of a k-tuply dominating set in G is called the $Y(k)$-domination number of G.

A k-tuply dominating set was defined and used also in [5], but in a weaker form: the requirement of existence of z_1, \ldots, z_{k-1} for $y \in D$ was not used there.

References

Author's address: Bohdan Zelinka, Katedra diskrétní matematiky a statistiky Technické university, Hálkova 6, 461 17 Liberec 1, Czech Republic, e-mail: bohdan.zelinka @vslib.cz.