DISJOINT SEQUENCES IN BOOLEAN ALGEBRAS

JÁN JAKUBÍK, Košice

(Received June 13, 1997)

Abstract. We deal with the system Conv B of all sequential convergences on a Boolean algebra B. We prove that if α is a sequential convergence on B which is generated by a set of disjoint sequences and if β is any element of Conv B, then the join $\alpha \lor \beta$ exists in the partially ordered set Conv B. Further we show that each interval of Conv B is a Brouwerian lattice.

Keywords: Boolean algebra, sequential convergence, disjoint sequence

MSC 1991: 06E99, 11B99

1. Introduction

Some types of sequential convergences on Boolean algebras were investigated by Lőwig [3], Novák and Novotný [4] and Papangelou [5].

This note is a continuation of [1]. Throughout the paper we assume that B is a Boolean algebra which has more than one element. Conv B is the system of all sequential convergences on B which are compatible with the structure of B. For the sake of completeness, the definition of Conv B as given in [1] is recalled in Section 2.

The system Conv B is partially ordered by the set-theoretical inclusion. It is a \land-semilattice with the least element (the discrete convergence on B). In general, Conv B fails to be a lattice; i.e., for α and β in Conv B, the join $\alpha \lor \beta$ need not exist in the partially ordered set Conv B.

A sufficient condition for Conv B to be a lattice was found in [2].

We denote by $D(B)$ the system of all sequences (x_n) in B such that

(i) $x_{n(1)} \land x_{n(2)} = 0$ whenever $n(1)$ and $n(2)$ are distinct positive integers;
(ii) $x_n > 0$ for each positive integer n.
The sequences belonging to $D(B)$ will be called disjoint.

We prove that for each subset A of $D(B)$ there exists a sequential convergence $\alpha \in \text{Conv } B$ which is generated by A and that for any $\beta \in \text{Conv } B$ the join $\alpha \lor \beta$ exists in the partially ordered set $\text{Conv } B$.

Further we show that each interval of $\text{Conv } B$ is a complete lattice satisfying the identity

$$\left(\bigvee_{i \in I} \alpha_i \right) \land \beta = \bigvee_{i \in I} (\alpha_i \land \beta).$$

This implies that each interval of $\text{Conv } B$ is a Brouwerian lattice.

2. Preliminaries

We denote by S the system of all sequences in B. Let $\alpha \subseteq S \times B$. If $((x_n), x) \in \alpha$, then we denote this fact by writing $x_n \rightarrow^{\alpha} x$. For $a \in B$, const a denotes the sequence (a) such that $x_n = a$ for each $n \in \mathbb{N}$.

We recall the definitions of $\text{Conv } B$ and $\text{Conv}_0 B$ from [1].

2.1. Definition. A subset of $S \times B$ is said to be a convergence on B if the following conditions are satisfied:

(i) If $x_n \rightarrow^{\alpha} x$ and (y_n) is a subsequence of (x_n), then $y_n \rightarrow^{\alpha} x$.

(ii) If $(x_n) \in S$, $x \in B$ and if for each subsequence (y_n) of (x_n) there is a subsequence (z_n) of (y_n) such that $z_n \rightarrow^{\alpha} x$, then $x_n \rightarrow^{\alpha} x$.

(iii) If $a \in B$ and $(x_n) = \text{const } a$, then $x_n \rightarrow^{\alpha} a$.

(iv) If $x_n \rightarrow^{\alpha} x$ and $x_n \rightarrow^{\alpha} y$, then $x = y$.

(v) If $x_n \rightarrow^{\alpha} x$ and $y_n \rightarrow^{\alpha} y$, then $x_n \lor y_n \rightarrow^{\alpha} x \lor y$, $x_n \land y_n \rightarrow^{\alpha} x \land y$ and $x' \rightarrow^{\alpha} x'$.

(vi) If $x_n \leq y_n \leq z_n$ is valid for each $n \in \mathbb{N}$ and $x_n \rightarrow^{\alpha} x$, $z_n \rightarrow^{\alpha} x$, then $y_n \rightarrow^{\alpha} x$.

The system of all convergences on B is denoted by $\text{Conv } B$.

For each $\alpha \in \text{Conv } B$ we put

$$\alpha_0 = \{(x_n) \in S : x_n \rightarrow^{\alpha} 0\}.$$

Further we define

$$\text{Conv}_0 B = \{\alpha_0 : \alpha \in \text{Conv } B\}.$$

Both the systems $\text{Conv } B$ and $\text{Conv}_0 B$ are partially ordered by the set-theoretical inclusion; the suprema and infima (if they exist) in $\text{Conv } B$ or in $\text{Conv}_0 B$ are denoted by the symbol \lor or \land, respectively.
Next, we denote by d the system of all $((x_n), x) \in S \times B$ such that the set
$n \in \mathbb{N}: x_n \neq x$ is finite. Then d is the least element of Conv B.

For each $\alpha \in \text{Conv } B$ we put $f(\alpha) = \alpha_0$.

2.2. Lemma. The mapping f is an isomorphism of the partially ordered set Conv B onto the partially ordered set Conv$_0 B$.

Proof. We have $f(\text{Conv } B) = \text{Conv}_0 B$. In view of 1.4 in [1], f is a monomorphism.

Let $\alpha, \beta \in \text{Conv } B$, $\alpha \leq \beta$. Further let $(x_n) \in \alpha$. Hence $((x_n), 0) \in \alpha$, thus
$((x_n), 0) \in \beta$ and then $(x_n) \in \beta_0$. Thus $\alpha_0 \leq \beta_0$.

Now let $\alpha, \beta \in \text{Conv } B$, $\alpha_0 \leq \beta_0$. Assume that $((x_n), x) \in \alpha$. In view of 1.3 in [1] we have
$x_n \wedge x' =_{\alpha} 0$, $x_n' \wedge x =_{\alpha} 0$.

Thus from the relation $\alpha_0 \leq \beta_0$ we obtain
$x_n \wedge x' =_{\beta} 0$, $x_n' \wedge x =_{\beta} 0$.

Then by applying 1.3 in [1] again we get $x_n \rightarrow_{\beta} x$. Hence $\alpha \leq \beta$. \hfill \square

As a consequence we obtain that d_0 is the least element of Conv$_0 B$.

2.3. Lemma. (Cf. [1].) (i) Conv$_0 B$ is a \wedge-semilattice and each interval of
Conv$_0 B$ is a complete lattice.

(ii) If $\emptyset \neq \{\alpha^0_i\}_{i \in I} \subseteq \text{Conv}_0 B$, then
$$\bigwedge_{i \in I} \alpha^0_i = \bigcap_{i \in I} \alpha^0_i.$$

(iii) There exists a Boolean algebra B_1 such that Conv$_0 B_1$ fails to be a lattice.

From 2.2 and 2.3 we infer

2.4. Proposition. Conv B is a \wedge-semilattice and each interval of Conv B is
a complete lattice. There exists a Boolean algebra B_1 such that Conv B_1 is not a lattice.
3. On the set \(D(B) \)

We apply the notation as in the previous sections. A subset \(T \) of \(S \) is called regular if there exists \(\alpha_0 \in \text{Conv}_0 B \) such that \(T \subseteq \alpha_0 \).

Let \(T \) be a regular subset of \(S \) and let \(\alpha_0 \) be as above. Then in view of 2.3 there exists an element \(\alpha^0(T) \) of \(\text{Conv}_0 B \) such that \(\alpha^0(T) \) is the least element of \(\text{Conv}_0 B \) having \(T \) as a subset. We say that \(\alpha^0(T) \) is the element of \(\text{Conv}_0 B \) which is generated by \(T \). We also say that \(T \) generates the convergence \(\alpha_0 \), where \(\alpha_0 = \alpha^0(T) \).

If \(T \) is regular, then clearly each subset of \(T \) is regular.

For \((x_n), (y_n) \in S \) we put \((x_n) \leq (y_n) \) if \(x_n \leq y_n \) for each \(n \in \mathbb{N} \). Then \(S \) turns out to be a Boolean algebra. Let \(A \) be a nonempty subset of \(S \). We denote by

\[A^* \] the set of all \((x_n) \in S \) such that for each subsequence \((y_n) \) of \((x_n) \) there exists a subsequence \((z_n) \) of \((y_n) \) which belongs to \(A \);

\[[A] \] the ideal of the Boolean algebra generated by the set \(A \);

\(\delta A \) the set of all subsequences of sequences belonging to \(A \).

The following assertion is easy to verify.

3.1. Lemma. Let \(A \) be a nonempty subset of \(S \). Then \([A]\) is the set of all sequences \((z_n) \in S\) such that there exist \(k \in \mathbb{N} \) and \((w^1_n), (w^2_n), \ldots, (w^k_n) \in A\) having the property that the relation

\[z_n \leq w^1_n \lor w^2_n \lor \ldots \lor w^k_n \]

is valid for each \(n \in \mathbb{N} \).

3.2. Lemma. (Cf. [1], 2.9.) Let \(\emptyset \neq A \subseteq S \). Then the following conditions are equivalent:

(i) \(A \) is regular.

(ii) If \((y^1_n), (y^2_n), \ldots, (y^k_n) \) are elements of \(\delta A \) and if \(b \) is an element of \(B \) such that \(b \leq y^1_n \lor y^2_n \lor \ldots \lor y^k_n \) is valid for each \(n \in \mathbb{N} \), then \(b = 0 \).

From the definition of \(\text{Conv}_0 B \) and from [1], 2.5 we conclude

3.3. Lemma. Let \(A \neq \emptyset \) be a regular subset of \(S \). Then \([\delta A]^*\) is an element of \(\text{Conv}_0 B \) which is generated by the set \(A \).

3.4. Lemma. (Cf. [1], 5.2.) Let \((x_n) \in D(B) \). Then the set \(\{ (x_n) \} \) is regular.

3.5. Lemma. Let \((x_n) \in D(B) \) and suppose that \((y^1_n), (y^2_n), \ldots, (y^k_n) \) are subsequences of \((x_n) \). Put \((z_n) = y^1_n \lor y^2_n \lor \ldots \lor y^k_n \) for each \(n \in \mathbb{N} \). Then there exists a subsequence \((t_n) \) of \((z_n) \) such that \((t_n) \in D(B) \).
Proof. For each $i \in \{1, 2, \ldots, k\}$ and each $n \in \mathbb{N}$ there is a positive integer $j(i, n)$ such that

$$y_n^i = x_{j(i, n)}.$$

Thus for each $i \in \{1, 2, \ldots, k\}$ we have

$$j(i, n) \to \infty \quad \text{as} \quad n \to \infty. \quad (1)$$

We define the sequence (t_n) by induction as follows. We put $t_1 = z_1$. Suppose that $n > 1$ and that $t_1, t_2, \ldots, t_{n-1}$ are defined. Hence there are $\ell(1), \ell(2), \ldots, \ell(n-1) \in \mathbb{N}$ with

$$t_s = z_{\ell(s)} \quad \text{for} \quad s = 1, 2, \ldots, n - 1.$$

In view of (1) there exists the least positive integer p having the property that for each $s \in \{1, 2, \ldots, n - 1\}$ and each $i(1), i(2) \in \{1, 2, \ldots, k\}$ the relation

$$j(i(1), s) < j(i(2), p)$$

is valid. Then we put $t_n = z_p$.

Hence $t_n \wedge t_s = 0$ for $s = 1, 2, \ldots, n - 1$. Thus $(z_n) \in D(B)$. \hfill \Box

3.6. Lemma. Let $\emptyset \neq A_1$ be a regular subset of S and let $(x_n) \in D(B)$. Then the set $A_1 \cup \{(x_n)\}$ is regular.

Proof. We denote by a_0 the element of Conv B which is generated by the set A_1. Put $A = A_1 \cup \{(x_n)\}$. By way of contradiction, suppose that A fails to be regular. Then in view of 3.2 there are $(y_n^1), (y_n^2), \ldots, (y_n^m) \in \delta A$ and $0 < b \in B$ such that the relation

$$0 < b \leq y_n^1 \vee y_n^2 \vee \ldots \vee y_n^m$$

is valid for each $n \in \mathbb{N}$. Put

$$M_1 = \{i \in \{1, 2, \ldots, m\} : (y_n^i) \in A_1\},$$

$$M_2 = \{1, 2, \ldots, m\} \setminus M_1.$$

Since the set A_1 is regular, in view of 3.2 the relation $M_2 = \emptyset$ cannot hold. Further, according to 3.4 and 3.2, the set M_1 cannot be empty. Denote

$$z_n^1 = \bigvee y_n^i \quad (i \in M_1), \quad z_n^2 = \bigvee y_n^i \quad (i \in M_2).$$

Then $(z_n^1) \in a_0$.

415
According to 3.5 there exists a mapping \(\varphi : \mathbb{N} \rightarrow \mathbb{N} \) such that \(\varphi \) is increasing and the sequence \((z_{\varphi(n)})^2 \) belongs to \(D(B) \). We have
\[
0 < b \leq z_{\varphi(n)}^1 \lor z_{\varphi(n)}^2 \quad \text{for each } n \in \mathbb{N}.
\]
Put
\[
b \land z_{\varphi(n)}^1 = q_n^1, \quad b \land z_{\varphi(n)}^2 = q_n^2.
\]
Then
\[
b = q_n^1 \lor q_n^2
\]
for each \(n \in \mathbb{N} \). We have \((q_n^1) \in \alpha_0 \) and \((q_n^2) \in D(B) \).
Since \(b = q_{n+1}^1 \lor q_{n+1}^2 \) we get
\[
q_n^2 = q_n^2 \land b = q_n^2 \land (q_{n+1}^1 \lor q_{n+1}^2) = (q_n^2 \land q_{n+1}^1) \lor (q_n^2 \land q_{n+1}^2) = q_n^2 \land q_{n+1}^2
\]
and clearly \((q_n^2 \land q_{n+1}^2) \in \alpha_0 \). Therefore \((q_n^1 \lor q_n^2) \in \alpha_0 \) yielding that \(\text{const } b \in \alpha_0 \), which is impossible.

By the obvious induction, from 3.6 we obtain

3.7. Lemma. Let \(\emptyset \neq A_1 \) be a regular subset of \(S \), \(m \in \mathbb{N} \), \((x_1^n), (x_2^n), \ldots, (x_m^n) \in D(B) \). Then the set \(A_1 \cup \{(x_1^n), (x_2^n), \ldots, (x_m^n)\} \) is regular.

Since the system of sequences which is dealt with in the condition (ii) of 3.2 is finite, from 3.7 we conclude

3.8. Proposition. Let \(\emptyset \neq A_1 \) be a regular subset of \(S \). Then the set \(A_1 \cup D(B) \) is regular.

It is obvious that if \(\emptyset \neq A_2 \subseteq S \), then \(A_2 \) is regular if and only if the set \(\{\text{const } 0\} \cup A_2 \) is regular. Hence by putting \(A_1 = \{\text{const } 0\} \), from 3.8 we obtain

3.9. Proposition. The set \(D(B) \) is regular.

In view of 3.9, there exists \(\gamma \in \text{Conv } B \) which is generated by the set \(D(B) \).
Let \(\alpha_0 \in \text{Conv } B \). According to 3.8, the set \(\alpha_0 \cup D(B) \) is regular. Hence there exists \(\beta_0 \in \text{Conv } B \) such that \(\beta_0 \) is generated by the set \(\alpha_0 \cup D(B) \).

In view of 3.3, we have \(\alpha_0 \leq \beta_0 \) and \(\gamma_0 \leq \beta_0 \). Let \(\beta_1 \in \text{Conv } B \), \(\beta_1 \geq \alpha_0 \), \(\beta_1 \geq \gamma_0 \). Thus \(D(B) \subseteq \beta_1 \) and hence \(\alpha_0 \cup D(B) \subseteq \beta_1 \). By using 3.3 again we get \(\beta_0 \leq \beta_1 \).
Therefore \(\beta_0 = \alpha_0 \lor \gamma_0 \). We obtain

3.10. Proposition. Let \(\alpha_0 \in \text{Conv } B \). Then the join \(\alpha_0 \lor \gamma_0 \) exists in the partially ordered set \(\text{Conv } B \).

416
In view of 2.2 we conclude

3.11. Corollary. Let $\alpha \in \text{Conv } B$. Then the join $\alpha \lor \gamma$ exists in the partially ordered set $\text{Conv } B$.

If A_0 is a nonempty subset of $D(B)$, then it is regular and thus there exists $\gamma_1 \in \text{Conv } B$ which is generated by A_0. Clearly $\gamma_1 \leq \gamma$; from 3.11 and 2.4 we obtain

3.12. Corollary. Under the notation as above, for each $\alpha \in \text{Conv } B$ there exists $\alpha \lor \gamma_1$ in $\text{Conv } B$.

4. A DISTRIBUTIVE IDENTITY

Suppose that μ_1 and μ_2 are elements of $\text{Conv}_0 B$ such that $\mu_1 \leq \mu_2$. Consider the interval $[\mu_1, \mu_2]$ of the partially ordered set $\text{Conv}_0 B$. In view of 2.3, this interval is a complete lattice.

Let $\emptyset \neq \{\alpha_i\}_{i \in I} \subseteq [\mu_1, \mu_2]$ and $\beta \in [\mu_1, \mu_2]$. Then the elements

$$\nu_1 = \bigvee_{i \in I} \alpha_i \land \beta, \quad \nu_2 = \bigvee_{i \in I} (\alpha_i \land \beta)$$

exist in $[\mu_1, \mu_2]$ and $\nu_1 \geq \nu_2$. Put

$$A_1 = \bigcup_{i \in I} \alpha_i, \quad A_2 = \bigcup_{i \in I} (\alpha_i \cap \beta).$$

Suppose that $(v_n) \in \nu_1$. Hence according to 2.3 we have

$$(v_n) \in \beta \quad \text{and} \quad (v_n) \in \bigvee_{i \in I} \alpha_i.$$

From the second relation and from Lemma 3.3 in [1] we obtain

$$(v_n) \in [A_1]^*.$$

Hence for each subsequence (t^1_n) of (v_n) there is a subsequence (t^2_n) of (t^1_n) such that $(t^2_n) \in [A_1]$.

Let (t^1_n) and (t^2_n) have the mentioned properties. Therefore in view of 3.1 there are $(w^1_n), (w^2_n), \ldots, (w^k_n)$ in A such that the relation

$$t^2_n \leq w^1_n \lor w^2_n \lor \ldots \lor w^k_n$$

holds for each n.
is valid for each \(n \in \mathbb{N} \). Put
\[
q_n^j = t_n^2 \wedge w_n^j
\]
for each \(n \in \mathbb{N} \) and each \(j \in \{1, 2, \ldots, k\} \). Thus
\[
t_n^2 = q_n^1 \vee q_n^2 \vee \ldots \vee q_n^k
\]
for each \(n \in \mathbb{N} \),

and \((q_n^1), (q_n^2), \ldots, (q_n^k) \in A_1 \). At the same time we have \((q_n^1), (q_n^2), \ldots, (q_n^k) \in \beta \).

Hence for each \(j \in \{1, 2, \ldots, k\} \) there is \(i(j) \in I \) such that
\[
(q_n^j) \in \alpha_{i(j)} \cap \beta.
\]

In view of 3.1, this yields that \(t_n^2 \) belongs to \([A_2]\). Therefore \((v_n) \in [A_2]^*\). Thus by applying Lemma 3.3 in [1] we get \((v_n) \in \nu_2\).

Summarizing, we have

4.1. Proposition. Let \([\mu_1, \mu_2] \) be an interval of \(\text{Conv}_0 B \), \(\beta \in [\mu_1, \mu_2] \), \(\emptyset \neq \{\alpha_i\}_{i \in I} \subseteq [\mu_1, \mu_2] \). Then

\[
\left(\bigvee_{i \in I} \alpha_i \right) \wedge \beta = \bigvee_{i \in I} (\alpha_i \wedge \beta).
\]

4.2. Corollary. Each interval of \(\text{Conv}_0 B \) is Brouwerian.

From 4.1 and 2.2 we obtain

4.3. Corollary. Each interval of \(\text{Conv} B \) satisfies the identity (1).

References

Author’s address: Ján Jakubík, Matematický ústav SAV, Grešíkova 6, 04001 Košice, Slovakia, e-mail: musave@fmuk.sav.sk.

418