ON k-STRONG DISTANCE IN STRONG DIGRAPHS

PING ZHANG, Kalamazoo

(Received January 15, 2001)

Abstract. For a nonempty set S of vertices in a strong digraph D, the strong distance $d(S)$ is the minimum size of a strong subdigraph of D containing the vertices of S. If S contains k vertices, then $d(S)$ is referred to as the k-strong distance of S. For an integer $k \geq 2$ and a vertex v of a strong digraph D, the k-strong eccentricity $se_k(v)$ of v is the maximum k-strong distance $d(S)$ among all sets S of k vertices in D containing v. The minimum k-strong eccentricity among the vertices of D is its k-strong radius $srad_k(D)$ and the maximum k-strong eccentricity is its k-strong diameter $siam_k(D)$. The k-strong center (k-strong periphery) of D is the subdigraph of D induced by those vertices of k-strong eccentricity $srad_k(D)$ ($siam_k(D)$). It is shown that, for each integer $k \geq 2$, every oriented graph is the k-strong center of some strong oriented graph. A strong oriented graph D is called strongly k-self-centered if D is its own k-strong center. For every integer $r \geq 6$, there exist infinitely many strongly 3-self-centered oriented graphs of 3-strong radius r. The problem of determining those oriented graphs that are k-strong peripheries of strong oriented graphs is studied.

Keywords: strong distance, strong eccentricity, strong center, strong periphery

MSC 2000: 05C12, 05C20

1. Introduction

The familiar distance $d(u, v)$ between two vertices u and v in a connected graph is the length of a shortest $u - v$ path in G. Equivalently, this distance is the minimum size of a connected subgraph of G containing u and v. This concept was extended in [2] to connected digraphs, in particular to strongly connected (strong) oriented graphs. We refer to [4] for graph theory notation and terminology not described here.

Research supported in part by the Western Michigan University Arts and Sciences Teaching and Research Award Program.
A digraph D is strong if for every pair u, v of distinct vertices of D, there is both a directed $u - v$ path and a directed $v - u$ path in D. A digraph D is an oriented graph if D is obtained by assigning a direction to each edge of a graph G. The graph G is referred to as the underlying graph of D. In this paper we will be interested in strong oriented graphs. The underlying graph of a strong oriented graph is necessarily 2-edge-connected. Let D be a strong oriented graph of order $n \geq 3$ and size m. For two vertices u and v of D, the strong distance $sd(u,v)$ between u and v is defined in [2] as the minimum size of a strong subdigraph of D containing u and v. If $u \neq v$, then $3 \leq sd(u,v) \leq m$. In the strong oriented graph D of Figure 1, $sd(v,w) = 3$, $sd(u,y) = 4$, and $sd(u,x) = 5$.

![Figure 1. A strong oriented graph](image)

A generalization of distance in graphs was introduced in [5]. For a nonempty set S of vertices in a connected graph G, the Steiner distance $d(S)$ of S is the minimum size of a connected subgraph of G containing S. Necessarily, each such subgraph is a tree and is called a Steiner tree with respect to S. We now extend this concept to connected strong digraphs. For a nonempty set S of vertices in a strong digraph D, the strong Steiner distance $d(S)$ is the minimum size of a strong subdigraph of D containing S. We will refer to such a subgraph as a Steiner subdigraph with respect to S, or, simply, S-subdigraph. Since D itself is strong, $d(S)$ is defined for every nonempty set S of vertices of D. We denote the size of a digraph D by $m(D)$. If $|S| = k$, then $d(S)$ is referred to as the k-strong Steiner distance (or simply k-strong distance) of S. Thus $3 \leq d(S) \leq m(D)$ for each set S of vertices in a strong digraph D with $|S| \geq 2$. Then the 2-strong distance is the strong distance studied in [2], [3]. For example, in the strong oriented graph D of Figure 1, let $S_1 = \{u,v,x\}$, $S_2 = \{u,v,y\}$, and $S_3 = \{v,w,y\}$. Then the 3-strong distances of S_1, S_2, and S_3 are $d(S_1) = 5$, $d(S_2) = 4$, and $d(S_3) = 3$.

It was shown in [2] that strong distance is a metric on the vertex set of a strong oriented graph D. As such, certain properties are satisfied. Among these are: (1) $sd(u,v) \geq 0$ for vertices u and v of D and $sd(u,v) = 0$ if and only if $u = v$ and (2) $sd(u,w) \leq sd(u,v) + sd(v,w)$ for vertices u, v, w of D. These two properties can be considered in a different setting. Let D be a strong oriented graph and let $S \subseteq V(D)$, where $S \neq \emptyset$. Then $d(S) \geq 0$ and $d(S) = 0$ if and only if $|S| = 1$, which is property (1). Let $S_1 = \{u, w\}$, $S_2 = \{u, v\}$, and $S_3 = \{v, w\}$. Then the triangle inequality $sd(u,w) \leq sd(u,v) + sd(v,w)$ given in (2) can be restated as $d(S_1) \leq d(S_2) + d(S_3)$.

558
where, of course, $|S_i| = 2$ for $1 \leq i \leq 3$, $S_1 \subseteq S_2 \cup S_3$ and $S_2 \cap S_3 \neq \emptyset$. We now describe an extension of (2).

Proposition 1.1. For an integer $k \geq 2$, let S_1, S_2, S_3 be sets of k vertices in a strong oriented graph with $|S_i| = k$ for $1 \leq i \leq 3$. If $S_1 \subseteq S_2 \cup S_3$ and $S_2 \cap S_3 \neq \emptyset$, then

$$d(S_1) \leq d(S_2) + d(S_3).$$

Proof. Let D_i be an S_i-digraph of size $d(S_i)$ for $i = 1, 2, 3$. Define a digraph D' to be the subdigraph of D with vertex set $V(D_2) \cup V(D_3)$ and arc set $E(D_2) \cup E(D_3)$. Since $S_2 \cap S_3 \neq \emptyset$ and D_2 and D_3 are strong subdigraphs of D, it follows that D' is also a strong subdigraph of D with $S_1 \subseteq V(D')$. Thus $m(D_1) \leq m(D')$. Therefore,

$$d(S_1) = m(D_1) \leq m(D') \leq m(D_2) + m(D_3) = d(S_2) + d(S_3),$$

as desired.

As an example, consider the strong oriented graph D of Figure 2. Let $S_1 = \{s, v, x\}$, $S_2 = \{v, x, z\}$, and $S_3 = \{s, x, y\}$. Then $|S_i| = 3$ for $1 \leq i \leq 3$, where $S_1 \subseteq S_2 \cup S_3$ and $S_2 \cap S_3 \neq \emptyset$. For each i with $1 \leq i \leq 3$, let D_i be an S_i-subdigraph of size $d(S_i)$ in D, which is also shown in Figure 2. Hence $d(S_1) = 3$, $d(S_2) = 4$, and $d(S_3) = 5$. Note that the subdigraph D' of D described in the proof of Proposition 1.1 has size 6. Thus $d(S_1) \leq m(D') \leq d(S_2) + d(S_3)$.

![Diagram](image.png)

Figure 2. An example of an extension of (2)

The extended triangle inequality $d(S_1) \leq d(S_2) + d(S_3)$ stated in Proposition 1.1 suggests a generalization of strong distance in strong oriented graphs, which we introduce in this paper.
2. On k-strong eccentricity, radius, and diameter

Let v be a vertex of a strong oriented graph D of order $n \geq 3$ and let k be an integer with $2 \leq k \leq n$. The k-strong eccentricity $s_e(v)$ is defined by

$$s_e(v) = \max\{d(S); \ S \subseteq V(D), v \in S, |S| = k\}.$$

The k-strong diameter $s_{diam}(D)$ is

$$s_{diam}(D) = \max\{s_e(v); \ v \in V(D)\};$$

while the k-strong radius $s_{rad}(D)$ is defined by

$$s_{rad}(D) = \min\{s_e(v); \ v \in V(D)\}.$$

To illustrate these concepts, consider the strong oriented graph D of Figure 3. The 3-strong eccentricity of each vertex of D is shown in Figure 3. Thus $s_{rad}(D) = 8$ and $s_{diam}(D) = 12$.

![Figure 3. A strong oriented graph D with $s_{rad}(D) = 8$ and $s_{diam}(D) = 12$](image)

For a nontrivial strong oriented graph D of order n, the radius sequence $S_r(D)$ of D is defined as

$$S_r(D): s_{rad}(D), s_{rad}(D), s_{rad}(D), \ldots, s_{rad}(D)$$

and the diameter sequence $S_d(D)$ of D is defined as

$$S_d(D): s_{diam}(D), s_{diam}(D), s_{diam}(D), \ldots, s_{diam}(D).$$

For example, the strong oriented graph D in Figure 4 has order 9. Since $s_{rad}(D) = 6$, $s_{rad}(D) = 9$, and $s_{rad}(D) = 12$ for $4 \leq k \leq 9$, it follows that $S_r(D): 6, 9, 12, 12, \ldots, 12$. Moreover, $s_{diam}(D) = 9$ and $s_{diam}(D) = 12$ for $3 \leq k \leq 9$.

560
Thus $S_d(D) = 9, 12, 12, \ldots, 12$. Note that both $S_r(D)$ and $S_d(D)$ are nondecreasing sequences. This is no coincidence, as we now see.

Proposition 2.1. For a nontrivial strong oriented graph D of order n and every integer k with $2 \leq k \leq n - 1$,

- (a) $srad_k(D) \leq srad_{k+1}(D)$ and
- (b) $sdiam_k(D) \leq sdiam_{k+1}(D)$.

Proof. To verify (a), let u and v be two vertices of D with $se_k(u) = srad_k(D)$ and $se_{k+1}(v) = srad_{k+1}(D)$. Let S be a set of k vertices of D such that $se_k(u) = d(S) = srad_k(D)$. Now let x be a vertex of D such that $x = v$ if $v \notin S$ and $x \in V(D) - S$ if $v \in S$. Let $S' = \{x\} \cup S$. Since $S \subseteq S'$, it follows that $d(S) \leq d(S')$. Moreover, S' is a set of $k + 1$ vertices of D containing v and so $d(S') \leq se_{k+1}(v)$. Thus

$$srad_k(D) = d(S) \leq d(S') \leq se_{k+1}(v) = srad_{k+1}(D)$$

and so (a) holds. To verify (b), let S be a set of k vertices of D with $d(S) = sdiam_k(D)$. If S' is any set of $k + 1$ vertices of D with $S \subseteq S'$, then

$$sdiam_k(D) = d(S) \leq d(S') \leq sdiam_{k+1}(D)$$

and so (b) holds.

Equalities in (a) and (b) of Proposition 2.1 hold for certain strong oriented graphs, for example, the directed n-cycle C_n^* for $n \geq 3$. In fact, $srad_k(C_n^*) = sdiam_k(C_n^*) = n$ for all k with $2 \leq k \leq n$. As another example, let D be the strong oriented graph of order $n \geq 3$ with $V(D) = \{v_1, v_2, \ldots, v_n\}$ such that for $1 \leq i < j \leq n$, $(v_i, v_j) \in E(D)$, except when $i = 1$ and $j = n$, and $(v_n, v_1) \in E(D)$ (see Figure 5). Then $srad_k(D) = sdiam_k(D) = n$ for all k with $2 \leq k \leq n$. In fact, there are many other strong oriented graphs D with the property that $srad_k(D) = sdiam_k(D)$.

Figure 4. A strong oriented graph

Figure 5. A strong oriented graph D of order n with $srad_k(D) = sdiam_k(D)$ for $2 \leq k \leq n$
On the other hand, for a strong oriented graph D, the difference between $\text{srad}_{k+1}(D)$ and $\text{srad}_k(D)$ (or $\text{sdiam}_{k+1}(D)$ and $\text{sdiam}_k(D)$) can be arbitrarily large for some k.

Proposition 2.2. For every integer $N \geq 3$, there exist a strong oriented graph D and an integer k such that

$$\text{srad}_{k+1}(D) - \text{srad}_k(D) \geq N \text{ and } \text{sdiam}_{k+1}(D) - \text{sdiam}_k(D) \geq N.$$

Proof. Let $\ell \geq 3$ be an integer. For each i with $1 \leq i \leq \ell$, let D_i be a copy of the directed N-cycle C_N and let $v_i \in V(D_i)$. Now let D be the strong oriented graph obtained from the digraphs D_i (1 $\leq i \leq \ell$) by identifying the ℓ vertices v_1, v_2, \ldots, v_ℓ. It can be verified that $\text{srad}_{k+1}(D) - \text{srad}_k(D) = N$ and $\text{sdiam}_{k+1}(D) - \text{sdiam}_k(D) = N$ for all k with $2 \leq k \leq \ell - 1$.

For an integer $k \geq 2$, the k-strong radius and k-strong diameter of a strong oriented graph satisfy familiar inequalities, which are verified with familiar arguments.

Proposition 2.3. Let $k \geq 2$ be an integer. For every strong oriented graph D,

$$\text{srad}_k(D) \leq \text{sdiam}_k(D) \leq 2\text{srad}_k(D).$$

Proof. The inequality $\text{srad}_k(D) \leq \text{sdiam}_k(D)$ follows directly from the definitions. It was shown in [2] that result is true for $k = 2$. So we may assume that $k \geq 3$. Let $S_1 = \{w_1, w_2, \ldots, w_k\}$ be a set of vertices of D with $d(S) = \text{sdiam}_k(D)$ and let v be a vertex of D with $\text{se}_k(v) = \text{srad}_k(D)$. Define $S_2 = \{v, w_1, w_2, \ldots, w_{k-1}\}$ and $S_3 = \{v, w_2, w_3, \ldots, w_k\}$. Thus $S_1 \subseteq S_2 \cup S_3$ and $S_2 \cap S_3 \neq \emptyset$. It then follows from Proposition 1.1 that

$$\text{sdiam}_k(D) = d(S_1) \leq d(S_2) + d(S_3) \leq 2\text{srad}_k(D),$$

producing the desired result.

3. **On k-strong centers and peripherals**

A vertex v in a strong digraph D is a k-strong central vertex if $\text{se}_k(v) = \text{srad}_k(G)$, while the k-strong center $\text{SC}_k(D)$ of D is the subgraph induced by the k-strong central vertices of D. These concepts were first introduced in [3] for $k = 2$. For example, consider the strong digraph D of Figure 4, which is also shown in Figure 6. Each vertex of D is labeled with its 3-strong eccentricity. Thus the vertices z, y, z are the 3-strong central vertices of D. The 3-strong center $\text{SC}_3(D)$ of D is a 3-cycle as shown in Figure 6.

562
It was shown in [3] that every 2-strong center of every strong oriented graph \(D \) lies in a block of the underlying graph of \(D \). However, it is not true in general for \(k \geq 3 \). For example, although the 3-strong center of the strong oriented graph \(D \) in Figure 6 lies in a block of the underlying graph of \(D \), the 4-strong center of \(D \) is \(D \) itself and \(D \) is not a block. On the other hand, as Hedetniemi (see [1]) showed that every graph is the center of some connected graph, it was also shown in [3] that every oriented graph is the 2-strong center of some strong digraph. We now extend this result by showing that, for each integer \(k \geq 2 \), every oriented graph is the \(k \)-strong center of some strong digraph.

Theorem 3.1. Let \(k \geq 2 \) be an integer. Then every oriented graph is the \(k \)-strong center of some strong digraph.

Proof. For an oriented graph \(D \), we construct a strong oriented graph \(D^* \) from \(D \) by adding the \(3k \) new vertices \(u_i, v_i, w_i \) \((1 \leq i \leq k)\) and arcs (1) \((u_i, v_i), (v_i, w_i)\), and \((u_i, w_i)\) for all \(i \) with \(1 \leq i \leq k \) and (2) \((u_i, x)\) and \((x, v_i)\) for all \(x \in V(D) \) and for all \(i \) with \(1 \leq i \leq k \). The oriented graph \(D^* \) is shown in Figure 7. Certainly, \(D^* \) is strong. Next, we show that \(D \) is the \(k \)-strong center of \(D^* \).

Let \(U = \{u_1, u_2, \ldots, u_k\} \), \(V = \{v_1, v_2, \ldots, v_k\} \), and \(W = \{w_1, w_2, \ldots, w_k\} \). For each \(x \in V(D) \), let \(S(x) = \{x\} \cup (W - \{w_k\}) \). Then \(sc_k(x) = d(S) = 6(k - 1) \). For each \(u_i \in U \), where \(1 \leq i \leq k \), let \(S(u_i) = \{u_i\} \cup (W - \{w_i\}) \). Then \(sc_k(u_i) = 6(k - 1) \).
For each \(v_i \in V \), \(1 \leq i \leq k \), let \(S(v_i) = \{ v_i \} \cup (W - \{ w_i \}) \). Then \(\se_k(v_i) = d(S) = 6(k - 1) + 3 \) for \(1 \leq i \leq k \).

For each \(w_i \in W \), where \(1 \leq i \leq k \), let \(S = W \). Then \(\se_k(w_i) = d(S) = 6k \) for \(1 \leq i \leq k \). Since \(\se_k(x) = 6(k - 1) \) for all \(x \in V(D) \) and \(\se_k(v) > 6(k - 1) \) for all \(v \in V(D^*) - V(D) \), it follows that \(D \) is the \(k \)-strong center of \(D^* \), as desired. \(\square \)

Independently, V. Castellana and M. Raines also discovered Theorem 3.1 (personal communication). A vertex \(v \) in a strong digraph \(D \) is called a \(k \)-strong peripheral vertex if \(\se_k(v) = \text{sdiam}_k(D) \), while the subgraph induced by the \(k \)-strong peripheral vertices of \(D \) is the \(k \)-strong periphery \(SP_k(D) \) of \(D \). Also, these concepts were first introduced in [3] for \(k = 2 \). A strong digraph \(D \) and its 3-strong periphery are shown in Figure 8. The following result appeared in [3].

Theorem A. If \(D \) is an oriented graph with \(\text{srad}_2(D) = 3 \) and \(\text{sdiam}_2(D) > 3 \), then \(D \) is not the 2-strong periphery of any oriented graph.

We now extend Theorem A to the \(k \)-strong periphery of a strong oriented graph for \(k \geq 3 \) and show that not all oriented graphs are the \(k \)-strong peripheries of strong oriented graphs.

Theorem 3.2. Let \(k \geq 3 \) be an integer. If \(D \) is an oriented graph with \(\text{sdiam}_k(D) > \text{srad}_k(D) \), then \(D \) is not the \(k \)-strong periphery of any oriented graph.

Proof. Let \(D \) satisfy the conditions of the theorem. Assume, to the contrary, that \(D \) is the \(k \)-strong periphery of some oriented graph \(D' \). Assume that \(\text{srad}_k(D) = r \) and \(\text{sdiam}_k(D) = d \). So \(d > r \geq 3 \). Let \(u \) be a \(k \)-strong central vertex of \(D \). Since \(\text{sdiam}_k(D) = d > r \), we have \(\text{sdiam}_k(D') = d' \geq d > r \). Moreover, since \(D \) is the \(k \)-strong periphery of \(D' \) and \(u \in V(D) \), it follows that \(D' \) contains a set \(S = \{ u, v_1, v_2, \ldots, v_{k-1} \} \) such that \(d(S) = \text{sdiam}_k(D') = d' \). Because \(u \) is a \(k \)-strong central vertex of \(D \), that is, \(u \) has \(k \)-strong eccentricity \(r \) in \(D \), and \(r < d' \), at least one vertex from \(\{ v_1, v_2, \ldots, v_{k-1} \} \) does not belong to \(V(D) \). Assume, without loss of generality, that \(v_1 \notin V(D) \). Then the \(k \)-strong eccentricity \(\se_k(v_1) \) of \(v_1 \) in \(D' \) is
at least $d(S)$ and so $s_k(v_1) \geq d(S) = d'$. Thus $s_k(v_1) = d'$, which implies that v_1 is a k-strong peripheral vertex of D'. Since $v_1 \notin V(D)$, it follows that D is not the k-strong periphery of D', which is a contradiction. \hfill \square

In [3], a sufficient condition was established for an oriented graph D to be the 2-strong periphery of some oriented graph D', which we state next.

Theorem B. Let D be an oriented graph of order n with strong diameter at least 4. If $id v + od v < n - 1$ for every vertex v of D, then D is the 2-strong periphery of some oriented graph D'.

Observe that if v is a vertex of an oriented graph D of order n such that $id v + od v < n - 1$, then there is a vertex $u \in V(D)$ such that v and u are nonadjacent vertices of D, that is, v belongs to an independent set, namely $\{u, v\}$, of cardinality 2 in D. Thus the sufficient condition given in Theorem B is equivalent to that every vertex in D belongs to an independent set of cardinality 2 in D. We now extend Theorem B to obtain a sufficient condition for an oriented digraph D to be the k-strong periphery of some oriented graph D' for all integers $k \geq 2$.

Theorem 3.3. Let $k \geq 2$ be an integer and let D be a connected oriented graph. If every vertex of D belongs to an independent set of cardinality k in D, then D is the k-strong periphery of some oriented graph D'.

Proof. By Theorem B the result holds for $k = 2$. So we assume that $k \geq 3$. Let D be an oriented graph of order n which satisfies the conditions of the theorem and let $V(D) = \{u_1, u_2, \ldots, u_n\}$. We construct a new oriented graph D' of order $2n + 2$ with $V(D') = V(D) \cup \{v_1, v_2, \ldots, v_n, x, y\}$ such that the arc set of D' consists of $E(D)$ together with arcs (1) (u_i, v_i) and (v_i, u_j) for $1 \leq i \leq n$ and $1 \leq j \leq n$, (2) (v_i, v_j) for $1 \leq i < j \leq n$, and (3) $(y, x), (v_i, x), (x, u_i), (u_i, y), (y, v_i)$ for $1 \leq i \leq n$. The oriented graph D' is shown in Figure 9. We claim that D is the k-strong periphery of D'. We will show it only for $k = 3$ since the argument for $k \geq 4$ is similar.

![Figure 9. An oriented graph D' containing D as its k-strong periphery](image)
We first show that $se_3(u_i) = 6$ in D' for all i with $1 \leq i \leq n$. Without loss of generality, we consider only $u_1 \in V(D)$ and show that $se_3(u_1) = 6$. Let $S_1 = \{u_1, u_p, u_q\}$ be an independent set of three vertices in D', where $2 \leq p < q \leq n$. Then the size of a strong subdigraph containing S_0 is at least 6. On the other hand, the directed 6-cycle C shown in Figure 10 contains S_0. Thus $d(S_0) = 6$ and so $se_3(u_1) \geq 6$.

![Figure 10. A directed 6-cycle C in D' containing S_0.](image)

To show that $se_3(u_1) \leq 6$. Let S be a set of three vertices of D containing u_1. Then the only possible choices for S are $S_1 = \{u_1, u_i, u_j\}$, where $2 \leq i < j \leq n$, $S_2 = \{u_1, v_i, v_j\}$, where $1 \leq i < j \leq n$, $S_3 = \{u_1, u_i, v_j\}$, where $i \geq 2$ and $1 \leq j \leq n$, $S_4 = \{u_1, x, y\}$, $S_5 = \{u_1, u_i, y\}$, where $2 \leq i \leq n$, $S_6 = \{u_1, u_i, x\}$, where $2 \leq i \leq n$, $S_7 = \{u_1, v_i, y\}$, and $S_8 = \{u_1, v_i, x\}$, where $1 \leq i \leq n$. If $S = S_1$, then the directed 6-cycle u_1, v_i, v_j, u_1 is a strong subdigraph of D' containing S and so $d(S) \leq 6$. Let $S = S_2 = \{u_1, v_i, v_j\}$, where $1 \leq i < j \leq n$. If $i = 1$, then the directed 4-cycle u_1, v_i, u_j, u_1 is a strong subdigraph of D' containing S and so $d(S) \leq 4$. If $i \geq 2$, then the directed 4-cycle u_1, y, v_i, v_j, u_1 is a strong subdigraph of D' containing S and so $d(S) \leq 4$. Let $S = S_3 = \{u_1, u_i, v_j\}$, where $i \geq 2$ and $1 \leq j \leq n$. If $j = 1$ or $j = i$, say $j = 1$, then the directed 4-cycle u_1, v_1, u_1, v_i, u_1 is a strong subdigraph of D' containing S and so $d(S) \leq 4$; Otherwise, the directed 5-cycle $u_1, v_1, u_i, v_i, v_j, u_1$ is a strong subdigraph of D' containing S and so $d(S) \leq 5$. If $S = S_4$, then the directed 3-cycle u_1, y, x, u_1 is a strong subdigraph of D' containing S and so $d(S) \leq 3$. If $S = S_5$ (or $S = S_6$), then the directed 5-cycle $u_1, v_1, u_i, y, v_i, u_1$ contains S (or the directed 5-cycle $u_1, v_1, x, u_i, v_i, u_1$ contains S). Thus $d(S) \leq 5$. Let $S = S_7 = \{u_1, v_i, y\}$ or $S = S_8 = \{u_1, v_i, x\}$, where $1 \leq i \leq n$. If $i = 1$, then directed 4-cycle u_1, y, v_1, x, u_1 contains S and $d(S) \leq 4$. If $i \geq 2$, then either the directed 5-cycle $u_1, v_1, u_i, y, v_i, u_1$ contains S or the directed 5-cycle $u_1, v_1, x, u_i, v_i, u_1$ contains S. Thus $d(S) \leq 5$. Hence $d(S) \leq 6$ for all possible choices for S and so $se_3(u_1) \leq 6$. Therefore, $se_3(u_1) = 6$. Similarly, $se_3(u_i) = 6$ for all i with $2 \leq i \leq n$.

Next we show that $se(x) \leq 5$ and $se(y) \leq 5$ in D'. Let S be a set of three vertices in D' containing x. Then the only possible choices for S are $S_1 = \{x, u_i, u_j\}$, where
Let D be a nontrivial strong digraph of order n and let k be an integer with $2 \leq k \leq n$. Then D is called strongly k-self-centered if $srad_k D = sdiam_k D$, that is, if D is its own k-strong center. For example, the directed n-cycle C_n^+ and the strong digraph D in Figure 5 are k-self-centered for all k with $2 \leq k \leq n$. The 2-self-centered digraph was studied in [3]. The following result was established in [3].

Theorem C. For every integer $r \geq 3$, there exist infinitely many strongly 2-self-centered oriented graphs of strong radius r.

We now extend Theorem C to strongly 3-self-centered oriented graphs.

Theorem 4.1. For every integer $r \geq 6$, there exist infinitely many strongly 3-self-centered oriented graphs of strong radius r.

Proof. For each integer $r \geq 6$, we construct an infinite sequence $\{D_n\}$ of strongly 3-self-centered oriented graphs of strong radius r. We consider two cases, according to whether r is even or r is odd.

Case 1. r is even. Let $r = 2p$, where $p \geq 3$. Let D_1 be the digraph obtained from the directed p-cycle $C_p : u_1, u_2, \ldots, u_p$ by adding the $2(p-1)$ new vertices u_1, u_2, \ldots, u_p,
with $w, u, v,$ and v_p and the new arcs $(1) \ (u_i, u_{i+1}), (v_i, v_{i+1})$ for $1 \leq i \leq p-2$ and $(2) \ (v, u_1), (u_{p-1}, v), (v, v_1),$ and (v_{p-1}, v) for all $v \in V(C_p)$. The digraph D_1 is shown in Figure 11 for $r = 6$. Let $U = \{u_1, u_2, \ldots, u_{p-1}\}, V = \{v_1, v_2, \ldots, v_{p-1}\}$, and $W = \{w_1, w_2, \ldots, w_p\}$. We show that D_1 is a strongly 3-self-centered digraph with 3-strong radius r.

![Figure 11. The digraph D_1 in Case 1 for $r = 6$](image)

First, we make an observation. If $S = \{u, v, w\}$, where $u \in U$, $v \in V$, and $w \in W$, then $d(S) \geq r$ by the construction of D_1. On the other hand, let D_S be the strong subdigraph in D_1 consisting of two p-cycles $w, v_1, v_2, \ldots, v_{p-1}, w$ and $w, u_1, u_2, \ldots, u_{p-1}, w$. Since D_S contains S and has size $2p = r$, it follows that $d(S) = r$. Therefore, for every vertex x of $V(D_1)$, there is a set S of three vertices of D_1 such that S contains x and $d(S) = r$. This implies that $se_3(x) \geq r$ for all $x \in V(D_1)$. So it remains to show that $se_3(x) \leq r$ for all $x \in V(D_1)$. There are two subcases.

Subcase 1.1. $x \in U$ or $x \in V$. Without loss of generality, assume that $x \in U$. We will only consider $x = u_1 \in U$ since the proofs for other vertices are similar. Let S be a set of three vertices in D_1 containing u_1. If $S \cap V \neq \emptyset$ and $S \cap W \neq \emptyset$, then $d(S) = r$ by the observation above. So we may assume that S is one of the following sets: $S_1 = \{u_1, u_i, u_j\}$, where $2 \leq i < j \leq p-1$, $S_2 = \{u_1, u_i, v_j\}$, where $2 \leq i \leq p-1$ and $1 \leq j \leq p$, $S_3 = \{u_1, u_i, v_j\}$, where $2 \leq i \leq p-1$ and $1 \leq j \leq p-1$, $S_4 = \{u_1, u_i, v_j\}$, where $1 \leq i < j \leq p-1$, and $S_5 = \{u_1, w_i, v_j\}$, where $1 \leq i \leq j \leq p$. If $S = S_1, S_2$, then the directed p-cycle $w_j, u_1, u_2, \ldots, u_{p-1}, w_j$ is a strong subdigraph in D_1 containing S and so $d(S) \leq p$. If $S = S_3, S_4$, then the strong subdigraph D_S in D_1 consisting of two p-cycles $w, v_1, v_2, \ldots, v_{p-1}, w$ and $w, u_1, u_2, \ldots, u_{p-1}, w$ contains S and so $d(S) \leq 2p = r$. If $S = S_5$, then the strong subdigraph consisting of two p-cycles $w, v_1, v_2, \ldots, v_{p-1}, w$ and $w, u_1, u_2, \ldots, u_{p-1}, w$ contains S and so $d(S) \leq 2p = r$.

Subcase 2.2. $x \in W$. We may assume that $x = w_1 \in W$ and let S be a set of three vertices in D_1 containing w_1. Again, if $S \cap V \neq \emptyset$ and $S \cap U \neq \emptyset$, then $d(S) = r$. So we may assume that S is one of the following sets $S_1 = \{w_1, w_i, v_j\}$, where $2 \leq i < j \leq p$, $S_2 = \{w_1, w_i, u_j\}$, where $2 \leq i \leq p$ and $1 \leq j \leq p-1$, $S_3 = \{w_1, w_i, v_j\}$, where $2 \leq i \leq p$ and $1 \leq j \leq p-1$, $S_4 = \{w_1, u_i, v_j\}$.
where $1 \leq i < j \leq p - 1$, and $S_5 = \{w_1, v_i, v_j\}$, where $1 \leq i < j \leq p - 1$. An argument similar to the one in Subcase 1.1 shows that $d(S) \leq r$ for all possible choices for S.

Therefore, $se_3(x) = r$ for all $x \in V(D_1)$ and so D_1 is a strongly 3-self-centered digraph with 3-strong radius r.

For $n \geq 1$, we define the strong digraph D_{n+1} recursively from D_n by adding the $2(p-1)$ new vertices x_1, x_2, ..., x_{p-1} and y_1, y_2, ..., y_{p-1} and the new arcs (1) (x_i, x_{i+1}), (y_i, y_{i+1}) for $1 \leq i \leq p - 2$ and (2) (v, x_1), (x_{p-1}, v), (v, y_1), and (y_{p-1}, v) for all $v \in V(D_n)$. The digraph D_{n+1} is shown in Figure 12. We assume that D_n is a strongly 3-self-centered oriented graph of 3-strong radius r for some integer $n \geq 1$ and show that D_{n+1} is also a strongly 3-self-centered oriented graph of 3-strong radius r.

Let $X = \{x_1, x_2, \ldots, x_{p-1}\}$ and $Y = \{y_1, y_2, \ldots, y_{p-1}\}$. For $v \in V(D_{n+1})$, let S be a set of three vertices in D_{n+1} containing v. If $v \in V(D_n)$ and $S = \{v, x_1, y_1\}$, then $se_3(v) = d(S) = r$. So we may assume that $v \in X \cup Y$, say $v = x_1$. Let $S = \{v, y_1, z\}$, where $z \in V(D_n)$. Then $d(S) = se_3(v) = r$. Therefore, $se_3(v) = r$ for all $v \in V(D_{n+1})$ and so D_{n+1} is also a strongly 3-self-centered oriented graph of 3-strong radius r.

Case 2. r is odd. Let $r = 2p + 1$, where $p \geq 3$. Let D_1 be the digraph obtained from the directed $(p + 1)$-cycle C_{p+1}: w_1, w_2, w_3, w_4, w_1 by adding the $p - 1$ new vertices $u_1, u_2, \ldots, u_{p-1}$ and the new arcs (1) (u_i, u_{i+1}) for $1 \leq i \leq p - 2$ and (2) (v, u_1) and (u_{p-1}, v) for all $v \in V(C_{p+1})$. The digraph D_1 is shown in Figure 13 for $r = 7$.

Figure 12. The digraph D_{n+1} in Case 1

Figure 13. The digraph D_1 in Case 2 for $r = 7$
For $n \geq 1$, we define D_{n+1} recursively from D_n by adding the $p - 1$ new vertices $x_1, x_2, \ldots, x_{p-1}$ and the new arcs (1) (x_i, x_{i+1}), for $1 \leq i \leq p - 2$ and (2) (v, x_1) and (x_{p-1}, v) for all $v \in V(D_n)$. The digraph D_{n+1} is shown in Figure 14.

An argument similar to the one used in Case 1 shows that each strong digraph D_n is a strongly 3-self-centered oriented graph of strong radius r for all $n \geq 1$. □

Acknowledgements. The author is grateful to Professor Gary Chartrand for suggesting the concept of strong Steiner distance and kindly providing useful information on this topic.

References

Author’s address: Ping Zhang, Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, MI 49008, USA, e-mail: ping.zhang@wmich.edu.