Abstract. Recently, Rim and Teply [8], using the notion of τ-exact modules, found a necessary condition for the existence of τ-torsionfree covers with respect to a given hereditary torsion theory τ for the category R-mod of all unitary left R-modules over an associative ring R with identity. Some relations between τ-torsionfree and τ-exact covers have been investigated in [5]. The purpose of this note is to show that if $\sigma = (T, F)$ is Goldie’s torsion theory and \mathcal{F}_σ is a precover class, then \mathcal{F}_σ is a precover class whenever $\tau \supseteq \sigma$. Further, it is shown that \mathcal{F}_σ is a cover class if and only if σ is of finite type and, in the case of non-singular rings, this is equivalent to the fact that \mathcal{F}_τ is a cover class for all hereditary torsion theories $\tau \supseteq \sigma$.

Keywords: hereditary torsion theory, Goldie’s torsion theory, non-singular ring, precover class, cover class

MSC 2000: 16S90, 18E40, 16D80

In what follows, R stands for an associative ring with identity and R-mod denotes the category of all unitary left R-modules. The basic properties of rings and modules can be found in [1]. A class \mathcal{G} of modules is called abstract, if it is closed under isomorphic copies, co-abstract, if its members are pairwise non-isomorphic and complete with respect to a given property, if every module with this property is isomorphic to a member of the class \mathcal{G}.

Recall that a hereditary torsion theory $\tau = (T, F)$ for the category R-mod consists of two abstract classes \mathcal{T}_τ and \mathcal{F}_τ, the τ-torsion class and the τ-torsionfree class, respectively, such that $\text{Hom}(T, F) = 0$ whenever $T \in \mathcal{T}_\tau$ and $F \in \mathcal{F}_\tau$, the class \mathcal{F}_τ is closed under submodules, factor-modules, extensions and arbitrary direct sums, the class \mathcal{T}_τ is closed under submodules, extensions and arbitrary direct products.

The research has been partially supported by the Grant Agency of the Charles University, grant #GAUK 268/2002/B-MAT/MFF and also by the institutional grant MSM 113 200 007.
and for each module M there exists an exact sequence $0 \to T \to M \to F \to 0$ such that $T \in \mathcal{T}$ and $F \in \mathcal{F}$. For two hereditary torsion theories τ and τ' the symbol $\tau \leq \tau'$ means that $\mathcal{T}_\tau \subseteq \mathcal{T}_{\tau'}$ and consequently $\mathcal{F}_{\tau'} \subseteq \mathcal{F}_\tau$. Associated with each hereditary torsion theory τ is the Gabriel filter \mathcal{L}_τ of left ideals of R consisting of all left ideals $I \subseteq R$ with $R/I \in \mathcal{T}_\tau$. Recall that τ is said to be of finite type, if \mathcal{L}_τ contains a cofinal subset \mathcal{L}'_τ of finitely generated left ideals. A submodule N of the module M is called τ-closed (or τ-pure), if N belongs to \mathcal{F}_τ. Associated with each hereditary torsion theory is the Gabriel filter \mathcal{L}_σ of all left ideals I of R with $R=I \leq \mathcal{T}_\sigma$. Recall that I is said to be of finite type, if \mathcal{L}_σ contains a cofinal subset \mathcal{L}'_σ of finitely generated left ideals. A submodule N of the module M is called σ-closed (or σ-pure), if N belongs to \mathcal{F}_σ. Associated with each hereditary torsion theory is the Gabriel filter \mathcal{L}_σ of all left ideals I of R with $R=I \leq \mathcal{T}_\sigma$. Recall that I is said to be of finite type, if \mathcal{L}_σ contains a cofinal subset \mathcal{L}'_σ of finitely generated left ideals. A submodule N of the module M is called σ-closed (or σ-pure), if N belongs to \mathcal{F}_σ. Associated with each hereditary torsion theory is the Gabriel filter \mathcal{L}_σ of all left ideals I of R with $R=I \leq \mathcal{T}_\sigma$. Recall that I is said to be of finite type, if \mathcal{L}_σ contains a cofinal subset \mathcal{L}'_σ of finitely generated left ideals. A submodule N of the module M is called σ-closed (or σ-pure), if N belongs to \mathcal{F}_σ.
Let $\tau \geq \sigma$ and the same holds for cover classes provided that the ring R is non-singular. More precisely, we are going to prove the following two theorems.

Theorem 1. Let $\sigma = (\mathcal{F}_\sigma, \mathcal{F}_\sigma)$ be Goldie's torsion theory for the category R-mod. If \mathcal{F}_τ is a precover class, then \mathcal{F}_τ is a precover class for any hereditary torsion theory $\tau \geq \sigma$.

Theorem 2. Let $\sigma = (\mathcal{F}_\sigma, \mathcal{F}_\sigma)$ be Goldie's torsion theory for the category R-mod. The following conditions are equivalent:

(i) \mathcal{F}_σ is a cover class;

(ii) σ is of finite type;

(iii) σ is perfect.

If, moreover, the ring R is non-singular ($Z(R) = 0$), then these conditions are equivalent to the following three conditions:

(iv) every non-zero left ideal of R contains a finitely generated essential left ideal;

(v) rR is σ-noetherian;

(vi) for every hereditary torsion theory $\tau \geq \sigma$ the class \mathcal{F}_τ is a cover class.

We start with some preliminary lemmas, the symbol σ will always denote Goldie’s torsion theory.

Lemma 1. Let $\tau \geq \sigma$ be a hereditary torsion theory for the category R-mod. Then

(i) a module $Q \in \mathcal{F}_\tau$ is τ-injective if and only if it is injective;

(ii) a submodule $K \subseteq Q$ with $Q \in \mathcal{F}_\tau$ injective is τ-closed if and only if it is injective. In this case the factor-module Q/K is also injective.

Proof. (i) If $Q \in \mathcal{F}_\tau$ is τ-injective and $E(Q)$ is the injective hull of Q, then $E(Q)/Q \in \mathcal{F}_\tau \subseteq \mathcal{F}_\sigma$ by [7; Corollary 44.3]. In view of the obvious fact $E(Q)/Q \in \mathcal{F}_\sigma$ we have $Q = E(Q)$. The converse is obvious.

(ii) If K is τ-closed in Q, then $Q/K \in \mathcal{F}_\tau \subseteq \mathcal{F}_\sigma$. Hence K has no proper essential extension in Q and consequently it is injective. The rest is clear.

Lemma 2. Let $\tau \geq \sigma$ be a hereditary torsion theory for the category R-mod. If every module has an \mathcal{F}_τ-cover, then every directed union of τ-torsionfree injective modules is τ-torsionfree injective.

Proof. Let $K = \bigcup_{\alpha \in \Lambda} K_\alpha$ be a directed union of τ-torsionfree injective modules, let $M = E(K)$ be the injective hull of K and let $\varphi: G \to M/K$ be an \mathcal{F}_τ-cover of the module M/K. Denoting by $\pi_\alpha: M/K_\alpha \to M/K$ the corresponding natural projections, there are homomorphisms $f_\alpha: M/K_\alpha \to G$ such that $\varphi f_\alpha = \pi_\alpha$ for
every $\alpha \in \Lambda$. Obviously, $\text{Ker } f_\alpha \subseteq K/K_\alpha$ and we are going to show that the equality holds for each $\alpha \in \Lambda$. If not, then $K_\beta/K_\alpha \not\subseteq \text{Ker } f_\alpha$ for some $\alpha, \beta \in \Lambda$ and so $0 \neq f_\alpha(K_\beta/K_\alpha) \cong K_\beta/L_\beta \in \mathcal{F}_r \subseteq \mathcal{F}_\sigma$ yields according to Lemma 1 that $0 \neq f_\alpha(K_\beta/K_\alpha) \subseteq \text{Ker } \varphi$ is injective. This contradicts the fact that φ is an \mathcal{F}_r-cover of the module M/K and consequently $\text{Im } f_\alpha \cong M/K \in \mathcal{F}_r$ for each $\alpha \in \Lambda$. Thus $M/K \in \mathcal{F}_\sigma \cap \mathcal{F}_r = 0$, $M = K$ and we are through. \hfill \square

Lemma 3. Let $\tau = (\mathcal{F}_r, \mathcal{F}_\tau)$ be an arbitrary hereditary torsion theory for the category R-mod. The following conditions are equivalent:

(i) every module has a τ-torsionfree precover;

(ii) every injective module has a τ-torsionfree precover;

(iii) every injective module has an injective τ-torsionfree precover.

Proof. For an arbitrary injective module M we obviously have the commutative diagram

$$
\begin{array}{ccc}
G & \xrightarrow{\varphi} & M \\
\downarrow{i} & & \downarrow{j} \\
E(G) & \xrightarrow{\psi} & M
\end{array}
$$

where i is the inclusion map of G into its injective hull $E(G)$ and φ is an \mathcal{F}_τ-precover of the module M. Then ψ is obviously an \mathcal{F}_τ-precover of M and consequently (ii) implies (iii).

Assuming (iii) let us consider the pullback diagram

$$
\begin{array}{ccc}
F & \xrightarrow{\varphi} & M \\
\downarrow{i} & & \downarrow{j} \\
G & \xrightarrow{\psi} & E(M)
\end{array}
$$

where $M \in R$-mod is arbitrary and ψ is an \mathcal{F}_τ-precover of $E(M)$ with G injective. Clearly, i is injective, hence $F \in \mathcal{F}_\tau$ and the pullback property yields that φ is an \mathcal{F}_τ-precover of the module M. The rest is clear. \hfill \square

Lemma 4. Let $\tau = (\mathcal{F}_r, \mathcal{F}_\tau)$ be a hereditary torsion theory for the category R-mod. A homomorphism $\varphi: G \rightarrow M$ with $G \in \mathcal{F}_r$ and M injective is an \mathcal{F}_τ-precover of the module M if and only if to each homomorphism $f: Q \rightarrow M$ with $Q \in \mathcal{F}_r$ injective, there exists a homomorphism $g: Q \rightarrow G$ such that $\varphi g = f$. 398
\textbf{Proof.} Only the sufficiency requires verification. So, let us consider the commutative diagram

\[
\begin{array}{ccc}
E(F) & \xrightarrow{i} & F \\
\downarrow{g} & & \downarrow{f} \\
G & \xrightarrow{\varphi} & M
\end{array}
\]

with the given \(\varphi, M \) injective and \(f : F \to M, F \in \mathcal{F}_\tau \), arbitrary. Then there is \(h : E(F) \to M \) with \(hi = f, M \) being injective, and \(g : E(F) \to G \) with \(\varphi g = h \) by the definition of a precovers. Thus \(\varphi(gi) = hi = f \) and the proof is complete. \(\square \)

\textbf{Proof (of Theorem 1).} Let \(\lambda \) be an arbitrary infinite cardinal and let \(\mathcal{M}_\lambda \) be any complete co-abstract set of modules of cardinalities at most \(\lambda \). For any \(M \in \mathcal{M}_\lambda \) we fix an \(\mathcal{F}_\sigma \)-precover \(\varphi_M : G_M \to M \) and denote by \(\kappa \) the first cardinal with \(\kappa > |G_M| \) for each \(M \in \mathcal{M}_\lambda \).

Further, let \(Q \in \mathcal{F}_\tau \) be an arbitrary injective module with \(|Q| \geq \kappa \) and let \(K \leq Q \) be its submodule such that \(|Q/K| \leq \lambda \). Then, obviously, \(Q \in \mathcal{F}_\sigma \) and consequently, by the above part, the factor-module \(Q/K \) has an \(\mathcal{F}_\sigma \)-precover \(\varphi : G \to Q/K \) with \(|G| < \kappa \). Thus, there is a homomorphism \(f : Q \to G \) such that \(\varphi f = \pi, \pi \) being the canonical projection \(Q \to Q/K \). Now \(\text{Ker } f = L \) is contained in \(K \) and it is a direct summand of \(Q \) by Lemma 1 (ii) owing to the fact that \(Q/L \cong \text{Im } f \in \mathcal{F}_\sigma \). Moreover, \(|Q/L| = |\text{Im } f| \leq |G| < \kappa \).

Now let \(M \in R\text{-mod} \) be an arbitrary injective module, \(\lambda = \max(|M|, \aleph_\alpha) \), and let \(\kappa \) be the cardinal corresponding to \(\lambda \) by the beginning of this proof. Further, let \(\mathcal{N}_\kappa \) be any complete co-abstract set of \(\tau \)-torsionfree injective modules of cardinalities less than \(\kappa \). We put \(G = \bigoplus_{Q \in \mathcal{N}_\kappa} Q^{(\text{Hom}(Q,M))} \) and \(\varphi : G \to M \) will denote the corresponding natural evaluation map. To verify that \(\varphi \) is a \(\tau \)-torsionfree precover of the module \(M \) we shall use Lemma 4. So, let \(Q \in \mathcal{F}_\tau \) be an arbitrary injective module and let \(f : Q \to M \) be an arbitrary homomorphism. For \(|Q| < \kappa \) there exists an isomorphic copy of \(Q \) lying in \(\mathcal{N}_\kappa \) and the existence of the homomorphism \(g : Q \to G \) with \(\varphi g = f \) can be easily verified. In the opposite case, for \(|Q| \geq \kappa \), denoting \(K = \text{Ker } f \) we have \(|Q/K| = |\text{Im } f| \leq |M| \leq \lambda \). Thus, by the above part, there is a direct summand \(L \) of \(Q \) contained in \(K \) and such that \(|Q/L| < \kappa \). Moreover, \(f \) naturally induces the homomorphism \(\tilde{f} : Q/L \to M \) such that \(\tilde{f} \pi = f, \pi : Q \to Q/L \) being the canonical projection. Thus there is \(\mathcal{F}_\tau \)-injective \(Q/L \to G \) with \(\varphi \tilde{f} = \tilde{f} \) by the previous case, so \(\varphi(\tilde{f} \pi) = \tilde{f} \pi = f \) and to complete the proof it suffices now to apply Lemma 3. \(\square \)

\textbf{Proof (of Theorem 2).} (i) implies (ii). It suffices to use Lemma 2 and [7; Proposition 42.9].

(ii) implies (i). This has been proved in [9] in the case of a faithful torsion theory and in [2] in the general case.
(ii) is equivalent to (iii). This is obvious, σ being exact by Lemma 1 (see also [7; Corollary 44.3]).

Assume now that the ring R is non-singular.

(ii) implies (iv). Since R is non-singular, the Gabriel filter \mathcal{L}_σ consists of essential left ideals only, and consequently every essential left ideal contains an essential finitely generated left ideal by the hypothesis. So, let $0 \neq I \subseteq R$ be an arbitrary non-essential left ideal of R and let $J \subseteq R$ be any left ideal maximal with respect to $I \cap J = 0$. Then $I \oplus J$ is essential in R and consequently there is a finitely generated left ideal $K = \sum_{i=1}^{n} R a_i \subseteq I \oplus J$ essential in R. Now $a_i = b_i + c_i$, $b_i \in I$, $c_i \in J$, $i = 1, \ldots, n$, and it remains to verify that the left ideal $\sum_{i=1}^{n} R b_i$ is essential in I. However, for an arbitrary element $0 \neq u \in I$ we have $0 \neq ru = \sum_{i=1}^{n} r_i a_i = \sum_{i=1}^{n} r_i b_i + \sum_{i=1}^{n} r_i c_i$ for suitable elements $r, r_1, \ldots, r_n \in R$, and consequently, $0 \neq ru = \sum_{i=1}^{n} r_i b_i$, as we wished to show.

(iv) is equivalent to (v). See [7; Proposition 20.1].

(iv) implies (vi). Let $I \in \mathcal{L}_\tau$ be arbitrary and let $K \subseteq I$ be a finitely generated left ideal essential in I. Then $I/K \in \mathcal{F}_\tau \subseteq \mathcal{F}_\tau$, hence $K \in \mathcal{L}_\tau$ and the torsion theory τ is of finite type. Now it suffices to use [2].

(vi) implies (i). This is trivial.

References

Author’s address: Ladislav Bican, KA MFF UK, Sokolovská 83, 186 75 Praha 8-Karlin, Czech Republic, e-mail: bican@karlin.mff.cuni.cz.