CONTINUITY IN THE ALEXIEWICZ NORM

ERIK TALVILA, Abbotsford

(Received October 19, 2005)

Dedicated to Prof. J. Kurzweil on the occasion of his 80th birthday

Abstract. If f is a Henstock-Kurzweil integrable function on the real line, the Alexiewicz norm of f is $\|f\| = \sup_I \int_I |f|$ where the supremum is taken over all intervals $I \subset \mathbb{R}$. Define the translation τ_x by $\tau_x f(y) = f(y - x)$. Then $\|\tau_x f - f\|$ tends to 0 as x tends to 0, i.e., f is continuous in the Alexiewicz norm. For particular functions, $\|\tau_x f - f\|$ can tend to 0 arbitrarily slowly. In general, $\|\tau_x f - f\| \geq \text{osc} f|_{\mathbb{R}}$ as $x \to 0$, where $\text{osc} f$ is the oscillation of f. It is shown that if F is a primitive of f then $\|\tau_x F - F\| \leq \|f\|_{\mathbb{R}}$. An example shows that the function $y \to \tau_x F(y) - F(y)$ need not be in L^1. However, if $f \in L^1$ then $\|\tau_x F - F\|_1 \leq \|f\|_1|_{\mathbb{R}}$. For a positive weight function w on the real line, necessary and sufficient conditions on w are given so that $\|\tau_x f|w\| \to 0$ as $x \to 0$ whenever $f w$ is Henstock-Kurzweil integrable. Applications are made to the Poisson integral on the disc and half-plane. All of the results also hold with the distributional Denjoy integral, which arises from the completion of the space of Henstock-Kurzweil integrable functions as a subspace of Schwartz distributions.

Keywords: Henstock-Kurzweil integral, Alexiewicz norm, distributional Denjoy integral, Poisson integral

MSC 2000: 26A39, 46Bxx

1. Introduction

For $f: \mathbb{R} \to \mathbb{R}$ define the translation by $\tau_x f(y) = f(y - x)$ for $x, y \in \mathbb{R}$. If $f \in L^p (1 \leq p < \infty)$ then it is a well known result of Lebesgue integration that f is continuous in the p-norm, i.e., $\lim_{x \to 0} \|\tau_x f - f\|_p = 0$. For example, see [4, Lemma 6.3.5]. In this paper we consider continuity of Henstock-Kurzweil integrable functions in

Supported by the Natural Sciences and Engineering Research Council of Canada.
Alexiewicz and weighted Alexiewicz norms on the real line. Let \mathcal{HK} be the set of functions $f: \mathbb{R} \to \mathbb{R}$ that are Henstock-Kurzweil integrable. The Alexiewicz norm of $f \in \mathcal{HK}$ is defined \(\|f\| = \sup_I \|f_I\| \) where the supremum is over all intervals $I \subseteq \mathbb{R}$. Identifying functions almost everywhere, \mathcal{HK} becomes a normed linear space under $\|\cdot\|$ that is barrelled but not complete. See [1] and [5] for a discussion of the Henstock-Kurzweil integral and the Alexiewicz norm. It is shown below that translations are continuous in norm and that for $f \in \mathcal{HK}$ we have $\|\tau_x f - f\| \geq \text{osc } f [x]$ where $\text{osc } f$ is the oscillation of f. For particular $f \in \mathcal{HK}$ the quantity $\|\tau_x f - f\|$ can tend to 0 arbitrarily slowly. If F is a primitive of f then $\|\tau_x F - F\| \leq \|f\|\|x\|$. An example shows that if $f \in \mathcal{HK}$ then the function defined by $y \mapsto \tau_x F(y) - F(y)$ need not be in L^1 but if $f \in L^1$ then $\|\tau_x F - F\|_1 \leq \|f\|\|x\|$. For a positive weight function w on the real line, necessary and sufficient conditions on w are given so that $\|\tau_x f - f w\| \to 0$ as $x \to 0$ whenever $f w$ is Henstock-Kurzweil integrable. The necessary and sufficient conditions involve properties of the function $g_x(y) = w(y + x)/w(y)$. Sufficient conditions are given on w for $\|\tau_x f - f w\| \to 0$. Applications to the Dirichlet problem in the disc and half-plane are given.

First we prove continuity in the Alexiewicz norm.

Theorem 1. Let $f \in \mathcal{HK}$. For $x, y \in \mathbb{R}$ define $\tau_x f(y) = f(y - x)$. Then $\|\tau_x f - f\| \to 0$ as $x \to 0$.

Proof. Let $x, \alpha, \beta \in \mathbb{R}$. Then $\int_{\alpha}^{\beta} (\tau_x f - f) = f_{\alpha - x}^{\beta - x} f = f_{\alpha}^{\beta} f$. Write $F(x) = \int_{-\infty}^{x} f$. Taking the supremum over α and β,

\[
\|\tau_x f - f\| \leq \sup_{\beta \in \mathbb{R}} |F(\beta - x) - F(\beta)| + \sup_{\alpha \in \mathbb{R}} |F(\alpha - x) - F(\alpha)|
\]

\to 0 as $x \to 0$ since F is uniformly continuous on \mathbb{R}.

Notice that for each $x \in \mathbb{R}$, the translation τ_x is an isometry on \mathcal{HK}, i.e., it is a homeomorphism such that $\|\tau_x f\| = \|f\|$. It is also clear that we have continuity at each point: for each $x_0 \in \mathbb{R}$, $\|\tau_x f - \tau_{x_0} f\| \to 0$ as $x \to x_0$.

The theorem also applies on any interval $I \subseteq \mathbb{R}$. Restrict α and β to lie in I and extend f to be 0 outside I. Or, one could use a periodic extension. The same results also hold for the equivalent norm $\|f\| = \sup_{x \in \mathbb{R}} |f_{-\infty}^{x} f|$.
Under the Alexiewicz norm, the space of Henstock-Kurzweil integrable functions is not complete. Its completion with respect to the norm \(\|f\| = \sup_{x \in \mathbb{R}} |f'_x f| \) is the subspace of distributions that are the distributional derivative of a function in \(\tilde{C} := \{ F: \mathbb{R} \to \mathbb{R}; F' \in C^0(\mathbb{R}), \lim_{x \to -\infty} F(x) = 0, \lim_{x \to \infty} F(x) \in \mathbb{R} \} \), i.e., they are distributions of order 1. See [6], where the completion is denoted \(\mathcal{A} \). Thus, if \(f \in \mathcal{A} \) then \(f \in \mathcal{D}' \) (Schwartz distributions) and there is a function \(F \in \tilde{C} \) such that \(\langle F', \varphi \rangle = -\langle f, \varphi' \rangle = -\int_0^{\infty} F \varphi' = \langle f, \varphi \rangle \) for all test functions \(\varphi \in \mathcal{D} = C_c^\infty(\mathbb{R}) \).

The distributional integral of \(f \) is then \(f_0^b f = F(b) - F(a) \) for all \(-\infty \leq a \leq b \leq \infty \). We can compute the Alexiewicz norm of \(f \) via \(\|f\| = \sup_{x \in \mathbb{R}} |F(x)| = \|F\|_\infty \). If \(f \in \mathcal{D}' \) then \(\tau_x f \) is defined by \(\langle \tau_x f, \varphi \rangle := \langle f, \tau_{-x} \varphi \rangle = \langle f', \tau_{-x} \varphi' \rangle = -(\langle f, \tau_{-x} \varphi' \rangle)' = -(-\langle f, \tau_{-x} \varphi' \rangle)' = \langle \tau_x F, \varphi' \rangle = \langle \tau_x F', \varphi \rangle \). Of course we have \(L^1 \subset HK \subset \mathcal{A} \) and each inclusion is strict.

The theorem only depends on uniform continuity of the primitive and not on its pointwise differentiability properties so it also holds in \(\mathcal{A} \). The same is true for the other theorems in this paper.

Corollary 2. Let \(f \in \mathcal{A} \). Then \(\|\tau_x f - f\| \to 0 \) as \(x \to 0 \).

The following theorem gives us more precise information on the decay rate of \(\|\tau_x f - f\| \).

Theorem 3. (a) Let \(\psi: (0,1] \to (0,\infty) \) such that \(\lim_{x \to 0} \psi(x) = 0 \). Then there is \(f \in L^1 \) such that \(\|\tau_x f - f\| \geq \psi(x) \) for all sufficiently small \(x > 0 \). (b) If \(f \in HK \) and \(f \neq 0 \) a.e. then the most rapid decay is \(\|\tau_x f - f\| = O(x) \) as \(x \to 0 \) and this is the best estimate in the sense that if \(\|\tau_x f - f\|/x \to 0 \) as \(x \to 0 \) then \(f = 0 \) a.e. The implied constant in the order relation is the oscillation of \(f \).

Proof. (a) Given \(\psi \), define \(\psi_1(x) = \sup_{0 < t \leq x} \psi(t) \). Then \(\psi_1 \geq \psi \) and \(\psi_1(x) \) decreases to 0 as \(x \) decreases to 0. Define \(\psi_2(x) = \psi_1(1/n) \) when \(x \in (1/(n+1), 1/n] \) for some \(n \in \mathbb{N} \). Then \(\psi_2 \geq \psi \) and \(\psi_2 \) is a step function that decreases to 0 as \(x \) decreases to 0. Now let

\[
\psi_3(x) = |\psi_2(1/(n-1)) - \psi_2(1/n)| n(n+1) \left(x - \frac{1}{n+1} \right) + \psi_2(1/n)
\]

when \(x \in [1/(n+1), 1/n] \) for some \(n \geq 2 \). Define \(\psi_3 = \psi_2 \) on \((1/2, 1] \). Then \(\psi_3 \geq \psi \) and \(\psi_3 \) is a piecewise linear continuous function that decreases to 0 as \(x \) decreases to 0. Define \(f(x) = \psi_3(x) \) for \(x \in (0,1] \) and \(f(x) = 0 \), otherwise. For \(0 < x < 1 \),

\[
\|\tau_x f - f\| \geq |\int_0^x \left(f(y-x) - f(y) \right) dy| = \int_0^x f = \psi_3(x) \geq \psi(x).
\]

Since \(\psi_3 \) is absolutely continuous, \(f \in L^1 \).
(b) Test functions are dense in \(\mathcal{H} \mathcal{K} \), i.e., for each \(f \in \mathcal{H} \mathcal{K} \) and \(\varepsilon > 0 \) there is \(\varphi \in \mathcal{D} \) such that \(\| f - \varphi \| < \varepsilon \). Let \(x \in \mathbb{R} \). Then, since \(\tau_x \) is a linear isometry,
\[
\| (\tau_x f - f) - (\tau_x \varphi - \varphi) \| = \| \tau_x (f - \varphi) - (f - \varphi) \| < 2\varepsilon \quad \text{and} \quad \| \tau_x \varphi - \varphi \| < 2\varepsilon.
\]
It therefore suffices to prove the theorem in \(\mathcal{D} \). Hence, let \(f \in \mathcal{D} \) and let \(a, b \in \mathbb{R} \). Write \(F(y) = \int_a^y f \). Then, since \(F \in C^2(\mathbb{R}) \),
\[
\int_a^b (\tau_x f - f) = [F(b - x) - F(b)] - [F(a - x) - F(a)]
= -F'(b)x + F''(\xi)x^2/2 + F'(a)x - F''(\eta)x^2/2,
\]
for some \(\xi, \eta \) in the support of \(f \). Now,
\[
\| \tau_x f - f \| \geq \sup_{a, b \in \mathbb{R}} |f(a) - f(b)| |x| - \| f' \| \| x \| x^2 = \text{osc } f |x| - \| f' \| \| x \| x^2.
\]
The oscillation of \(f \in \mathcal{D} \) is positive unless \(f \) is constant, but there are no constant functions in \(\mathcal{D} \) except 0. The proof is completed by noting that \(\| \tau_x f - f \| \leq \text{osc } f |x| + \| f' \| \| x \| x^2 \) so that \(\| \tau_x f - f \| = \mathcal{O}(x) \) as \(x \to 0 \). \(\square \)

Part (b) is proven in [3, Proposition 1.2.3] for \(f \in L^1 \).

It is interesting to note that if \(f \in \mathcal{H} \mathcal{K} \) and \(F \) is its primitive then the function \(\tau_x F - F \) is in \(\mathcal{H} \mathcal{K} \) for each \(x \in \mathbb{R} \), even though \(F \) need not be in \(\mathcal{H} \mathcal{K} \).

Theorem 4. Let \(f \in \mathcal{H} \mathcal{K} \), let \(F \) be one of its primitives and let \(x \in \mathbb{R} \). Then the function \(y \mapsto \tau_x F(y) - F(y) \) is in \(\mathcal{H} \mathcal{K} \) even though none of the primitives of \(f \) need be in \(\mathcal{H} \mathcal{K} \). We have the estimate \(\| \tau_x F - F \| \leq \| f \||x| \|. \) In general, \(\tau_x F - F \) need not be in \(L^1 \). However, if \(f \in L^1 \) then \(\tau_x F - F \in L^1 \) and \(\| \tau_x F - F \|_1 \leq \| f \|_1 |x| \).

Proof. Let \(f \in \mathcal{H} \mathcal{K} \) and let \(F \) be any primitive. Since \(F \) is continuous, to prove \(\tau_x F - F \in \mathcal{H} \mathcal{K} \) we need only show integrability at infinity. Let \(a, x \in \mathbb{R} \). Then
\[
\int_0^a (\tau_x F - F) = \int_{-x}^{a-x} F - \int_0^a F = \int_{-x}^0 F - \int_{a-x}^a F = \int_{-x}^0 F - F(\xi)x
\]
for some \(\xi \) between \(a - x \) and \(a \), due to continuity of \(F \). So, \(\lim_{a \to -\infty} \int_0^a (\tau_x F - F) = \int_{-x}^0 F - x \lim_{y \to -\infty} F(y) \). Since \(F \) has limits at \(\pm \infty \), Hake’s theorem shows \(\tau_x F - F \in \mathcal{H} \mathcal{K} \). Now let \(a, b \in \mathbb{R} \). Then \(\int_b^a (\tau_x F - F) = \int_{a-x}^a F - \int_{b-x}^b F \). Since \(F \) is continuous, there are \(\xi \) between \(a \) and \(a - x \) and \(\eta \) between \(b \) and \(b - x \) such that \(\int_{a-x}^a F(\xi)x - F(\eta)x = x \int_{a-x}^a F \). It follows that \(\| \tau_x F - F \| \leq \| f \|_1 |x| \).
The example $f = \chi_{[0,1]}$, for which
\[F(y) = \int_{-\infty}^{y} f = \begin{cases} 0, & y \leq 0, \\ y, & 0 \leq y \leq 1, \\ 1, & y \geq 1 \end{cases} \]
shows that no primitives need not be in \mathcal{HK}. And, if we let $F(y) = \sin(y)/y$, $f = F'$, then for $x \neq 0$,
\[\tau_x F(y) - F(y) = \frac{\sin(y - x)}{y - x} - \frac{\sin(y)}{y} \sim \frac{\cos(x) - 1}{y} \sin(y) - \sin(x) \cos(y) \] as $y \to \infty$.

Hence, $\tau_x F - F \in \mathcal{HK} \setminus L^1$.

Suppose $f \in L^1$ and $x \geq 0$. Then, $|f| \in \mathcal{HK}$ so the theorem gives $\|\tau_x F - F\|_1 \leq \int_{-\infty}^{\infty} \int_{y-x}^{y} |f(z)| \, dz \, dy \leq \|f\|_1 \|x\|_1$. Similarly, if $x < 0$.

Example 5. Let f be 2π-periodic and Henstock-Kurzweil integrable over one period. The Poisson integral of f on the unit circle is
\[u(re^{i\theta}) = u_r(\theta) = \frac{1 - r^2}{2\pi} \int_{-\pi}^{\pi} \frac{f(\varphi)}{1 - 2r \cos(\varphi - \theta) + r^2} \, d\varphi. \]
Differentiating under the integral sign shows that u is harmonic in the disc. And, after interchanging the order of integration, it can be seen that $\|u_r - f\| \to 0$ as $r \to 1^-$.

The Poisson integral defines a harmonic function that takes on the boundary values f in the Alexiewicz norm. For details on this Dirichlet problem see [7].

Now we consider continuity in weighted Alexiewicz norms. First we need the following lemma. Lebesgue measure is denoted λ.

Lemma 6. For each $n \in \mathbb{N}$, suppose $g_n: \mathbb{R} \to \mathbb{R}$ and $g_n \chi_E \to g \chi_E$ in measure for some set $E \subset \mathbb{R}$ of positive measure and function g of bounded variation. If $V g_n \leq M$ for all n then g_n is uniformly bounded on \mathbb{R}.

Proof. Define $S_n = \{x \in E; |g_n(x) - g(x)| > 1\}$. Then $\lambda(S_n) \to 0$ as $n \to \infty$. There is $N \in \mathbb{N}$ such that whenever $n \geq N$ we have $\lambda(E \setminus S_n) > 0$. Since $g \in BV$, g is bounded. Let $n \geq N$. There is $x_n \in E \setminus S_n$ such that $|g(x_n)| \leq \|g\|_\infty$. Therefore, $|g_n(x_n)| \leq 1 + \|g\|_\infty$. Let $x \in \mathbb{R}$. Then $|g_n(x) - g_n(x_n)| \leq V g_n \leq M$. So, $|g_n(x)| \leq M + 1 + \|g\|_\infty$. Hence, $\{g_n\}$ is uniformly bounded. \qed
Theorem 7. Let \(w: \mathbb{R} \to (0, \infty) \). Define \(g_x: \mathbb{R} \to (0, \infty) \) by \(g_x(y) = w(y + x)/w(y) \) for each \(x \in \mathbb{R} \). Then \(\|(\tau_x f - f)w\| \to 0 \) as \(x \to 0 \) for all \(f: \mathbb{R} \to \mathbb{R} \) such that \(fw \in \mathcal{H}\mathcal{K} \). If and only if \(g_x \) is essentially bounded and of essential bounded variation, uniformly as \(x \to 0 \), and \(g_x \to 1 \) in measure on compact intervals as \(x \to 0 \).

Proof. Let \(G(x) = \int_{-\infty}^{x} fw \). Let \(\alpha, \beta, \in \mathbb{R} \). Then
\[
\begin{align*}
\int_{\alpha}^{\beta} [f(y) - f(y)] w(y) dy \\
= \int_{\alpha-x}^{\beta-x} f(y) w(y) dy - \int_{\alpha}^{\beta} f(y) w(y) dy + \int_{\alpha-x}^{\beta-x} f(y) [w(y + x) - w(y)] dy \\
= [G(\beta) - G(\beta)] - [G(\alpha) - G(\alpha)] + \int_{\alpha-x}^{\beta-x} f(y) w(y) [g_x(y) - 1] dy.
\end{align*}
\]
Since \(G \) is uniformly continuous on \(\mathbb{R} \), we have \(\|(\tau_x f - f)w\| \to 0 \) if and only if the supremum of \(|\int_{\alpha}^{\beta} f(y) w(y) |g_x(y) - 1| dy| \) over \(a, b \in \mathbb{R} \) has limit 0 as \(x \to 0 \), i.e., \(\|fw(g_x - 1)\| \to 0 \). Given \(h \in \mathcal{H}\mathcal{K} \) we can always take \(f = h/w \). Hence, the theorem now follows from Lemma 6 (easily modified for the case of essential boundedness and essential variation) and the necessary and sufficient condition for convergence in norm given in [2, Theorem 6].

Corollary 8. Suppose that for each compact interval \(I \) there are real numbers \(0 < m_I < M_I \) such that \(m_I < \|w\|_{\infty} < M_I \); \(w \) is continuous in measure on \(I \); \(w \in \mathcal{B}V_{loc} \). Then for all \(f: \mathbb{R} \to \mathbb{R} \) such that \(fw \in \mathcal{H}\mathcal{K} \) we have \(\|(\tau_x f - f)w\| \to 0 \) as \(x \to 0 \).

Proof. Fix \(\varepsilon > 0 \). Let \(I \) be a compact interval for which \(0 < m_I < \|w\|_{\infty} < M_I \).

Define
\[
S_x := \{ y \in I ; |g_x(y) - 1| \geq \varepsilon \} = \{ y \in I ; |w(y + x) - w(y)| \geq \varepsilon w(y) \}
\]
except for a null set.

Since \(w \) is continuous in measure on \(I \) we have \(\lambda(S_x) \to 0 \) as \(x \to 0 \) and \(g_x \to 1 \) in measure on \(I \).

Using
\[
g_x(s_n) - g_x(t_n) = \frac{w(s_n + x) - w(t_n + x)}{w(t_n)} \to \frac{w(s_n + x) - w(t_n) + w(s_n) - w(t_n)}{w(s_n)w(t_n)}
\]
we see that \(V_I g_x \leq V_{I+x} w/m_I + M_I V_I w/m_I^2 \) where \(I + x = \{ y + x ; y \in I \} \) and \(V_I w \) is the variation of \(w \) over interval \(I \). Hence, \(g_x \) is of uniform bounded variation on \(I \).

With Lemma 6 this then gives the hypotheses of the theorem. \(\square \)
Of course, we are allowing \(w \) to be changed on a set of measure 0 so that \(w \) is of bounded variation rather than just equivalent to a function of bounded variation. This redundancy can be removed by replacing \(w \) with its limit from the right at each point so that \(w \) is right continuous.

As pointed out in [2], convergence of \(g_x \) to 1 in measure on compact intervals in the theorem can be replaced by convergence in \(L^1 \) norm: For each compact interval \(I, \| (g_x - 1) \chi_I \|_1 \to 0 \) as \(x \to 0 \). In the corollary, we can replace continuity in measure with the condition: As \(x \to 0, \int_I |\tau_x w - w| \to 0 \) for each compact interval \(I \).

The first two conditions in the corollary are necessary. Suppose \(\| (\tau_x f - f) w \| \to 0 \) whenever \(f w \in HK \). Then the essential infimum of \(w \) must be positive on each compact interval. If there is a sequence \(a_n \to a \in \mathbb{R} \) for which \(w(a_n) \to 0 \) then \(\text{esssup}_{|x| < \delta} g_x(a_n) = \infty \) for each \(\delta > 0 \) unless \(w = 0 \) a.e. in a neighbourhood of \(a \). Similarly, the essential supremum of \(w \) must be finite on compact intervals. This asserts the existence of \(m_I \) and \(M_I \) in the corollary. Also, let \(I \) be a compact interval on which \(0 < m < \| w \|_{\infty} < M \). Let \(\varepsilon > 0 \) and define

\[
T_\varepsilon := \{ y \in I; \; |w(y + x) - w(y)| > \varepsilon \}
\]

\[
\subset \{ y \in I; |g_x(y) - 1| > \varepsilon / M \}
\text{except for a null set.}
\]

Hence, \(w \) is continuous in measure.

It is not known if \(\| (\tau_x f - f) w \| \to 0 \) for all \(f \) such that \(f w \in HK \) implies \(w \in BV_{loc} \). The example \(w(y) = e^y \) shows \(W \) need not be of bounded variation and can have its infimum zero and its supremum infinity. For, note that \(g_x(y) = \exp(y + x) / \exp(y) = e^x \) and so satisfies the conditions of the theorem. And, by the corollary, \(w(y) = 1 \) for \(y < 0 \) and \(w(y) = 2 \) for \(y \geq 0 \) is a valid weight function. Hence, \(w \) need not be continuous.

Example 9. Let \(w(y) = 1/(y^2 + 1) \). A calculation shows that the variation of \(\int_{-\infty}^{\infty} w(y + x)/w(y) \) is \(2|x|/\sqrt{x^2 + 1} \) so \(w \) is a valid weight for Theorem 7. The half-plane Poisson kernel is \(\Phi_y(x) = w(x/y)/(\pi y) \). For \(f: \mathbb{R} \to \mathbb{R} \) the Poisson integral of \(f \) is

\[
u_y(x) = (\Phi_y * f)(x) = \frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(t) dt}{(x-t)^2 + y^2}.
\]

Define \(\Psi_z(t) = \Phi_y(x-t)/w(t) \) for \(z = x + iy \) in the upper half-plane, i.e., \(x \in \mathbb{R} \) and \(y > 0 \). For fixed \(z \) both \(\Psi_z \) and \(1/\Psi_z \) are of bounded variation on \(\mathbb{R} \). Hence, necessary and sufficient for the existence of the Poisson integral on the upper half-plane \(f w \in HK \).

Define \(G(t) = \int_{-\infty}^{t} f(w) \). Integrate by parts to get \(u_y(x) = y G(x)/\pi - \int_{-\infty}^{\infty} G(t) \Psi_z(t) dt \). Since \(G \) is continuous on the extended real line (with \(G(\infty) := \lim_{t \to \infty} G(t) \)),

195
dominated convergence now allows differentiation under the integral. This shows $u_y(x)$ is harmonic in the upper half-plane.

Neither f nor u_y need be in \mathcal{HK}. For example, the Poisson integral of 1 is 1. But, we have the boundary values taken on in the weighted norm: $\|(u_y - f)w\| \to 0$ as $y \to 0^+$. We sketch out the proof, leaving the technical detail of interchanging repeated integrals for publication elsewhere. For $a, b \in \mathbb{R}$ we then have

$$
\int_a^b [u_y(t) - f(t)] w(t) \, dt = \int_a^b \left\{ (f * \Phi_y)(t) - f(t) \int_{-\infty}^{\infty} \Phi_y(s) \, ds \right\} w(t) \, dt
$$

$$
= \int_{-\infty}^{\infty} \Phi_y(s) \int_a^b [f(t) - f(t)] w(t) \, dt \, ds.
$$

Therefore, $\|(u_y - f)w\| \leq \int_{-\infty}^{\infty} \Phi_y(s) \|(\tau_s f - f)w\| \, ds$. But, $s \mapsto \|(\tau_s f - f)w\|$ is continuous at $s = 0$. By the usual properties of the Poisson kernel (an approximate identity), we have $\|(\tau_s f - f)w\| \to 0$ as $y \to 0^+$.

References

Author’s address: Erik Talvila, Department of Mathematics and Statistics, University College of the Fraser Valley, Abbotsford, BC Canada V2S 7M8, e-mail: Erik.Talvila@ucfv.ca.