DOMINATION WITH RESPECT TO NONDEGENERATE AND HEREDITARY PROPERTIES

Vladimir Samodivkin, Sofia

(Received October 30, 2006)

Abstract. For a graphical property \mathcal{P} and a graph G, a subset S of vertices of G is a \mathcal{P}-set if the subgraph induced by S has the property \mathcal{P}. The domination number with respect to the property \mathcal{P}, is the minimum cardinality of a dominating \mathcal{P}-set. In this paper we present results on changing and unchanging of the domination number with respect to the nondegenerate and hereditary properties when a graph is modified by adding an edge or deleting a vertex.

Keywords: domination, independent domination, acyclic domination, good vertex, bad vertex, fixed vertex, free vertex, hereditary graph property, induced-hereditary graph property, nondegenerate graph property, additive graph property

MSC 2000: 05C69

1. Introduction

All graphs considered in this article are finite, undirected, without loops or multiple edges. For the graph theory terminology not presented here, we follow Haynes et al. [8]. We denote the vertex set and the edge set of a graph G by $V(G)$ and $E(G)$, respectively. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S, G \rangle$. The complement of a graph G is denoted by \overline{G}. For a vertex x of G, $N(x, G)$ denotes the set of all neighbors of x in G and $N[x, G] = N(x, G) \cup \{x\}$. The complete graph on m vertices is denoted by K_m.

For a graph G, let $x \in X \subseteq V(G)$. A vertex y is a private neighbor of x with respect to X if $N[y, G] \cap X = \{x\}$. The private neighbor set of x with respect to X is $\text{pn}_G[x, X] = \{y : N[y, G] \cap X = \{x\}\}$.

Let \mathcal{G} denote the set of all mutually nonisomorphic graphs. A graph property is any non-empty subset of \mathcal{G}. We say that a graph G has the property \mathcal{P} whenever
there exists a graph $H \in \mathcal{P}$ which is isomorphic to G. For example, we list some graph properties:

- $\mathcal{I} = \{ H \in \mathcal{G} : H \text{ is totally disconnected}\}$;
- $\mathcal{C} = \{ H \in \mathcal{G} : H \text{ is connected}\}$;
- $\mathcal{T} = \{ H \in \mathcal{G} : H \text{ is without isolates}\}$;
- $\mathcal{F} = \{ H \in \mathcal{G} : H \text{ is a forest}\}$;
- $\mathcal{UK} = \{ H \in \mathcal{G} : \text{each component of } H \text{ is complete}\}$.

A graph property \mathcal{P} is called hereditary (induced-hereditary), if from the fact that a graph G has the property \mathcal{P}, it follows that all subgraphs (induced subgraphs) of G also belong to \mathcal{P}. A property is called additive if it is closed under taking disjoint unions of graphs. A property \mathcal{P} is called nondegenerate if $I \subseteq \mathcal{P}$. Note that: (a) \mathcal{I} and \mathcal{F} are nondegenerate, additive and hereditary properties; (b) \mathcal{UK} is nondegenerate, additive, induced-hereditary and is not hereditary; (c) \mathcal{C} is neither additive nor induced-hereditary nor nondegenerate; (d) \mathcal{T} is additive but neither induced-hereditary nor nondegenerate. Further, an additive and induced-hereditary property is always nondegenerate.

A dominating set for a graph G is a set of vertices $D \subseteq V(G)$ such that every vertex of G is either in D or is adjacent to an element of D. A dominating set D is a minimal dominating set if no set $D' \subsetneq D$ is a dominating set. The set of all minimal dominating sets of a graph G is denoted by $\text{MDS}(G)$. The domination number $\gamma(G)$ of a graph G is the minimum cardinality taken over all dominating sets of G. The upper domination number $\Gamma(G)$ is the maximum cardinality of a minimal dominating set of G.

Any set $S \subseteq V(G)$ such that the subgraph (S, G) possesses the property \mathcal{P} is called a \mathcal{P}-set. The concept of domination with respect to any property \mathcal{P} was introduced by Goddard et al. [7]. The domination number with respect to the property \mathcal{P}, denoted by $\gamma_\mathcal{P}(G)$, is the smallest cardinality of a dominating \mathcal{P}-set of G. Note that there may be no dominating \mathcal{P}-set of G at all. For example, all graphs having at least two isolated vertices are without dominating \mathcal{P}-sets, where $\mathcal{P} \in \{\mathcal{C}, \mathcal{T}\}$. On the other hand, if a property \mathcal{P} is nondegenerate then every maximal independent set is a \mathcal{P}-set and thus $\gamma_\mathcal{P}(G)$ exists. Let S be a dominating \mathcal{P}-set of a graph G. Then S is a minimal dominating \mathcal{P}-set if no set $S' \subsetneq S$ is a dominating \mathcal{P}-set. The set of all minimal dominating \mathcal{P}-sets of a graph G is denoted by $\text{MD}_\mathcal{P}S(G)$. The upper domination number with respect to the property \mathcal{P}, denoted by $\Gamma_\mathcal{P}(G)$, is the maximum cardinality of a minimal dominating \mathcal{P}-set of G. Michalak [12] has considered these parameters when the property is additive and induced-hereditary. Note that:

(a) in the case $\mathcal{P} = \mathcal{G}$ we have $\text{MD}_\mathcal{G}S(G) = \text{MDS}(G)$, $\gamma_\mathcal{G}(G) = \gamma(G)$ and $\Gamma_\mathcal{G}(G) = \Gamma(G)$;
(b) in the case $\mathcal{P} = \mathcal{I}$, every element of $\text{MD}_\mathcal{I} S(G)$ is an independent dominating set and the numbers $\gamma_\mathcal{I}(G)$ and $\Gamma_\mathcal{I}(G)$ are well known as the independent domination number $\gamma(G)$ and the independence number $\beta_0(G)$;

(c) in the case $\mathcal{P} = \mathcal{C}$, every element of $\text{MD}_\mathcal{C} S(G)$ is a connected dominating set of G, $\gamma_\mathcal{C}(G)$ ($\Gamma_\mathcal{C}(G)$) is denoted by $\gamma_c(G)$ ($\Gamma_c(G)$) and is called the connected (upper connected) domination number;

(d) in the case $\mathcal{P} = \mathcal{T}$, every element of $\text{MD}_\mathcal{T} S(G)$ is a total dominating set of G, $\gamma_\mathcal{T}(G)$ ($\Gamma_\mathcal{T}(G)$) is denoted by $\gamma_t(G)$ ($\Gamma_t(G)$) and is called the total (upper total) domination number;

(e) in the case $\mathcal{P} = \mathcal{F}$, every element of $\text{MD}_\mathcal{F} S(G)$ is an acyclic and dominating set of G, $\gamma_\mathcal{F}(G)$ ($\Gamma_\mathcal{F}(G)$) is denoted by $\gamma_a(G)$ ($\Gamma_a(G)$) and is called the acyclic (upper acyclic) domination number. The concept of acyclic domination in graphs was introduced by Hedetniemi et al. [10].

From the above definitions we immediately have

Observation 1.1. Let $\mathcal{I} \subseteq \mathcal{P}_2 \subseteq \mathcal{P}_1 \subseteq \mathcal{G}$ and let G be a graph. Then

1. $[7] \quad \gamma(G) \leq \gamma_{\mathcal{P}_1}(G) \leq \gamma_{\mathcal{P}_2}(G) \leq \gamma(G)$;
2. $[7] \quad \Gamma(G) \geq \Gamma_{\mathcal{P}_1}(G) \geq \Gamma_{\mathcal{P}_2}(G) \geq \beta_0(G)$.

Observation 1.2. Let G be a graph, $\mathcal{P} \subseteq \mathcal{G}$ and $\text{MD}_\mathcal{P} S(G) \neq \emptyset$. A dominating \mathcal{P}-set $S \subseteq V(G)$ is a minimal dominating \mathcal{P}-set if and only if for each nonempty subset $U \subseteq S$ at least one of the following holds:

(a) there is a vertex $v \in (V(G) - S) \cup U$ with $\emptyset \neq N[v, G] \cap S \subseteq U$;

(b) $S - U$ is no \mathcal{P}-set.

Proof. Assume first that $S \in \text{MD}_\mathcal{P} S(G)$, $\emptyset \neq U \subsetneq S$ and $S_U = S - U$ is a \mathcal{P}-set of G. Hence some vertex v in $V(G) - S_U$ has no neighbors in S_U. If $v \in U$ then $\emptyset \neq N[v, G] \cap S \subseteq U$. Let $v \in V(G) - S$. Since v is not dominated by S_U but is dominated by S it follows that $\emptyset \neq N[v, G] \cap S \subseteq U$. In both cases, condition (a) holds.

For the converse, suppose S is a dominating \mathcal{P}-set of G and for each U, $\emptyset \neq U \subsetneq S$ one of the two above stated conditions holds. Suppose to the contrary that $S \not\in \text{MD}_\mathcal{P} S(G)$. Then there exists a set U, $\emptyset \neq U \subsetneq S$ such that $S_U = S - U$ is a dominating \mathcal{P}-set. Since S_U is a \mathcal{P}-set, condition (b) does not hold. Since S_U is a dominating set it follows that every vertex of $V(G) - S_U$ has at least one neighbor in S_U, that is, condition (a) does not hold. Thus in all cases we have a contradiction.

\[\Box \]
Corollary 1.3. Let G be a graph, $\mathcal{P} \subseteq \mathcal{G}$ be an induced-hereditary property and $\text{MD}_\mathcal{P} S(G) \neq \emptyset$. A dominating \mathcal{P}-set $S \subseteq V(G)$ is a minimal dominating \mathcal{P}-set if and only if $\text{pn}_G[u, S] \neq \emptyset$ for each vertex $u \in S$.

This result when $\mathcal{P} = \mathcal{G}$ was proved by Ore [13].

We shall use the term $\gamma_{\mathcal{P}}$-set for a minimal dominating \mathcal{P}-set of cardinality $\gamma_{\mathcal{P}}(G)$.

Let G be a graph and $v \in V(G)$. Fricke et al. [5] defined a vertex v to be

(f) $\gamma_{\mathcal{P}}$-good, if v belongs to some $\gamma_{\mathcal{P}}$-set of G;

(g) $\gamma_{\mathcal{P}}$-bad, if v belongs to no $\gamma_{\mathcal{P}}$-set of G;

Sampathkumar and Neerlagi [16] defined a $\gamma_{\mathcal{P}}$-good vertex v to be

(h) $\gamma_{\mathcal{P}}$-fixed if v belongs to every $\gamma_{\mathcal{P}}$-set;

(i) $\gamma_{\mathcal{P}}$-free if v belongs to some $\gamma_{\mathcal{P}}$-set but not to all $\gamma_{\mathcal{P}}$-sets.

For a graph G and a property $\mathcal{P} \subseteq \mathcal{G}$ such that $\text{MD}_\mathcal{P} S(G) \neq \emptyset$ we define:

$\mathcal{G}_\mathcal{P}(G) = \{x \in V(G): x \text{ is } \gamma_{\mathcal{P}}\text{-good}\}$;

$\mathcal{B}_\mathcal{P}(G) = \{x \in V(G): x \text{ is } \gamma_{\mathcal{P}}\text{-bad}\}$;

$\mathcal{F}_\mathcal{P}(G) = \{x \in V(G): x \text{ is } \gamma_{\mathcal{P}}\text{-fixed}\}$;

$\mathcal{Fr}_\mathcal{P}(G) = \{x \in V(G): x \text{ is } \gamma_{\mathcal{P}}\text{-free}\}$.

Clearly $\{\mathcal{G}_\mathcal{P}(G), \mathcal{B}_\mathcal{P}(G)\}$ is a partition of $V(G)$, and $\{\mathcal{F}_\mathcal{P}(G), \mathcal{Fr}_\mathcal{P}(G)\}$ is a partition of $\mathcal{G}_\mathcal{P}(G)$. If additionally $\text{MD}_\mathcal{P} S(G - v) \neq \emptyset$ for each vertex $v \in V(G)$, then we define:

$\mathcal{V}^0_{\mathcal{P}}(G) = \{x \in V(G): \gamma_\mathcal{P}(G - x) = \gamma_\mathcal{P}(G)\}$;

$\mathcal{V}^-_{\mathcal{P}}(G) = \{x \in V(G): \gamma_\mathcal{P}(G - x) < \gamma_\mathcal{P}(G)\}$;

$\mathcal{V}^+_{\mathcal{P}}(G) = \{x \in V(G): \gamma_\mathcal{P}(G - x) > \gamma_\mathcal{P}(G)\}$.

In this case $\{\mathcal{V}^-_{\mathcal{P}}(G), \mathcal{V}^0_{\mathcal{P}}(G), \mathcal{V}^+_{\mathcal{P}}(G)\}$ is a partition of $V(G)$.

It is often of interest to know how the value of a graph parameter is affected when a small change is made in a graph. In this connection, in this paper we consider this question in the case $\gamma_{\mathcal{P}}(G)$ when a vertex is deleted from G or an edge from \overline{G} is added to G.

2. Vertex deletion

In this section we examine the effects on $\gamma_{\mathcal{P}}$ when a graph is modified by deleting a vertex.

Theorem 2.1. Let G be a graph, $u, v \in V(G)$, $u \neq v$ and let $\mathcal{H} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_1.

(i) Let $v \in \mathcal{V}^-_{\mathcal{H}}(G)$.

(i.1) If $uv \in E(G)$ then u is a $\gamma_{\mathcal{H}}$-bad vertex of $G - v$;
(i.2) if M is a $\gamma_\mathcal{H}$-set of $G - v$ then $M \cup \{v\}$ is a $\gamma_\mathcal{H}$-set of G and $\{v\} = p_n_G[v, M \cup \{v\}]$;

(i.3) $\gamma_\mathcal{H}(G - v) = \gamma_\mathcal{H}(G) - 1$;

(ii) let $v \in V^+_\mathcal{H}(G)$. Then v is a $\gamma_\mathcal{H}$-fixed vertex of G;

(iii) if $v \in V^-_\mathcal{H}(G)$ and u is a $\gamma_\mathcal{H}$-fixed vertex of G then $uv \notin E(G)$;

(iv) if v is a $\gamma_\mathcal{H}$-bad vertex of G then $\gamma_\mathcal{H}(G - v) = \gamma_\mathcal{H}(G)$;

(v) if $v \in V^-_\mathcal{H}(G)$ and $uv \in E(G)$ then $\gamma_\mathcal{H}(G - \{u, v\}) = \gamma_\mathcal{H}(G) - 1$.

Proof. (i.1): Let $uv \in E(G)$ and let M be a $\gamma_\mathcal{H}$-set of $G - v$. If $u \in M$ then M is a dominating \mathcal{H}-set of G with $|M| < \gamma_\mathcal{H}(G)$—a contradiction.

(i.2) and (i.3): Let M be a $\gamma_\mathcal{H}$-set of $G - v$. By (i.1), $M_1 = M \cup \{v\}$ is a dominating set of G. Any vertex $u \in V(G) - M_1$ has a neighbor in M, hence v is isolated in M_1 (otherwise M would dominate G) and $\{v\} = p_n_G[v, M \cup \{v\}]$. Since \mathcal{H} is closed under union with K_1 it follows that M_1 is a dominating \mathcal{H}-set of G and $|M_1| = \gamma_\mathcal{H}(G - v) + 1 \leq \gamma_\mathcal{H}(G)$. Hence M_1 is a $\gamma_\mathcal{H}$-set of G and $\gamma_\mathcal{H}(G - v) = \gamma_\mathcal{H}(G) - 1$.

(ii): If M is a $\gamma_\mathcal{H}$-set of G and $v \notin M$ then M is a dominating \mathcal{H}-set of $G - v$. But then $\gamma_\mathcal{H}(G) = |M| \geq \gamma_\mathcal{H}(G - v) > \gamma_\mathcal{H}(G)$ and the result follows.

(iii): Let $\gamma_\mathcal{H}(G - v) < \gamma_\mathcal{H}(G)$ and let M be a $\gamma_\mathcal{H}$-set of $G - v$. Then by (i.2), $M \cup \{v\}$ is a $\gamma_\mathcal{H}$-set of G. This implies that $u \in M$ and by (i.1) we have $uv \notin E(G)$.

(iv): By (ii), $\gamma_\mathcal{H}(G - v) \leq \gamma_\mathcal{H}(G)$ and by (i.2), $\gamma_\mathcal{H}(G - v) \geq \gamma_\mathcal{H}(G)$.

(v): Immediately follows by (i) and (iv). □

Let $\mathcal{P} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_1. Since $\gamma_\mathcal{P}(G - v) \leq |V(G)| - 1$ for every $v \in V(G)$ and because of Theorem 2.1 we have $\gamma_\mathcal{P}(G - v) = \gamma_\mathcal{P}(G) + p$, where $p \in \{-1, 0, 1, \ldots, |V(G)| - 2\}$. This motivated us to define for a nontrivial graph G:

$\textbf{Fr}^-_\mathcal{P}(G) = \{x \in \textbf{Fr}_\mathcal{P}(G) : \gamma_\mathcal{P}(G - x) = \gamma_\mathcal{P}(G) - 1\}$;

$\textbf{Fr}^0_\mathcal{P}(G) = \{x \in \textbf{Fr}_\mathcal{P}(G) : \gamma_\mathcal{P}(G - x) = \gamma_\mathcal{P}(G)\}$;

$\textbf{Fi}^-_\mathcal{P}(G) = \{x \in \textbf{Fi}_\mathcal{P}(G) : \gamma_\mathcal{P}(G - x) = \gamma_\mathcal{P}(G) + p\}, \ p \in \{-1, 0, 1, \ldots, |V(G)| - 2\}$.

We will refine the definitions of the $\gamma_\mathcal{P}$-free vertex and the $\gamma_\mathcal{P}$-fixed vertex. Let G be a graph and let $\mathcal{P} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_1. A vertex $x \in V(G)$ is called

(j) $\gamma^0_\mathcal{P}$-free if $x \in \textbf{Fr}^0_\mathcal{P}(G)$;

(k) $\gamma^-_\mathcal{P}$-free if $x \in \textbf{Fr}^-_\mathcal{P}(G)$;

(l) $\gamma^q_\mathcal{P}$-fixed if $x \in \textbf{Fi}^q_\mathcal{P}(G)$, where $q \in \{-1, 0, 1, \ldots, |V(G)| - 2\}$.

Now, by Theorem 2.1 we have
Corollary 2.2. Let G be a graph of order $n \geq 2$ and let $\mathcal{H} \subseteq G$ be nondegenerate and closed under union with K_1. Then

1. $\{\text{Fr}^-_{\mathcal{H}}(G), \text{Fr}^0_{\mathcal{H}}(G)\}$ is a partition of $\text{Fr}_{\mathcal{H}}(G)$;
2. $\{\text{Fr}^1_{\mathcal{H}}(G), \text{Fr}^2_{\mathcal{H}}(G), \ldots, \text{Fr}^{n-2}_{\mathcal{H}}(G)\}$ is a partition of $\text{Fr}_{\mathcal{H}}(G)$;
3. $\{\text{Fr}^1_{\mathcal{H}}(G), \text{Fr}^2_{\mathcal{H}}(G)\}$ is a partition of $\text{Fr}^-_{\mathcal{H}}(G)$;
4. $\{\text{Fr}^1_{\mathcal{H}}(G), \text{Fr}^2_{\mathcal{H}}(G), B_{\mathcal{H}}(G)\}$ is a partition of $\text{Fr}^+_\mathcal{H}(G)$;
5. $\{\text{Fr}^1_{\mathcal{H}}(G), \text{Fr}^2_{\mathcal{H}}(G), \ldots, \text{Fr}^{n-2}_{\mathcal{H}}(G)\}$ is a partition of $\text{Fr}^+_\mathcal{H}(G)$.

A vertex v of a graph G is \mathcal{P}-critical if $\gamma_{\mathcal{P}}(G - v) \neq \gamma_{\mathcal{P}}(G)$. The graph G is vertex-\mathcal{P}-critical if all its vertices are \mathcal{P}-critical.

Theorem 2.3. Let G be a graph of order $n \geq 2$ and let $\mathcal{H} \subseteq G$ be additive and induced-hereditary. Then G is a vertex-\mathcal{H}-critical graph if and only if $\gamma_{\mathcal{H}}(G - v) = \gamma_{\mathcal{H}}(G) - 1$ for all $v \in V(G)$.

Proof. Necessity is obvious. Sufficiency: Let G be a vertex-\mathcal{H}-critical graph. Clearly, $\gamma_{\mathcal{H}}(G - v) = \gamma_{\mathcal{H}}(G) - 1$ for every isolated vertex $v \in V(G)$. Hence if G is isomorphic to K_n then $\gamma_{\mathcal{H}}(G - v) = \gamma_{\mathcal{H}}(G) - 1$ for all $v \in V(G)$. So, let G have a component of order at least two, say Q. Because of Theorem 2.1 (ii), (iii) and (i.3), either $\gamma_{\mathcal{H}}(Q - v) > \gamma_{\mathcal{H}}(Q)$ for all $v \in V(Q)$, or $\gamma_{\mathcal{H}}(Q - v) = \gamma_{\mathcal{H}}(Q) - 1$ for all $v \in V(Q)$. Suppose that $\gamma_{\mathcal{H}}(Q - v) > \gamma_{\mathcal{H}}(Q)$ for all $v \in V(Q)$. But then Theorem 2.1 (ii) implies that $V(Q)$ is a \mathcal{H}-set of Q. This is a contradiction with $\gamma_{\mathcal{H}}(Q - v) > \gamma_{\mathcal{H}}(Q)$. □

Theorem 2.3 when $\mathcal{H} \in \{G, I, F\}$ is due to Carrington et al. [2], Ao and MacGillivray (see [9, Chapter 16]) and the present author [15], respectively. Further properties of these graphs can be found in [1], [6], [8, Chapter 5], [9, Chapter 16], [11], [14].

Now we concentrate on graphs having cut-vertices. Observe that domination and some of its variants in graphs having cut-vertices have been the topic of several studies—see for example [1], [18], [14] and [9, Chapter 16].

Let G_1 and G_2 be connected graphs, both of order at least two, and let them have a unique vertex in common, say x. Then a coalescence $G_1 \hat{\circ} G_2$ is the graph $G_1 \cup G_2$. Clearly, x is a cut-vertex of $G_1 \hat{\circ} G_2$.

Theorem 2.4. Let $G = G_1 \hat{\circ} G_2$ and let $\mathcal{H} \subseteq G$ be induced-hereditary and closed under union with K_1. Then $\gamma_{\mathcal{H}}(G) \geq \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1$.

Proof. Since \mathcal{H} is induced-hereditary and closed under union with K_1 it follows that \mathcal{H} is nondegenerate. Let M be a $\gamma_{\mathcal{H}}$-set of G and $M_i = M \cap V(G_i)$, $i = 1, 2$. Since \mathcal{H} is induced-hereditary it follows that M_1 and M_2 are \mathcal{H}-sets of G_1 and G_2, respectively. Hence there exist three possibilities:
(a) $x \notin M$ and M_i is a dominating \mathcal{H}-set of G_i, $i = 1, 2$;
(b) $x \notin M$ and there are i, j such that $\{i, j\} = \{1, 2\}$, M_i is a dominating \mathcal{H}-set of G_i and M_j is a dominating \mathcal{H}-set of $G_j - x$;
(c) $x \in M$ and M_i is a dominating \mathcal{H}-set of G_i, $i = 1, 2$.

If (a) holds, then $\gamma_{\mathcal{H}}(G) = |M| = |M_1| + |M_2| \geq \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2)$. If (c) holds then $\gamma_{\mathcal{H}}(G) = |M| = |M_1| + |M_2| - 1 \geq \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1$. Finally, let (b) hold. Then $\gamma_{\mathcal{H}}(G) = |M| = |M_1| + |M_2| \geq \gamma_{\mathcal{H}}(G_i) + \gamma_{\mathcal{H}}(G_j - x)$. Now by Theorem 2.1 (i),

$$\gamma_{\mathcal{H}}(G) \geq \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1.$$

Thus, in all cases, $\gamma_{\mathcal{H}}(G) \geq \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1$.

\[\Box\]

Theorem 2.5. Let $G = G_1 \circ G_2$, let $\mathcal{H} \subseteq \mathcal{G}$ be additive and induced-hereditary, and $\gamma_{\mathcal{H}}(G_1 - x) < \gamma_{\mathcal{H}}(G_1)$. Then

(a) $\gamma_{\mathcal{H}}(G) = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1$;
(b) if $\gamma_{\mathcal{H}}(G_2 - x) < \gamma_{\mathcal{H}}(G_2)$ then $\gamma_{\mathcal{H}}(G - x) = \gamma_{\mathcal{H}}(G) - 1$;
(c) if $\gamma_{\mathcal{H}}(G_2 - x) > \gamma_{\mathcal{H}}(G_2)$ then x is a $\gamma_{\mathcal{H}}$-fixed vertex of G;
(d) if x is a $\gamma_{\mathcal{H}}$-bad vertex of G_2 then x is a $\gamma_{\mathcal{H}}$-bad vertex of G.

Proof. Since \mathcal{H} is additive and induced-hereditary it follows that \mathcal{H} is nondegenerate and closed under union with K_1.

(a): Let U_1 be a $\gamma_{\mathcal{H}}$-set of $G_1 - x$ and let U_2 be a $\gamma_{\mathcal{H}}$-set of G_2. Then $U = U_1 \cup U_2$ is a dominating set of G. It follows by Theorem 2.1(i.2) that (U, G) has two components, namely (U_1, G) and (U_2, G). Since \mathcal{H} is additive, U is an \mathcal{H}-set of G. Thus U is a dominating \mathcal{H}-set of G. Hence $\gamma_{\mathcal{H}}(G) \leq |U_1 \cup U_2| = \gamma_{\mathcal{H}}(G_1 - x) + \gamma_{\mathcal{H}}(G_2) = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1$. Now the result follows by Theorem 2.4.

(b): By Theorem 2.1 (i.3) we have $\gamma_{\mathcal{H}}(G - x) = \gamma_{\mathcal{H}}(G_1 - x) + \gamma_{\mathcal{H}}(G_2 - x) = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 2$. Hence by (a), $\gamma_{\mathcal{H}}(G - x) = \gamma_{\mathcal{H}}(G) - 1$.

(c): $\gamma_{\mathcal{H}}(G - x) = \gamma_{\mathcal{H}}(G_1 - x) + \gamma_{\mathcal{H}}(G_2 - x) = \gamma_{\mathcal{H}}(G_1) - 1 + \gamma_{\mathcal{H}}(G_2 - x) = \gamma_{\mathcal{H}}(G) + \gamma_{\mathcal{H}}(G_2 - x) - \gamma_{\mathcal{H}}(G_2) > \gamma_{\mathcal{H}}(G)$. The result now follows by Theorem 2.1 (ii).

(d): Let M be a $\gamma_{\mathcal{H}}$-set of G and $M_i = M \cap V(G_i)$, $i = 1, 2$. Suppose $x \in M$. Hence M_i is a dominating \mathcal{H}-set of G_i, $i = 1, 2$ and then $\gamma_{\mathcal{H}}(G_i) \leq |M_i|$. Since x belongs to no $\gamma_{\mathcal{H}}$-set of G_2 we have $|M_2| > \gamma_{\mathcal{H}}(G_2)$. Hence $\gamma_{\mathcal{H}}(G) = |M| = |M_1| + |M_2| - 1 \geq \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2)$—a contradiction with (a).

\[\Box\]

Theorem 2.6. Let $\mathcal{H} \subseteq \mathcal{G}$ be additive and induced-hereditary and let $G = G_1 \circ G_2$, where G_1, G_2 are both vertex-$\gamma_{\mathcal{H}}$-critical. Then G is vertex-$\gamma_{\mathcal{H}}$-critical and $\gamma_{\mathcal{H}}(G) = \gamma_{\mathcal{H}}(G_1) + \gamma_{\mathcal{H}}(G_2) - 1$.

Proof. By Theorem 2.5(b) it follows that $\gamma_{\mathcal{H}}(G) - 1 = \gamma_{\mathcal{H}}(G - x)$. Let without loss of generality $y \in V(G_2 - x)$. If $G_2 - y$ is connected then $G - y = G_1 \circ (G_2 - y)$ and
by Theorem 2.5(a), \(\gamma_H(G - y) = \gamma_H(G_1) + \gamma_H(G_2 - y) - 1 = \gamma_H(G_1) + \gamma_H(G_2) - 2 = \gamma_H(G) - 1. \)

So, assume \(G_2 - y \) is not connected and let \(Q \) be the component of \(G_2 - y \) which contains \(x \). By Theorem 2.1 (i), \(V(Q) \neq \{x\} \). Now, by Theorem 2.5 (a), \(\gamma_H(G \cup Q) = \gamma_H(G_1) + \gamma_H(Q) - 1 \) and then \(\gamma_H(G - y) = \gamma_H(G_1 \cup Q) + \gamma_H(G_2 - (V(Q) \cup \{y\})) = \gamma_H(G_1) + \gamma_H(G_2 - y) - 1 = \gamma_H(G_1) + \gamma_H(G_2) - 2 = \gamma_H(G) - 1. \)

\[\Box \]

3. Edge Addition

Here we present results on changing and unchanging of \(\gamma_P(G) \) when an edge from \(G \) is added to \(\bar{G} \). Recall that if a property \(\mathcal{P} \) is hereditary and closed under union with \(K_1 \) then \(\mathcal{P} \) is nondegenerate and hence all graphs have a domination number with respect to \(\mathcal{P} \).

Theorem 3.1. Let \(x \) and \(y \) be two different and nonadjacent vertices in a graph \(G \). Let \(\mathcal{H} \subseteq \mathcal{G} \) be hereditary and closed under union with \(K_1 \). If \(\gamma_H(G + xy) < \gamma_H(G) \) then \(\gamma_H(G + xy) = \gamma_H(G) - 1 \). Moreover, \(\gamma_H(G + xy) = \gamma_H(G) - 1 \) if and only if at least one of the following holds:

(i) \(x \in V_{\bar{H}}^{-}(G) \) and \(y \) is a \(H \)-good vertex of \(G - x \);

(ii) \(x \) is a \(H \)-good vertex of \(G - y \) and \(y \in V_{\bar{H}}^{-}(G) \).

Proof. Let \(\gamma_H(G + xy) < \gamma_H(G) \) and let \(M \) be a \(H \)-set of \(G + xy \). Since \(\mathcal{H} \) is hereditary, \(M \) is an \(H \)-set of \(G \). Further, \(\{x, y\} \cap M = 1 \), otherwise \(M \) would be a dominating \(H \)-set of \(G \), a contradiction. Let without loss of generality \(x \notin M \) and \(y \in M \). Since \(M \) is an \(H \)-set of \(G \) it follows that \(M \) is no dominating set of \(G \), which implies \(M \cap N(x, G) = \emptyset \). Hence \(M_1 = M \cup \{x\} \) is a dominating \(H \)-set of \(G \) with \(|M_1| = \gamma_H(G + xy) + 1 \), which implies \(\gamma_H(G) = \gamma_H(G + xy) + 1 \). Since \(M \) is a dominating \(H \)-set of \(G - x \) we have \(\gamma_H(G - x) \leq \gamma_H(G + xy) \). Hence \(\gamma_H(G) \geq \gamma_H(G - x) + 1 \) and Theorem 2.1 implies \(\gamma_H(G) = \gamma_H(G - x) + 1 \). Thus \(x \) is in \(V_{\bar{H}}^{-}(G) \) and \(M \) is a \(H \)-set of \(G - x \). Since \(y \in M \), \(y \) is a \(H \)-good vertex of \(G - x \).

For the converse let without loss of generality (i) hold. Then there is a \(\gamma_H \)-set \(M \) of \(G - x \) with \(y \in M \). Certainly \(M \) is a dominating \(H \)-set of \(G + xy \) and consequently \(\gamma_H(G + xy) \leq |M| = \gamma_H(G - x) = \gamma_H(G) - 1 \leq \gamma_H(G + xy) \). \[\Box \]

Corollary 3.2. Let \(x \) and \(y \) be two different and nonadjacent vertices in a graph \(G \), let \(\mathcal{H} \subseteq \mathcal{G} \) be hereditary and closed under union with \(K_1 \), and let \(x \in V_{\bar{H}}^{-}(G) \). Then \(\gamma_H(G) - 1 \leq \gamma_H(G + xy) \leq \gamma_H(G) \).

Proof. Let \(M \) be a \(\gamma_H \)-set of \(G - x \). If \(y \in G_H(G - x) \) then Theorem 3.1 yields \(\gamma_H(G) - 1 = \gamma_H(G + xy) \). So, let \(y \in B_H(G - x) \). By Theorem 2.1, \(M_1 = M \cup \{x\} \)
is a γ_H-set of G and $M_1 \cap N(x, G) = \emptyset$. Hence M_1 is a dominating \mathcal{H}-set of $G + xy$ and $\gamma_H(G + xy) \leq |M_1| = \gamma_H(G - x) + 1 = \gamma_H(G)$. \qed

We need the following lemma:

Lemma 3.3. Let $\mathcal{H} \subseteq \mathcal{G}$ be nondegenerate and closed under union with K_1 and let x be a γ_H^0-fixed vertex of a graph G. Then $N(x, G) \subseteq B_H(G - x) \cap (V_H^0(G) \cup F^1_H(G))$ and for each $y \in N(x, G)$, $\gamma_H(G - \{x, y\}) = \gamma_H(G)$.

Proof. Let M be a γ_H-set of $G - x$ and $y \in N(x, G)$. If $y \in M$ then M is a dominating \mathcal{H}-set of G of cardinality $|M| = \gamma_H(G - x) = \gamma_H(G)$—a contradiction with $x \in F^i_H(G)$. Thus $N(x, G) \subseteq B_H(G - x)$. Now by Theorem 2.1 (iv), $\gamma_H(G - \{x, y\}) = \gamma_H(G - x) = \gamma_H(G)$. Further, Theorem 2.1(iii) implies $y \notin V_H^0(G)$. If $y \notin V_H^0(G)$, from Corollary 2.2(5) it follows that $y \in F^i_H(G)$ for some $p \geq 1$. Assume $p \geq 2$. Since M is a dominating \mathcal{H}-set of $G - x$ and $M \cap N(x, G) = \emptyset$ it follows that $M_2 = M \cup \{x\}$ is a dominating \mathcal{H}-set of G and $y \notin M_2$. Hence M_2 is a dominating \mathcal{H}-set of $G - y$. This implies $\gamma_H(G) + p = \gamma_H(G - y) \leq |M_2| = |M| + 1 = \gamma_H(G - x) + 1 = \gamma_H(G) + 1$, a contradiction. \qed

It is a well known fact that $\gamma(G + e) \leq \gamma(G)$ for any edge $e \in \mathcal{G}$. In general, for γ_p this is not valid.

Theorem 3.4. Let x and y be two different and nonadjacent vertices in a graph G and let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_1. Then $\gamma_H(G + xy) > \gamma_H(G)$ if and only if no γ_H-set of G is an \mathcal{H}-set of $G + xy$ and one of the following holds:

1. x is a γ_H^0-fixed vertex of G and y is a γ_H^0-fixed vertex of G for some $p, q \geq 1$;
2. $x \in F^i_H(G)$ and $y \in F^i_H(G) \cap B_H(G - x)$;
3. $x \in F^i_H(G) \cap B_H(G - y)$ and $y \in F^i_H(G)$;
4. $x, y \in F^i_H(G)$, $x \in B_H(G - y)$ and $y \in B_H(G - x)$.

Proof. Let $\gamma_H(G + xy) > \gamma_H(G)$. By Corollary 3.2 we have $x, y \in V_H^0(G) \cup V_H^0(G)$. Assume to the contrary that (without loss of generality) $x \notin F^i_H(G)$. Hence there is a γ_H-set M of G with $x \notin M$. But then M is a dominating \mathcal{H}-set of $G + xy$ and $|M| = \gamma_H(G) < \gamma_H(G + xy)$—a contradiction. Thus both x and y are γ_H-fixed vertices of G. This implies that each γ_H-set M of G is a dominating set of $G + xy$ but not an \mathcal{H}-set of $G + xy$.

Let x be γ_H^0-fixed, let y be γ_H^0-fixed and without loss of generality, $q \geq p \geq 0$. Assume (1) does not hold. Hence $p = 0$. Let M_1 be a γ_H-set of $G - x$. Then $|M_1| = \gamma_H(G - x) = \gamma_H(G) < \gamma_H(G + xy)$ and $y \notin M_1$, for otherwise M_1 would be a dominating \mathcal{H}-set of $G + xy$; thus y is a γ_H-bad vertex of $G - x$. By Lemma 3.3,
$N(x, G) \cap M_1 = \emptyset$. Then $M_1 \cup \{x\}$ is a dominating \mathcal{H}-set of $G + xy$, which implies $\gamma_\mathcal{H}(G + xy) = \gamma_\mathcal{H}(G) + 1$. Since $y \notin M_1 \cup \{x\}$ it follows that $M_1 \cup \{x\}$ is a dominating \mathcal{H}-set of $G - y$ and then $\gamma_\mathcal{H}(G) + 1 = |M_1 \cup \{x\}| \geq \gamma_\mathcal{H}(G - y) = \gamma_\mathcal{H}(G) + q$. So, $q \in \{0, 1\}$. If $q = 1$ then (2) holds. If $q = 0$ then, by symmetry, it follows that x is a $\gamma_\mathcal{H}$-bad vertex of $G - y$ and hence (4) holds.

For the converse, let no $\gamma_\mathcal{H}$-set of G be an \mathcal{H}-set of $G + xy$ and let one of the conditions (1), (2), (3) and (4) hold. Assume to the contrary that $\gamma_\mathcal{H}(G + xy) \leq \gamma_\mathcal{H}(G)$. By Theorem 3.1, $\gamma_\mathcal{H}(G + xy) = \gamma_\mathcal{H}(G)$. Let M_2 be a $\gamma_\mathcal{H}$-set of $G + xy$. Hence $|M_2 \cap \{x, y\}| = 1$—otherwise M_2 would be a $\gamma_\mathcal{H}$-set of G. Let without loss of generality $x \notin M_2$. Then M_2 is a dominating \mathcal{H}-set of $G - x$, which implies $\gamma_\mathcal{H}(G - x) \leq |M_2| = \gamma_\mathcal{H}(G + xy) = \gamma_\mathcal{H}(G)$. Thus $\gamma_\mathcal{H}(G - x) = \gamma_\mathcal{H}(G + xy) = \gamma_\mathcal{H}(G)$ and then M_2 is a $\gamma_\mathcal{H}$-set of $G - x$. Hence x is a $\gamma_\mathcal{H}$-good vertex of G and y is a $\gamma_\mathcal{H}$-good vertex of $G - x$, which is a contradiction with each of (1)–(4).

By Theorem 3.1 and Theorem 3.4 we immediately obtain:

Theorem 3.5. Let x and y be two different and nonadjacent vertices in a graph G. Let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_1. Then $\gamma_\mathcal{H}(G + xy) = \gamma_\mathcal{H}(G)$ if and only if at least one of the following holds:

1. $x \in V_{\mathcal{H}}^{-}(G) \cap B_{\mathcal{H}}(G - y)$ and $y \in V_{\mathcal{H}}^{-}(G) \cap B_{\mathcal{H}}(G - x)$;
2. $x \in V_{\mathcal{H}}^{-}(G)$ and $y \in B_{\mathcal{H}}(G - x) - V_{\mathcal{H}}^{-}(G)$;
3. $x \in B_{\mathcal{H}}(G - y) - V_{\mathcal{H}}^{-}(G)$ and $y \in V_{\mathcal{H}}^{-}(G)$;
4. $x, y \notin V_{\mathcal{H}}^{-}(G)$ and $|\{x, y\} \cap \Phi_{\mathcal{H}}(G)| \leq 1$;
5. $x \in F_{\mathcal{H}}^{s\gamma}(G)$ and $y \in F_{\mathcal{H}}^{s\gamma}(G) \cap G_{\mathcal{H}}(G - x)$ for some $s \in \{0, 1\}$;
6. $x \in F_{\mathcal{H}}^{s\gamma}(G) \cap G_{\mathcal{H}}(G - y)$ and $y \in F_{\mathcal{H}}^{s\gamma}(G)$ for some $s \in \{0, 1\}$;
7. $x \in F_{\mathcal{H}}^{s\gamma}(G)$ and $y \in F_{\mathcal{H}}^{s\gamma}(G)$ for some $q \geq 2$;
8. $x \in F_{\mathcal{H}}^{s\gamma}(G)$ and $y \in F_{\mathcal{H}}^{s\gamma}(G)$ for some $q \geq 2$;
9. there is a $\gamma_\mathcal{H}$-set of G which is an \mathcal{H}-set of $G + xy$ and one of the conditions (1), (2), (3) and (4) stated in Theorem 3.4 holds.

Corollary 3.6. Let x and y be two different and nonadjacent vertices in a graph G. Let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_1. If $x \in B_{\mathcal{H}}(G)$ then $\gamma_\mathcal{H}(G + xy) = \gamma_\mathcal{H}(G)$.

Proof. By Theorem 2.1 (iv), $x \notin V_{\mathcal{H}}^{-}(G)$. If $y \notin V_{\mathcal{H}}^{-}(G)$ then the result follows by Theorem 3.5(4). If $y \in V_{\mathcal{H}}^{-}(G)$ then by Theorem 2.1 (i,2) we have $x \in B_{\mathcal{H}}(G - y)$ and the result now follows by Theorem 3.5(3). □

Let $\mu \in \{\gamma, \gamma_c, i\}$. A graph G is edge-μ-critical if $\mu(G + e) < \mu(G)$ for every edge e not belonging to G. These concepts were introduced by Sumner and Blitch [17], Xue-Gang Chen et al. [3] and Ao and MacGillivray [9, Chapter 16], respectively.
Here we define a graph G to be edge-γ_P-critical if $\gamma_P(G + e) \neq \gamma_P(G)$ for every edge e of \mathcal{G}, where $\mathcal{P} \subseteq \mathcal{G}$ is hereditary and closed under union with K_1. Relating edge addition and vertex removal, Sumner and Blitch [17] and Ao and MacGillivray showed that $V_+^P(G)$ is empty for $P \in \{G, T\}$, respectively. Furthermore, Favaron et al. [4] showed that if $V_0^G(G) \neq \emptyset$ then $\langle V_0^G(G), G \rangle$ is complete. In general, for edge-γ_P-critical graphs the following holds.

Theorem 3.7. Let $\mathcal{H} \subseteq \mathcal{G}$ be hereditary and closed under union with K_1 and let G be an edge-γ_H-critical graph. Then

1. $V(G) = \text{Fi}_{\mathcal{H}}^{-1}(G) \cup \text{Fr}_{\mathcal{H}}(G)$ and if $\text{Fr}_{\mathcal{H}}^0(G) \neq \emptyset$ then $\langle \text{Fr}_{\mathcal{H}}^0(G), G \rangle$ is complete;
2. $\gamma_{\mathcal{H}}(G + e) < \gamma_{\mathcal{H}}(G)$ for every edge e not belonging to G.

Proof. (1) If $x, y \in \text{Fr}_{\mathcal{H}}^0(G)$ and $xy \notin E(G)$ then Theorem 3.5(4) implies $\gamma_{\mathcal{H}}(G + xy) = \gamma_{\mathcal{H}}(G)$, a contradiction. If $x \in \mathcal{B}_{\mathcal{H}}(G)$ then Corollary 3.6 implies $N[x, G] = V(G)$ and hence $\{x\}$ is a $\gamma_{\mathcal{H}}$-set of G—a contradiction. Assume $x \in \text{Fi}_{\mathcal{H}}^{q-1}(G)$ for some $q \geq 0$. Let M be any $\gamma_{\mathcal{H}}$-set of G. By Corollary 1.3, $\text{pn}_G[x, M] \neq \emptyset$. If $\text{pn}_G[x, M] = \{x\}$ then $M - \{x\}$ dominates $G - x$, so $x \in V_{-}^\mathcal{H}(G)$—a contradiction. Hence there is $y \in \text{pn}_G[x, M] - \{x\}$. Since $\text{pn}_G[x, M] \cap V_{-}^\mathcal{H}(G) = \emptyset$ (by Theorem 2.1 (iii)), $\mathcal{B}_{\mathcal{H}}(G) = \emptyset$ and $y \notin M$, it follows that $y \in \text{Fr}_{\mathcal{H}}^0(G)$. Let M_1 be a $\gamma_{\mathcal{H}}$-set of G and $y \in M_1$. Then there is $z \in (\text{pn}_G[x, M_1] - \{x\}) \cap \text{Fr}_{\mathcal{H}}^0(G)$. Hence $y, z \in \text{Fr}_{\mathcal{H}}^0(G)$ and $yz \notin E(G)$—a contradiction. Thus $\text{Fi}_{\mathcal{H}}(G) = \text{Fi}_{\mathcal{H}}^{-1}(G)$ and the result follows.

(2) This immediately follows by (1) and Theorem 3.4.

References

Author’s address: Vladimir Samodivkin, Department of Mathematics, University of Architecture, Civil Engineering and Geodesy, Hristo Smirnenski 1 Blv., 1046 Sofia, Bulgaria, e-mail: vlsam_fte@uacg.bg.