NECESSARY CONDITIONS OF OPTIMALITY FOR OPTIMAL PROBLEMS WITH DELAYS AND WITH A DISCONTINUOUS INITIAL CONDITION

(Reported on October 30, 2000)

Let $J = [a, b]$ be a finite interval; $O \subset \mathbb{R}^n, G \subset \mathbb{R}^r$ be open sets and let the function $f : J \times O^s \times G^r \to \mathbb{R}^n$ satisfy the following conditions:

1) for a fixed $t \in J$ the function $f(t, x_1, \ldots, x_s, u_1, \ldots, u_r)$ is continuous with respect to $(x_1, \ldots, x_s, u_1, \ldots, u_r) \in O^s \times G^r$ and continuously differentiable with respect to $(x_1, \ldots, x_s) \in O^s$;

2) for a fixed $(x_1, \ldots, x_s, u_1, \ldots, u_r) \in O^s \times G^r$ the functions $f, f_{x_i}, i = 1, \ldots, s$, are measurable with respect to t. For arbitrary compacts $K \subset O, V \subset G$ there exists a function $m_{K, V}(\cdot) \in L(J, \mathbb{R}^n)$ such that

\[|f(t, x_1, \ldots, x_s, u_1, \ldots, u_r)| + \sum_{i=1}^s |f_{x_i}(\cdot)| \leq m_{K, V}(t), \]

\[\forall (t, x_1, \ldots, x_s, u_1, \ldots, u_r) \in J \times K^s \times V^r. \]

Let now $\tau_i(t), i = 1, \ldots, s, t \in J$, be absolutely continuous functions, satisfying the conditions: $\tau_i(t) \leq t$, $\dot{\tau}_i(t) > 0$; Δ be a space of piecewise continuous functions $\varphi : J_1 = [\tau, b] \to N$, $\tau = \min(\tau_1(a), \ldots, \tau_s(a))$, with a finite number of discontinuity points of the first kind; The functions $\theta_i(t), i = 1, \ldots, r, t \in R$, satisfy cone-measurability condition i.e. there exists absolutely continuous function $\theta(t) < t$, $\theta(t) > 0$ such that $\theta_i(t) = \theta^{k_i}(t)$, where $k_i > \cdots k_1 \geq 0$ are natural numbers, $\theta^0(t) = \theta^{(0^{-1})}(t)$, $\theta^0(t) = t$; Ω is the set of measurable functions $u : J_2 = [\theta, b] \to U$, $\theta = \min\{\theta_1(a), \ldots, \theta_r(a)\}$, satisfying the conditions $c_i(u(t) : t \in J_2)$ is compact lying in G, $U \subset G$ is an arbitrary set, $J_2 = [\theta, b], \theta = \theta_v(a)$; $q^i : J^2 \times O^2 \to \mathbb{R}, i = 0, \ldots, l$, are continuously differentiable functions.

We consider the differential equation in \mathbb{R}^n

\[\dot{x}(t) = f(t, x(t_0), \ldots, x(\tau_i(t)), u(\theta_1(t)), \ldots, u(\theta_r(t))), \]

\[t \in [t_0, t_1] \subset J, \]

with the discontinuity condition

\[x(t) = \varphi(t), \quad t \in [\tau, t_0), \quad x(t_0) = x_0. \]
Definition 2. The element $\sigma \in A$ is said to be admissible if the corresponding solution $x(t) = x(t; \sigma)$ satisfies the conditions

$$q'(t_0, t_1, x(t_0), x(t_1)) = 0, \quad i = 0, \ldots, l.$$

The set of admissible elements will be denoted by A_0.

Definition 3. The element $\hat{\sigma} = (\hat{t}_0, \hat{t}_1, \hat{x}_0, \hat{\nu}, \hat{u}) \in A_0$ is said to be optimal if for an arbitrary element $\sigma \in A_0$ the inequality

$$q^0(\hat{t}_0, \hat{t}_1, x(\hat{t}_0), x(\hat{t}_1)) \leq q^0(t_0, t_1, x(t_0), x(t_1)); \quad x(t) = x(t; \hat{\sigma})$$

holds.

The problem of optimal control consists in finding optimal element. In order to formulate the main results, we will need the following notations:

- Let $\gamma^i = \gamma_i(t_0^-)$, $i = 1, \ldots, s$, $\gamma_i(t)$ is the function inverse to $\tau_i(t)$; $\gamma_i = \gamma_i(t_0)$;
- $\omega^- = (t_0, x_0, \hat{x}_0, \hat{x}_0, \hat{x}_0, \hat{x}_0, \cdots, \hat{x}_0, \hat{x}_0, \hat{x}_0, \hat{x}_0, \hat{x}_0, \cdots, \hat{x}_0)$, $i = 0, \ldots, p$;
- $\omega^- = (t_0, \hat{x}(\gamma_1(t_0)), \cdots, \hat{x}(\gamma_{s+1}(t_0)), \hat{x}_0, \hat{x}_0, \hat{x}_0, \cdots, \hat{x}_0, \hat{x}_0, \hat{x}_0, \cdots, \hat{x}_0, \hat{x}_0, \cdots, \hat{x}_0)$, $i = p + 1, \ldots, s$.

Analogously is defined $\hat{\gamma}^+$, $\hat{\omega}^+$, $\hat{\omega}^+$. Theorem 1. Let $\hat{\sigma} \in A_0$ be optimal element, $t_0 \in (a, b)$, $\hat{t}_1 \in (a, b]$ and the following conditions are hold:

- $\tau_i(t_0) = \hat{t}_0$, $i = 1, \ldots, p$; $\tau_i(t_0) < \hat{t}_0$, $\tau_i(t_1) > \hat{t}_0$, $i = p + 1, \ldots, s$; there exists the left semi-neighborhood $V^-_{\hat{t}_0}$ of the point t_0 such that

$$t < \gamma_i(t) < \cdots < \gamma_s(t), \quad \forall t \in V^-_{\hat{t}_0}.$$

This next, $\gamma_{p+1} < \cdots < \gamma_s$.

1. There exist the finite limits:

$$\hat{\gamma}_i^- = \gamma_i(t_0^-), \quad i = 1, \ldots, s;$$

$$\lim_{\omega \to \omega^-} \hat{f}(\omega) = f^-_{\hat{\omega}^-}, \quad \omega = (t, x_1, \ldots, x_s) \in R^-_{t_0} \times O^s, \quad i = 0, \ldots, p,$$

where $\hat{f}(\omega) = f(\omega, \hat{u}(\hat{\theta}_1(t))), \ldots, \hat{u}(\hat{\theta}_s(t)))$,

$$\lim_{(\omega_1, \omega_2) \to (\omega^-_{\hat{\omega}^-})} \hat{f}(\omega) = f(\omega_1, \omega_2) = f^-_{\omega^-}, \quad \omega_1, \omega_2 \in R^-_{\gamma} \times O^s, \quad i = p + 1, \ldots, s.$$

Then there exists non-zero vector $\pi = (\pi_0, \ldots, \pi_s)$, $\pi_0 \leq 0$, and a solution $\psi(t)$, $t \in [\hat{t}_0, \gamma]$, $\gamma = \max(\gamma_1, \ldots, \gamma_s)$ of the equation

$$\dot{\psi}(t) = \sum_{i=1}^{s} \psi(\gamma_i(t)) f^i_{\gamma_i(t)} \gamma_i(t), \quad t \in [\hat{t}_0, \hat{t}_1],$$

$$\psi(t) = 0, \quad t \in (\hat{t}_1, \gamma),$$

$$t \in [\hat{t}_0, \hat{t}_1].$$
such that the following conditions are fulfilled:

\[
\sum_{i=p+1}^{r_1(t_0)} \int_{t_0}^{t_1} \psi(\gamma_i(t)) \bar{f}_{\gamma_i} [\gamma_i(t)] \dot{\gamma}_i(t) \dot{\varphi}(t) dt \geq \\
\geq \sum_{i=p+1}^{r_1(t_0)} \int_{t_0}^{t_1} \psi(\gamma_i(t)) \bar{f}_{\gamma_i} [\gamma_i(t)] \varphi(t) dt, \forall \varphi(\cdot) \in \Delta, \tag{5}
\]

\[
\int_{t_0}^{t_1} \bar{f}(t) dt \geq \int_{t_0}^{t_1} \psi(t) f(t, \bar{x}(\tau_1(t)), \ldots, \bar{x}(\tau_s(t)), u(\theta_1(t)), \ldots, u(\theta_s(t))) dt, \forall \psi(\cdot) \in \Omega, \tag{6}
\]

\[
\pi \bar{Q}_{x_0} = -\psi(t_0), \pi \bar{Q}_{x_1} = \psi(t_1), \tag{7}
\]

\[
\pi \bar{Q}_{x_0} \geq -\psi(t_0) \sum_{i=0}^{p} (\tilde{\gamma}_{i+1}^+ - \tilde{\gamma}_i^-) f_i^- + \sum_{i=p+1}^{r_1(t_0)} \psi(\gamma_i) f_i^- \tilde{\gamma}_i^-, \tag{8}
\]

\[
\pi \bar{Q}_{t_1} \geq -\psi(t_1) f_{p+1}^-. \tag{9}
\]

Here \(f(t) = f(t, \bar{x}(\tau_1(t)), \ldots, \bar{x}(\tau_s(t)), \bar{f}_{\gamma_i}[t] = \bar{f}_{\gamma_i}(t, \bar{x}(\tau_1(t)), \ldots, \bar{x}(\tau_s(t)); \gamma_0^+ = 1, \gamma_i^- = \gamma_i^+, i = 1, \ldots, p, \gamma_{p+1} = 0; \)

The tilde over \(Q = (q^0, \ldots, q^s)^T \) means that the corresponding gradient is calculated at the point \((t_0, t_1, x(t_0), x(t_1))\)

Remark 1. If

\[
\text{rank}(\bar{Q}_{x_0}, \bar{Q}_{x_1}) = 1 + l,
\]

then in theorem 1 \(\psi(t) \neq 0 \). If \(\hat{x}(t_0) = \bar{x}_0 \), then \(f_0^- = \cdots = f_p^- = 0, i = p+1, \ldots, s \), the condition (8) has the form

\[
\pi \bar{Q}_{t_0} \geq \psi(t_0) f_0^-.
\]

If \(\gamma_0^- < \cdots < \gamma_s^- < 1 \), then the condition (3) is held.

Theorem 2. Let \(\tilde{\sigma} \in A_0 \) be optimal element, \(\tilde{t}_0 \in (a, b), \tilde{t}_1 \in (a, b) \) and the following conditions hold:

1. \(\tau_i(t_0) = \tilde{t}_0, i = 1, \ldots, p; \tau_i(t_1) = \tilde{t}_1, i = p + 1, \ldots, s; \) there exists the right semi-neighborhood \(V^+(t_0) \) of the point \(t_0 \) such that

\[
t < \gamma_i(t) < \gamma_i(t), \forall t \in V^+_t_0; \tag{10}
\]

next, \(\gamma_{p+1}^- < \cdots < \gamma_s^-; \)

2. There exist the finite limits:

\[
\lim_{\omega \to \omega_i^+} \bar{f}^+ = f_i^+, \omega = (t, x_1, \ldots, x_s) \in R^+_t_0 \times O^*, i = 0, \ldots, p,
\]

\[
\lim_{(\omega_1, \omega_2) \to (\omega_i^+, \omega_i^+)} [f(\omega_1) - f(\omega_2)] = f_i^+, \omega_1, \omega_2 \in R^+_t_0 \times O^*, i = p + 1, \ldots, s,
\]

\[
\lim_{\omega \to \omega_i^+} \bar{f}(\omega) = f_i^+, \omega \in R^+_t_1 \times O^*.
\]
then there exists a non-zero vector \(\pi = (\pi_0, \ldots, \pi_1) \), \(\pi_0 \leq 0 \), and a solution \(\psi(t) \) of the equation (4) such that the conditions (5)–(7) are fulfilled. Moreover,

\[
\pi Q_{t_0} \leq -\psi(t_0) \left(\sum_{i=0}^{p} (\tilde{\gamma}_{i+1}^+ - \tilde{\gamma}_{i-}^-) f_i^- + \sum_{i=p+1}^{s} \psi(\gamma_i) f_i^+ \right),
\]

where \(\tilde{\gamma}_i^+ = 1, \tilde{\gamma}_i^- = 4_i^+ \), \(i = 1, \ldots, p, \tilde{\gamma}_{p+1} = 0 \).

Remark. If \(\tilde{\varphi}(\tilde{t}_0^+) = \tilde{x}_0 \), then \(f_i^+ = \cdots = f_p^+ \), \(f_i^- = 0 \), \(i = p+1, \ldots, s \), the condition (11) has the form

\[
\pi Q_{t_0} \leq -\psi(t_0) f_0^+.
\]

If \(1 < \tilde{\gamma}_1^+ < \cdots < \tilde{\gamma}_p^+ \), then the condition (10) holds.

Theorem 3. Let \(\hat{\pi} \in A_0 \) be an optimal element, \(\hat{t}_0, \hat{t}_1 \in (a,b) \) and the assumptions of theorems 1, 2 are hold. Let, besides

\[
\begin{align*}
\sum_{i=0}^{p} (\tilde{\gamma}_{i+1}^+ - \tilde{\gamma}_{i-}^-) f_i^- &= \sum_{i=0}^{p} (\tilde{\gamma}_{i+1}^+ - \tilde{\gamma}_{i-}^-) f_i^+ = f_0, \\
f_i^- \tilde{\gamma}_i^- = f_i^+ \tilde{\gamma}_i^+ = f_i, & \text{ } i = p+1, \ldots, s, \ f_{s+1}^+ = f_{s+1},
\end{align*}
\]

then there exists non-zero vector \(\pi = (\pi_0, \ldots, \pi_1) \), \(\pi_0 \leq 0 \) and a solution \(\psi(t) \) of the equation (4) such that the condition (5)–(7) are fulfilled. Moreover,

\[
\begin{align*}
\pi Q_{t_0} &= \psi(t_0) f_0 + \sum_{i=p+1}^{s} \psi(\gamma_i) f_i, & \pi Q_{t_1} &= -\psi(t_1) f_{s+1},
\end{align*}
\]

If

\[
\text{rank}(\tilde{Q}_{t_0}, \tilde{Q}_{t_1}, \tilde{Q} x_0, \tilde{Q} x_1) = 1 + l,
\]

then in theorem 3 \(\psi(t) \neq 0 \). If \(\tilde{\varphi}(\tilde{t}_0^-) = \tilde{\varphi}(\tilde{t}_0^+) = \tilde{x}_0 \), then \(f_i = 0, i = p+1, \ldots, s \). For the case \(s = \nu = 2, \tau_1(t) = \theta_2(t) = t \) the analogous theorems are given in [1].

Now we consider the case, when the functions \(\theta_i(t), i = 1, \ldots, \nu \), are absolutely continuous and \(\theta_i(t) \leq t, \theta_i(t) > 0 \). Next, \(U \subset G \) is a convex set and the function \(f(t, x_1, \ldots, x_s, u_1, \ldots, u_\nu) \) satisfies the following conditions: for a fixed \(t \in J \) it is continuously differentiable with respect to \((x_1, \ldots, x_s, u_1, \ldots, u_\nu) \in O^u \times G^u \); for a fixed \((x_1, \ldots, x_s, u_1, \ldots, u_\nu) \in O^u \times G^u \) the functions \(f_i, i = 1, \ldots, \nu, \ j = 1, \ldots, \nu \) are measurable with respect to \(t \); for arbitrary compacts \(K \subset O, V \subset G \) there exists a function \(m_{K,V}(\cdot) \in L(J, E_0^\nu) \) such that

\[
|f(t, x_1, \ldots, x_s, u_1, \ldots, u_\nu)| + \sum_{i=1}^{s} |f_{x_i}(\cdot)| + \sum_{i=1}^{\nu} |f_{u_i}(\cdot)| \leq m_{K,V}(t),
\]

\[
\forall (t, x_1, \ldots, x_s, u_1, \ldots, u_\nu) \in J \times K^u \times V^u.
\]

Theorem 4. Let \(\hat{\pi} \in A_0 \) be an optimal element, \(\hat{t}_0 \in (a,b), \hat{t}_1 \in (a,b) \) and the assumptions of Theorem 1 be fulfilled. Then there exist a non-zero vector \(\pi = (\pi_0, \ldots, \pi_1) \),
\[\pi_0 \leq 0 \text{ and a solution } \psi(t) \text{ of the equation } (4) \text{ such that the conditions } (5), (7)-(9) \text{ are fulfilled. Moreover,} \]
\[\sum_{j=1}^{l} \int_{\tilde{t}_0}^{\tilde{t}_1} \psi(t)f_{u_j}[t]u_j(t)dt \geq \sum_{j=1}^{l} \int_{\tilde{t}_0}^{\tilde{t}_1} \psi(t)f_{u_j}[t]u_j(t)dt, \tag{14} \]

where
\[f_{u_j}[t] = f_{u_j}(t, \tilde{x}(\tau_1(t)), \ldots, \tilde{x}(\tau_s(t)), \tilde{u}(\theta_1(t)), \ldots, \tilde{u}(\theta_{\nu}(t))). \]

Theorem 5. Let \(\tilde{\sigma} \in A_0 \) be an optimal element, \(\tilde{t}_0 \in [a, b] \), \(\tilde{t}_1 \in (a, b) \) and the assumptions of Theorem 2 be fulfilled. Then there exist a non-zero vector \(\pi = (\pi_0, \ldots, \pi_l) \), \(\pi_0 \leq 0 \) and a solution \(\psi(t) \) of the equation (4) such that the conditions (5), (7), (11), (12) are fulfilled.

Theorem 6. Let \(\tilde{\sigma} \in A_0 \) be an optimal element, \(\tilde{t}_0, \tilde{t}_1 \in (a, b) \) and the assumptions of Theorem 3 be fulfilled. Then there exist a non-zero vector \(\pi = (\pi_0, \ldots, \pi_l) \), \(\pi_0 \leq 0 \), and a solution \(\psi(t) \) of the equation (4) such that the conditions (5), (7), (13), (14) hold.

The case, when \(t_0 \) is fixed is considered in [2].

References

Authors’ addresses:

T. Tadumadze
I. Vekua Institute of Applied Mathematics
Tbilisi State University
2, University St., Tbilisi 380043
Georgia

L. Alkhazishvili
Department of Applied Mathematics and Computer Sciences
Tbilisi State University
2, University St., Tbilisi 380043
Georgia