Consider a linear homogeneous system of generalized ordinary differential equations
\[dx(t) = dA(t) \cdot x(t), \tag{1} \]
where \(A : [0, +\infty[\rightarrow \mathbb{R}^{n \times n} \) is a real matrix-function with locally bounded variation components.

In this paper we give some sufficient conditions imposed on the components of matrix-function \(A \), which guarantee the stability of the system (1) in the Liapunov sense with respect to small perturbations. This conditions are differed from those given in [1]. Analogous conditions for ordinary differential equations are given in [2].

The following notations and definitions will be used in the paper:
\(\mathbb{R} =]-\infty, +\infty[\), \(\mathbb{R}_+ = [0, +\infty[\), \([a, b] \) and \(]a, b[\) (\(a, b \in \mathbb{R} \)) are, respectively, a closed and open intervals; \(\mathbb{R}^{n \times m} \) is the space of all real \(n \times m \) matrices \(X = (x_{ij})_{i,j=1}^{n,m} \) with the norm \(\|X\| = \max_{j=1,\ldots,m} \sum_{i=1}^{n} |x_{ij}| \); \(O_{n \times m} \) (or \(O \)) is zero \(n \times m \)-matrix; \(\mathbb{R}^n = \mathbb{R}^{n \times 1} \) is the space of all real column \(n \)-vectors \(x = (x_i)_{i=1}^{n} \); \(I_n \) is the identity \(n \times n \)-matrix; \(V_0^b(X) = \sup_{0 \leq \tau \leq b} V_0^\tau(X) \), where \(V_0^\tau(X) \) is the sum of total variations on \([0, \tau] \) of the components \(x_{ij} \) (\(i = 1, \ldots, n; j = 1, \ldots, m \)) of the matrix-function \(X : \mathbb{R}_+ \rightarrow \mathbb{R}^{n \times m} \); \(V(X)(t) = (v(x_{ij})(t))_{i,j=1}^{n,m} \), where \(v(x_{ij})(0) = 0 \) and \(v(x_{ij})(t) = V_0^t(x_{ij}) \) for \(0 < t < +\infty \) (\(i = 1, \ldots, n; j = 1, \ldots, m \)).

\(X(-) \) and \(X(+) \) are the left and the right limits of the matrix-function \(X : \mathbb{R}_+ \rightarrow \mathbb{R}^{n \times m} \) at the point \(t \); \(d_1 X(t) = X(t) - X(-) \), \(d_2 X(t) = X(+) - X(t) \);

\(BV_{loc}(\mathbb{R}_+, \mathbb{R}^{n \times m}) \) is the set of all matrix-functions of bounded variations on every closed interval from \(\mathbb{R}_+ \).

\(s_0 : BV_{loc}(\mathbb{R}_+, \mathbb{R}) \rightarrow BV_{loc}(\mathbb{R}_+, \mathbb{R}) \) is an operator defined by
\[s_0(x)(t) \equiv x(t) - \sum_{0 < \tau \leq t} d_1 x(\tau) - \sum_{0 < \tau < t} d_2 x(\tau). \]

2000 Mathematics Subject Classification. 34B05.

Key words and phrases. Stability in the Lyapunov sense, linear homogeneous systems of generalized ordinary differential equations.
If \(g : \mathbb{R}_+ \to \mathbb{R} \) is a nondecreasing function, \(x : \mathbb{R}_+ \to \mathbb{R} \) and \(0 \leq s < t < +\infty \), then
\[
\int_s^t x(\tau) d\tau = \int_s^t x(\tau) d\tau_1(\tau) - \int_s^t x(\tau) d\tau_2(\tau) + \sum_{s \leq \tau < t} x(\tau) d\tau_1(\tau) - \sum_{s \leq \tau < t} x(\tau) d\tau_2(\tau),
\]
where \(\tau_1 : \mathbb{R}_+ \to \mathbb{R} \) and \(\tau_2 : \mathbb{R}_+ \to \mathbb{R} \) are continuous nondecreasing functions, such that \(\tau_1(t) = \tau_2(t) = \tau(\tau) \) is Lebesgue-Stieltjes integral over the open interval \(]s,t[\) with respect to the measure corresponding to the function \(g \).

If \(G = (g_{ik})_{i,k=1}^{n,n} : \mathbb{R}_+ \to \mathbb{R}^{n \times n} \) is a nondecreasing matrix-function, \(X = (x_{ik})_{i,k=1}^{n,m} : \mathbb{R}_+ \to \mathbb{R}^{n \times m} \), then
\[
\int_s^t dG(\tau) \cdot X(\tau) = \left(\sum_{k=1}^n \int_s^t x_{kj}(\tau) d\tau(\tau) \right)_{i,j=1}^{n,m} \quad \text{for} \quad 0 \leq s \leq t < +\infty.
\]

If \(G_j : \mathbb{R}_+ \to \mathbb{R}^{n \times n} \) (\(j = 1,2 \)) are nondecreasing matrix-functions, \(G(t) \equiv G_1(t) - G_2(t) \) and \(X : \mathbb{R}_+ \to \mathbb{R}^{n \times m} \), then
\[
\int_s^t dG(\tau) \cdot X(\tau) = \int_s^t dG_1(\tau) \cdot X(\tau) - \int_s^t dG_2(\tau) \cdot X(\tau) \quad \text{for} \quad 0 \leq s \leq t < +\infty.
\]

\(r(H) \) is the spectral radius of the matrix \(H \in \mathbb{R}^{n \times n} \).

Under a solution of the system (1) we understand a vector function \(x \in BV_{loc}(\mathbb{R}_+, \mathbb{R}^n) \) such that
\[
x(t) = x(s) + \int_s^t dA(\tau) \cdot x(\tau) \quad (0 \leq s \leq t < +\infty).
\]

We will assume that \(A = (a_{ik})_{i,k=1}^{n,n} \in BV_{loc}(\mathbb{R}_+, \mathbb{R}^{n \times n}) \), \(A(0) = O_{n \times n} \) and
\[
det(I_n + (-1)^j d_j A(t)) \neq 0 \quad \text{for} \quad t \in \mathbb{R}_+ \ (j = 1,2).
\]

Let \(x_0 \in BV_{loc}(\mathbb{R}_+, \mathbb{R}^n) \) be a solution of the system (1).

Definition 1. Let \(\xi : \mathbb{R}_+ \to \mathbb{R}_+ \) be a nondecreasing function such that
\[
\lim_{t \to +\infty} \xi(t) = +\infty.
\]

The solution \(x_0 \) of the system (1) is called \(\xi \)-exponentially asymptotically stable, if there exists a positive number \(\eta \) such that for every \(\epsilon > 0 \) there exists a positive number \(\delta = \delta(\epsilon) > 0 \) such that an arbitrary solution \(x \) of the system (1), satisfying the inequality
\[
\|x(t_0) - x_0(t_0)\| < \delta
\]
for some \(t_0 \in \mathbb{R}_+ \), admits the estimate
\[
\|x(t) - x_0(t)\| < \epsilon \exp(-\eta(\xi(t) - \xi(t_0))) \quad \text{for} \quad t \geq t_0.
\]

Stability, uniformly stability and asymptotically stability of the solution \(x_0 \) are defined analogously as for systems of ordinary differential equations (see [2]), i.e. in case when
A(t) is the diagonal matrix-function with diagonal elements equal to t. Note that exponentially asymptotically stability ([2]) is particular case of ξ-exponentially asymptotically stability if we assume ξ(t) ≡ t.

Definition 2. The system (1) is called stable (uniformly stable, asymptotically stable or ξ-exponentially asymptotically stable) if every solution of this system is stable (uniformly stable, asymptotically stable or ξ-exponentially asymptotically stable).

Definition 3. The matrix-function A is called stable (uniformly stable, asymptotically stable or ξ-exponentially asymptotically stable) if the system (1) is stable (uniformly stable, asymptotically stable or ξ-exponentially asymptotically stable).

If $X \in BV_{loc}(\mathbb{R}_+,\mathbb{R}^{n\times m})$, then $A(X,·) : BV_{loc}(\mathbb{R}_+,\mathbb{R}^{n\times m}) \rightarrow BV_{loc}(\mathbb{R}_+,\mathbb{R}^{n\times m})$ is an operator defined by

$$A(X,Y)(t) = Y(t)+ \sum_{0<\tau\leq t} d_1X(\tau) \cdot (I_n - d_1X(\tau))^{-1} \cdot d_1Y(\tau) - \sum_{0<\tau\leq t} d_2X(\tau) \cdot (I_n + d_2X(\tau))^{-1} \cdot d_2Y(\tau) \text{ for } t \in \mathbb{R}_+;$$

If $a \in BV_{loc}(\mathbb{R}_+,\mathbb{R}_+)$ and $1 + (-1)^j d_ja(t) \neq 0$ for $t \in \mathbb{R}_+$ $(j = 1, 2)$, then $J : BV_{loc}(\mathbb{R}_+,\mathbb{R}_+) \rightarrow BV_{loc}(\mathbb{R}_+,\mathbb{R}_+)$ is an operator defined by

$$J(a)(t) = \sum_{0<s \leq t} (d_1a(s) + \ln|1 - d_1a(s)|) + \sum_{0<s < t} (d_2a(s) - \ln|1 + d_2a(s)|) \text{ for } t \in \mathbb{R}_+. $$

Theorem 1. Let the components $a_{ik} (i, k = 1, \ldots, n)$ of the matrix-function A satisfy the conditions

$$1 + (-1)^j d_ja_{ii}(t) \neq 0 \text{ for } t \geq t^* \quad (j = 1, 2; i = 1, \ldots, n),$$

$$\int_{t^*}^{t} \exp(a_{ii}(t) - J(a_{ii})(t) - a_{ii}(\tau) + J(a_{ii})(\tau))d\tau(b_{ik})(\tau) \leq h_{ik}$$

for $t \geq t^*$ $(i \neq k; i, k = 1, \ldots, n)$

and

$$\sup\{a_{ii}(t) - J(a_{ii})(t) : t \in \mathbb{R}_+\} < +\infty \quad (i = 1, \ldots, n),$$

where $b_{ik}(t) \equiv A(a_{ii}, a_{ik})(t) (i, k = 1, \ldots, n)$, t^* and $h_{ik} \in \mathbb{R}_+$ $(i \neq k; i, k = 1, \ldots, n)$. Let, moreover, the matrix $H = (h_{ik})_{i,k=1}^n$, where $h_{ii} = 0 (i = 1, \ldots, n)$, be such that

$$r(H) < 1.$$

(5)

Then the matrix-function A is stable.

Theorem 2. Let the components $a_{ik} (i, k = 1, \ldots, n)$ of the matrix-function A satisfy the conditions (3), (4) and

$$\sup\{a_{ii}(t) - J(a_{ii})(t) - a_{ii}(\tau) + J(a_{ii})(\tau) : t \geq \tau \geq 0\} < +\infty,$$

where $t^* \in \mathbb{R}_+$ and $h_{ik} \in \mathbb{R}_+$ $(i \neq k; i, k = 1, \ldots, n)$ are such that the matrix $H = (h_{ik})_{i,k=1}^n$, where $h_{ii} = 0 (i = 1, \ldots, n)$, satisfies the condition (5). Then the matrix-function A is uniformly stable.
Let, moreover, the matrix $b_{ik}(t) - b_{ii}(t)$ for $t \geq \tau \geq t^*$ $(i \neq k; i, k = 1, \ldots, n)$,

$$V_i^* b_{ik} \leq -h_{ik}(t) (b_{ii}(t) - b_{ii}(\tau)) \quad \text{for} \quad t \geq \tau \geq t^* \quad (i \neq k; i, k = 1, \ldots, n),$$

where $t_+ \in \mathbb{R}_+$, $b_{ik}(t) \equiv A(a_{ii}, a_{ik})(t)$ $(i, k = 1, \ldots, n)$, $b_{ii} (i = 1, \ldots, n)$ are non-increasing functions, and $h_{ik} \in \mathbb{R}_+$ $(i \neq k; i, k = 1, \ldots, n)$ are such that the matrix $H = (h_{ik})_{i,k=1}^n$, where $h_{ii} = 0 (i = 1, \ldots, n)$, satisfies the condition (5). Then the matrix-function A is uniformly stable.

Theorem 3. Let the components $a_{ik} (i, k = 1, \ldots, n)$ of the matrix-function A satisfy the conditions (3),

$$a_{ii}(t) - J(a_{ii})(t) - a_{ii}(t^*) + J(a_{ii})(t^*) \leq -\xi(t) + \xi(t^*) \quad \text{for} \quad t \geq t^* \quad (i = 1, \ldots, n)$$

and

$$\int_{t^*}^t \exp(\xi(t)) - \xi(\tau) + a_{ii}(t) - J(a_{ii})(t) - a_{ii}(\tau) + J(a_{ii})(\tau) \, dv_h(t) \leq h_{ii} \quad \text{for} \quad t \geq t^* \quad (i \neq k; i, k = 1, \ldots, n),$$

where t^* and $h_{ik} \in \mathbb{R}_+$ $(i \neq k; i, k = 1, \ldots, n)$, $b_{ik}(t) \equiv A(a_{ii}, a_{ik})(t)$ $(i, k = 1, \ldots, n)$. Let, moreover, the matrix $H = (h_{ik})_{i,k=1}^n$, where $h_{ii} = 0 (i = 1, \ldots, n)$, satisfies the condition (5), and the function $\xi \in BV_{loc}(\mathbb{R}_+, \mathbb{R}_+)$ satisfies the condition (2). Then the matrix-function A is asymptotically stable.

Corollary 2. Let the components $a_{ik} (i, k = 1, \ldots, n)$ of the matrix-function A satisfy the conditions (3) and (6), where $t_+ \in \mathbb{R}_+$, $b_{ik}(t) \equiv A(a_{ii}, a_{ik})(t)$ $(i, k = 1, \ldots, n)$, $b_{ii} (i = 1, \ldots, n)$ are non-increasing functions, and $h_{ik} \in \mathbb{R}_+$ $(i \neq k; i, k = 1, \ldots, n)$ are such that the matrix $H = (h_{ik})_{i,k=1}^n$, where $h_{ii} = 0 (i = 1, \ldots, n)$, satisfies the condition (5). Let, moreover,

$$\lim_{t \to +\infty} a_0(t) = +\infty,$$

where

$$a_0(t) = \min \{|a_{ii}(t) - J(a_{ii})(t) - a_{ii}(t^*) + J(a_{ii})(t^*)| : i = 1, \ldots, n\} \quad (t \geq t^*).$$

Then the matrix-function A is uniformly and asymptotically stable.

Corollary 3. Let the components $a_{ik} (i, k = 1, \ldots, n)$ of the matrix-function A satisfy the conditions (3),

$$a_{ii}(t) - J(a_{ii})(t) - a_{ii}(t^*) + J(a_{ii})(t^*) \leq -\gamma(t - t^*) \quad \text{for} \quad t \geq t^* \quad (i = 1, \ldots, n)$$

and

$$\int_{t^*}^t \exp(\gamma(t - \tau)) + a_{ii}(t) - J(a_{ii})(t) - a_{ii}(\tau) + J(a_{ii})(\tau) \, dv_h(t) \leq h_{ik}$$

for $t \geq t^* \quad (i \neq k; i, k = 1, \ldots, n)$, where $\gamma > 0$, t^* and $h_{ik} \in \mathbb{R}_+$ $(i \neq k; i, k = 1, \ldots, n)$, $b_{ik}(t) \equiv A(a_{ii}, a_{ik})(t)$ $(i, k = 1, \ldots, n)$. Let, moreover, the matrix $H = (h_{ik})_{i,k=1}^n$, where $h_{ii} = 0 (i = 1, \ldots, n)$, satisfy the condition (5). Then A is exponentially asymptotically stable.
Corollary 4. Let the components a_{ik} $(i, k = 1, \ldots, n)$ of the matrix-function A satisfy the conditions (3), (6) and (7), where $\gamma > 0$, t^* and $h_{ik} \in \mathbb{R}_+$ $(i \neq k; i, k = 1, \ldots, n)$, $b_{ik}(t) \equiv A(a_{ii}, a_{ik})(t)$ $(i, k = 1, \ldots, n)$. Let, moreover, the matrix $H = \{h_{ik}\}_{i,k=1}^n$, where $h_{ii} = 0$ $(i = 1, \ldots, n)$, satisfy the condition (5). Then A is exponentially asymptotically stable.

Theorem 4. Let $\overline{A} = (\overline{a}_{ik}) \in BV_{loc}(\mathbb{R}_+, \mathbb{R}^{n \times n})$ be a matrix-function such that

$$
\|d_j\overline{A}(t)\| < 1 \quad \text{for} \quad t \geq 0,
$$

$$
so(a_{ii})(t) - so(a_{ii})(s) \leq so(\overline{a}_{ii})(t) - so(\overline{a}_{ii})(s)
$$

for $t > s \geq 0$; $(i = 1, \ldots, n)$,

$$
|s_0(a_{ik})(t) - s_0(a_{ik})(s)| \leq s_0(\overline{a}_{ik})(t) - s_0(\overline{a}_{ik})(s)
$$

for $t > s \geq 0$; $(i \neq k; i = 1, \ldots, n)$

and

$$
|d_j a_{ik}(t)| \leq d_j \overline{a}_{ik}(t) \quad \text{for} \quad t \geq 0 \quad (j = 1, 2; i, k = 1, \ldots, n).
$$

Let, moreover, \overline{a}_{ik} $(i \neq k; i, k = 1, \ldots, n)$ are nondecreasing functions, \overline{A} be stable (uniformly stable, asymptotically stable or ξ-exponentially asymptotically stable). Then A will be stable (uniformly stable, asymptotically stable or ξ-exponentially asymptotically stable), too.

Acknowledgment

This work was supported by a research grant in the framework of the Bilateral S&T Cooperation between the Hellenic Republic and Georgia.

References

Authors’ addresses:

M. Ashordia
I. Vekua Institute of Applied Mathematics
Tbilisi State University
2, University St., Tbilisi 380043
Georgia

M. Ashordia and N. Kekelia
Sukhumi Branch of
Tbilisi State University
12, Djska St., Tbilisi 380086
Georgia