I. Kiguradze, N. Partsvania, and I. P. Stavroulakis

ON ADVANCED FUNCTIONAL DIFFERENTIAL EQUATIONS WITH PROPERTIES A AND B

(Reported on July 9, 2001)

Dedicated to the blessed memory of Professor T. Chanturia

In the present paper we give new results on oscillatory properties of the functional differential equation

$$u^{(n)}(t) = (-1)^k \int_{\tau_0(t)}^{\tau(t)} f(u(s))p(s, t) ds.$$ \hspace{1cm} (1_k)$$

Throughout the paper it will be assumed that $n \geq 2$, $k \in \{1, 2\}$ and the following conditions are fulfilled:

(i) $f : \mathbb{R} \rightarrow \mathbb{R}$ is a continuous nondecreasing function such that

$$-f(x) = f(-x) > 0, \quad \frac{ds}{f(s)} = +\infty \quad \text{for} \quad x > 0, \quad \lim_{x \to +\infty} f(x) = +\infty;$$

(ii) the functions τ_0 and $\tau : [0, +\infty[\rightarrow [0, +\infty[\ (j = 1, \ldots, m)$ are continuous and

$$\tau(t) > \tau_0(t) \geq t \quad \text{for} \quad t \geq 0;$$

(iii) the function $p : [0, +\infty[\times [0, +\infty[\rightarrow \mathbb{R}$ is nondecreasing in the first argument, and Lebesgue integrable on each finite interval of $[0, +\infty[$ in the second argument.

Particular cases of (1_k) are the following differential equations frequently occurring in the oscillation theory (see [1–17] and the references therein):

$$u^{(n)}(t) = (-1)^k \sum_{j=1}^{m} p_j(t)u(\tau_j(t))^{\lambda} \text{sgn}(u(\tau_j(t)))$$ \hspace{1cm} (2_k)$$

and

$$u^{(n)}(t) = (-1)^k \sum_{j=1}^{m} p_j(t)u(\tau_j(t)),$$ \hspace{1cm} (3_k)$$

where $\lambda \in [0, 1[, \quad \text{the functions} \quad p_j : [0, +\infty[\rightarrow [0, +\infty[\ (j = 1, \ldots, m)$ are Lebesgue integrable on each finite interval of $[0, +\infty[,$ and $\tau_j : [0, +\infty[\rightarrow [0, +\infty[\ (j = 1, \ldots, m)$ are continuous functions satisfying the inequalities

$$\tau_j(t) \geq t \quad (j = 1, \ldots, m).$$

2000 Mathematics Subject Classification. 34K11.

Key words and phrases. Advanced functional differential equation, proper solution, oscillatory solution, property A, property B.

By a solution of equation (1k) on an interval \([a, +\infty) \subset [0, +\infty]\) we understand a function \(u : [a, +\infty) \to \mathbb{R}\) which is absolutely continuous together with its first \(n-1\) derivatives on each finite interval of \([0, +\infty]\) and satisfies (1k) almost everywhere on \([a, +\infty]\).

A solution \(u\) of equation (1k) is said to be proper if it is defined on an interval \([a, +\infty) \subset [0, +\infty]\) and
\[
\sup\{|u(s)| : s \geq t\} > 0 \quad \text{for} \quad t \geq a.
\]

A proper solution of equation (1k) is said to be oscillatory if it has a sequence of zeros converging to \(+\infty\).

We use the following definitions from [9] and [3].

Definition 1. Equation (1k) has property \(A\) if every proper solution of this equation for \(n\) even is oscillatory and for \(n\) odd either is oscillatory or satisfies the condition
\[
|u^{(i)}(t)| \downarrow 0 \quad \text{as} \quad t \to +\infty \quad (i = 0, 1, \ldots, n-1).
\]

Definition 2. Equation (1k) has property \(B\) if every proper solution of this equation for \(n\) even either is oscillatory or satisfies (4) or satisfies the condition
\[
|u^{(i)}(t)| \uparrow +\infty \quad \text{as} \quad t \to +\infty \quad (i = 0, 1, \ldots, n-1),
\]
and for \(n\) odd either is oscillatory or satisfies (5).

We introduce the following notation.
\[q(t) = p(\tau(t), t) - p(\tau_0(t), t), \quad q_l(t) = t^{n-l} \sum_{j=1}^{m} \left[\tau_j(t) \right]^{l-1} p_j(t) \quad (l = 1, \ldots, n).\]

\(N_{n,k}\) is the set of \(l \in \{1, \ldots, n-1\}\) for which \(l + n + k\) is even.

For any \(l \in \{1, \ldots, n-1\}\) and \(a > 0\) the function \(v_{a,l} : [a, +\infty) \to [0, +\infty]\) is the lower solution of the Cauchy problem
\[v'(t) = \frac{1}{(n-l)!} \int_{\tau_0(t)}^{\tau(t)} f(s^{l-1} p(s)) d_s, \quad v(a) = 1.\]

Theorem 1. The condition
\[
\int_{0}^{+\infty} t^{n-l-1} q(t) dt = +\infty
\]

is necessary for equation (11) (equation (12)) to have property \(A\) (property \(B\)). If along with (6) the condition
\[
\int_{a}^{+\infty} t^{n-l-1} \left[\int_{\tau_0(t)}^{\tau(t)} f(s^{l-1} v_{a,l}(s)) d_s p(s, t) \right] dt = +\infty
\]
holds for any \(a > 0\) and \(l \in N_{n,1}\) (for any \(a > 0\) and \(l \in N_{n,2}\), then equation (11) (equation (12)) has property \(A\) (property \(B\)).
Corollary 1. Let condition (6) be fulfilled. Then there exists a continuous function
\(\tau_* : [0, +\infty[\to [0, +\infty[\) such that if
\[
\tau_0(t) \geq \tau_*(t) \quad \text{for} \ t \geq 0,
\]
then equation (1) (equation (12)) has property A (property B).

Theorem 2. Let \(n \) be odd (even) and
\[
\liminf_{t \to +\infty} \frac{f(\tau_0^{-1}(t))}{t} > 0
\]
for any \(l \in \mathcal{N}_{n,1} \) (for any \(l \in \mathcal{N}_{n,2} \)). Then condition (6) is necessary and sufficient for equation (1) (equation (12)) to have property A (property B).

Theorems 1, 2 and Corollary 1 generalize respectively Theorems 1.1, 1.2 and Corollary 1.1 from [7]. For equations (21) and (31) from these results we have the following statements.

Corollary 2. The condition
\[
\int_0^{+\infty} t^{n-1} q_1(t) dt = +\infty
\]
is necessary for equation (21) (equation (22)) to have property A (property B). If along with (7) the condition
\[
\int_0^{+\infty} t^{n-1} \left[\sum_{j=1}^{m} \tau_j(t)^{\lambda(l-1)} p_j(t) \left(\int_0^{\tau_j(t)} q(s) ds \right)^{\frac{1}{\lambda}} \right] dt = +\infty
\]
holds for any \(l \in \mathcal{N}_{n,1} \) (for any \(l \in \mathcal{N}_{n,2} \)), then equation (21) (equation (22)) has property A (property B).

Corollary 3. Let condition (7) be fulfilled. Then there exists a continuous function
\(\tau_* : [0, +\infty[\to [0, +\infty[\) such that if
\[
\tau_j(t) \geq \tau_*(t) \quad \text{for} \ t \geq 0 \quad (j = 1, \ldots, m),
\]
then equation (21) (equation (22)) has property A (property B).

Corollary 4. Let \(n \) be odd (even) and
\[
\liminf_{t \to +\infty} \left[t^{-\lambda} \tau_j(t) \right] > 0 \quad (j = 1, \ldots, m).
\]
Then condition (7) is necessary and sufficient for equation (21) (equation (22)) to have property A (property B).

Corollary 5. The condition (7) is necessary for equation (31) (equation (32)) to have property A (property B). If along with (7) the condition
\[
\int_0^{+\infty} t^{n-1} \left[\sum_{j=1}^{m} \tau_j(t)^{\lambda(l-1)} \exp \left(\frac{1}{(n-l)! t^l} \int_0^{\tau_j(t)} q(s) ds \right) p_j(t) \right] dt = +\infty
\]
holds for any \(l \in \mathcal{N}_{n,1} \) (for any \(l \in \mathcal{N}_{n,2} \)), then equation (31) (equation (32)) has property A (property B).
Corollary 6. Let condition (7) be fulfilled. Then there exists a continuous function \(\tau : [0, +\infty) \to [0, +\infty] \) such that if inequalities (8) hold, then equation (3_1) (equation (3_2)) has property A (property B).

Corollary 7. Let \(n \) be odd (even) and
\[
\liminf_{t \to +\infty} [t^{-2}\tau_j(t)] > 0 \quad (j = 1, \ldots, m).
\]
Then condition (7) is necessary and sufficient for equation (3_1) (equation (3_2)) to have property A (property B).

Note that Corollaries 2–7 take into account the effect of advanced arguments since, as it is well-known (see [4]), in the case
\[
\tau_j(t) \equiv t \quad (j = 1, \ldots, m)
\]
condition (7) does not guarantee that equations (2_1) and (3_1) (equations (2_2) and (3_2)) have property A (property B).

Acknowledgement
This work was supported by the Research Grant of the Greek Ministry of Development in the framework of Bilateral S&T Cooperation between the Hellenic Republic and the Republic of Georgia.

References

Authors' addresses:

I. Kiguradze and N. Partsvania

A. Razmadze Mathematical Institute
Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 380093
Georgia

I. P. Stavroulakis

Department of Mathematics
University of Ioannina
451 10 Ioannina
Greece