COMPARISON THEOREMS FOR DIFFERENTIAL EQUATIONS WITH SEVERAL DEVIATIONS. THE CASE OF PROPERTY B.

(Reported on February 4, 2002)

1. INTRODUCTION

In the present paper we consider the following differential equations

\[u^{(n)}(t) - \sum_{i=1}^{m} p_i(t)u(t_\tau_i(t)), \]

\[\psi^{(n)}(t) - \sum_{j=1}^{r} q_j(t)\psi(t_\sigma_j(t)), \]

where \(n, m, r \in \mathbb{N}, n \geq 3, p_i, q_j \in L_{\infty}([R_+; R_+], \tau_i, \sigma_j \in C([R_+; R_+]), \lim_{t \to +\infty} \tau_i(t) = \lim_{t \to +\infty} \sigma_j(t) = +\infty \) \((i = 1, \ldots, m; j = 1, \ldots, r)\).

Definition 1.1. We say that the equation (1.1) has Property B if any of its proper solutions either is oscillatory or satisfies

\[|u^{(i)}(t)| \uparrow +\infty \quad \text{for} \quad t \uparrow +\infty \quad (i = 0, \ldots, n - 1), \]

when \(n \) is odd, and either is oscillatory or satisfies either (1.3) or

\[|u^{(i)}(t)| \downarrow 0 \quad \text{for} \quad t \uparrow +\infty \quad (i = 0, \ldots, n - 1), \]

when \(n \) is even.

Below we give comparison theorems allowing to deduce Property B of the equation (1.1) from Property B of the equation (1.2). The results obtained here generalize those of [1]. The result obtained in [1] is a generalization of a theorem of T. Chanturia (see [2], Theorem 1.5) even in the case of ordinary differential equations \((\tau_i(t) \equiv \sigma_j(t) \equiv t, i = 1, \ldots, m; j = 1, \ldots, r)\). For analogous results concerning Property A see [3].

2. GENERAL COMPARISON THEOREMS

Let \(\varphi \in C([t_0, +\infty), (0, +\infty)) \). Below we use the following notation

\[p_{\tau_i}(t) = \begin{cases} p_i(t), & \text{if } \varphi(t) \leq \tau_i(t), \\ 0 & \text{if } \varphi(t) > \tau_i(t), \quad t \in [t_0, +\infty), \quad (i = 1, \ldots, m). \end{cases} \]

\[q_{\sigma_j}(t) = \begin{cases} q_j(t), & \text{if } \varphi(t) \leq \sigma_j(t), \\ 0 & \text{if } \varphi(t) > \sigma_j(t), \quad t \in [t_0, +\infty), \quad (i = 1, \ldots, r). \end{cases} \]

\[2000 \quad \text{Mathematics Subject Classification.} \quad 34K15. \]

\[\text{Key words and phrases.} \quad \text{Advanced differential equation, Property B, comparison theorem.} \]
Theorem 2.1. Let

\[\tau_i(t) \leq t, \quad \forall t \in R, \quad (i = 1, \ldots, m), \]

\[\int_{-\infty}^{+\infty} \sum_{i=1}^{m} p_i(t) \tau_i^{n-1}(t) dt = +\infty, \]

and there exist natural numbers \(k \in N, \ m_j, \ r_j \in N, \ (j = 1, \ldots, k) \) and nondecreasing functions \(\varphi_j \in C(R_+; (0, +\infty)) \) \((j = 0, \ldots, k - 1)\) such that

\[1 \leq m_1 < m_2 < \cdots < m_k = m, \quad 1 \leq r_1 < r_2 < \cdots < r_k = r, \]

\[\lim_{t \to +\infty} \varphi_j(t) = +\infty \quad (j = 0, \ldots, k - 1), \]

the below inequality \((2.7_{n=2})\) holds when \(n \) is even,

\[\int_{t}^{+\infty} s^{n-1} \sum_{i=m_j+1}^{r_j+1} \tau_i^{n-1}(s) \left(\frac{p_{r_i, \varphi_j}(s)}{\varphi_j(s)} \right) ds \geq \]

\[\int_{t}^{+\infty} s^{n-1} \sum_{i=m_j+1}^{r_j+1} \tau_i^{n-1}(s) \left(\frac{p_{r_i, \varphi_j}(s)}{\varphi_j(s)} \right) ds \] \((2.7_1) \)

\[\forall t \geq t_0 \quad (j = 0, \ldots, k - 1), \]

and \((2.7_1)\) and \((2.7_{n=2})\) hold when \(n \) is odd, where \(t_0 \) is sufficiently large, \(m_0 = r_0 = 0, \)
the functions \(p_{r_i, \varphi_j} \) and \(q_{r_i, \varphi_j} \) are defined by \((2.1)\) and \((2.2)\), respectively. Let, moreover, the equation \((1.2)\) have Property \(B \). Then the equation \((1.1)\) also has Property \(B \).

Theorem 2.2. Let

\[\tau_i(t) \geq t, \quad \forall t \in R, \quad (i = 1, \ldots, m), \]

and there exist natural numbers \(k, \ m_j, \ r_j \in N, \ (j = 1, \ldots, k) \) and nondecreasing functions \(\varphi_j \in C(R_+; (0, +\infty)) \) \((j = 0, \ldots, k - 1)\) satisfying \((2.5)\) and \((2.6)\) such that the below inequality \((2.7_2)\) and \((2.9)\) hold,

\[\int_{t}^{+\infty} s^{n-1} \sum_{i=1}^{m} p_i(t) dt = +\infty \]

when \(n \) is even and \((2.4)\) and \((2.7_1)\) hold when \(n \) is odd, where the functions \(p_{r_i, \varphi_j} \) and \(q_{r_i, \varphi_j} \) are defined by \((2.1)\) and \((2.2)\), respectively. Let, moreover, the equation \((1.2)\) have Property \(B \). Then the equation \((1.1)\) also has Property \(B \).

Theorem 2.3. Let the conditions \((2.3)\) and \((2.4)\) be fulfilled, and for sufficiently large \(t_0 \) there exist \(t_1 = t_1(t_0) \geq t_0, \) natural numbers \(k, \ m_j, \ r_j \in N, \ (j = 1, \ldots, k) \) and nondecreasing functions \(\varphi_j \in C(R_+; (0, +\infty)) \) \((j = 0, \ldots, k - 1)\) satisfying \((2.5)\) and \((2.6)\) such that the below inequality \((2.10_{n=2})\) holds when \(n \) is even,

\[\int_{t_0}^{t} s^{n-1} \sum_{i=m_j+1}^{r_j+1} \tau_i^{n-1}(s) \left(\frac{p_{r_i, \varphi_j}(s)}{\varphi_j(s)} \right) ds \geq \]

\[
\geq \int_{t_0}^{\tau} s^{n-1-1} \sum_{i=t_j+1}^{r_j+1} \frac{\varphi_i(s)}{\sigma_i(s)} \left(q_{\tau_i,\tau_i}(s) + \frac{\varphi_i(s)}{\sigma_i(s)} (q_i(s) - q_{\tau_i,\tau_i}(s)) \right) ds \tag{2.10_1}
\]

\[\forall \ t \geq t_0 \ (j = 0, \ldots, k - 1), \]

and (2.10_1) and (2.10_2) hold when \(n \) is odd, where the functions \(p_{\tau_i,\tau_i} \) and \(q_{\tau_i,\tau_i} \) are defined by (2.1) and (2.2) respectively. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 2.4. Let (2.8) be fulfilled, and for sufficiently large \(\tau \) there exist \(t_i - t_i(t_0) \geq t_0 \), natural numbers \(k, m, t_j \in N (j = 1, \ldots, k) \) and nondecreasing functions \(\varphi_j(t) (j = 0, \ldots, k - 1) \) satisfying (2.5) and (2.6) respectively, such that the inequalities (2.9) and (2.10a) hold when \(n \) is even and (2.4) and (2.10b) hold when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

3. **Effective Comparison Theorems**

Everywhere below we assume that \(\sigma_i(t) (i = 1, \ldots, r) \) are nondecreasing functions.

Theorem 3.1. Let \(m = r \), the conditions (2.3) and (2.4) be fulfilled, the below inequality (3.1_{\text{m} = 2}) hold, when \(n \) is even
\[
\int_{t_0}^{\tau} s^{n-1-1} \varphi^{-1}(s) \left(p_{\tau,\tau}(s) + \frac{\tau(s)}{\sigma(s)} (p_i(s) - p_{\tau,\tau}(s)) \right) ds \geq
\]

\[\geq \int_{t_0}^{\tau} s^{n-1-1} \varphi^{-1}(s) q_i(s) ds \ \forall \ t \geq t_0 \ (i = 1, \ldots, m) \tag{3.1_1}
\]

and the inequalities (3.1_1) and (3.1_{\text{m} = 2}) hold when \(n \) is odd, where \(t_0 \) is sufficiently large and the functions \(p_{\tau,\tau}, \sigma_i \) are defined by (2.1).

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.1. Let the conditions (2.3), (2.4) be fulfilled, \(m - r, \sigma_i(t) \leq \tau_i(t) (i = 1, \ldots, m) \) the below inequality (3.2_{\text{m} = 2}) hold, when \(n \) is even
\[
\int_{t_0}^{\tau} s^{n-1-1} \varphi^{-1}(s) p_i(s) ds \geq \int_{t_0}^{\tau} s^{n-1-1} \varphi^{-1}(s) q_i(s) ds \ \forall \ t \geq t_0 \ (i = 1, \ldots, m), \tag{3.2_1}
\]

and the inequalities (3.2_1) and (3.2_{\text{m} = 2}) hold when \(n \) is odd, where \(t_0 \) is sufficiently large. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.2. Let the conditions (2.3), (2.4) be fulfilled, \(m - r, \sigma_i(t) \geq \tau_i(t) (i = 1, \ldots, m) \) the below inequality (3.3_{\text{m} = 2}) hold, when \(n \) is even
\[
\int_{t_0}^{\tau} s^{n-1-1} \varphi^{-1}(s) p_i(s) ds \geq \int_{t_0}^{\tau} s^{n-1-1} \varphi^{-1}(s) q_i(s) ds \ \forall \ t \geq t_0 \ (i = 1, \ldots, m), \tag{3.3_1}
\]
and the inequalities (3.3.1) and (3.3.2) hold when \(n \) is odd, where \(t_0 \) is sufficiently large. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.2. Let \(m = r \), the inequality (2.8) be fulfilled, the conditions (2.9) and (3.1) hold when \(n \) is even and the conditions (2.4) and (3.1) hold when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.3. Let \(m = r \), the inequality (2.8) be fulfilled \(\sigma_i(t) \leq \tau_i(t) \) \((i = 1, \ldots, m)\), the conditions (2.9) and (3.3.2) hold when \(n \) is even and the conditions (2.4) and (3.3.2) hold when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.4. Let \(m = r \), the inequality (3.8) be fulfilled \(\sigma_i(t) \geq \tau_i(t) \) \((i = 1, \ldots, m)\), the conditions (2.9) and (3.3.2) hold when \(n \) is odd and the conditions (2.4) and (3.3.2) hold when \(n \) is even. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.3. Let \(m = r \), the conditions (2.3) and (2.4) be fulfilled and for any sufficiently large to there exist \(t_1 - t_1(t_0) \geq t_0 \) such that the below inequality (3.3.2) holds, when \(n \) is even

\[
\int_{t_0}^{t} s^{n-i} \sigma_i(s) \left(\frac{\dot{\sigma}_i(s) \ddot{\sigma}_i(s)}{\tau_i(s)} - \frac{\sigma_i(s)}{\tau_i(s)} \ddot{\sigma}_i(s) \right) ds \geq 0, \quad (3.4)
\]

and the inequalities (3.4) and (3.3.2) hold when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.5. Let \(m = r \), the conditions (2.3), (2.4) be fulfilled, \(\sigma_i(t) \leq \tau_i(t) \) \((i = 1, \ldots, m)\), and for any sufficiently large to there exist \(t_1 - t_1(t_0) \geq t_0 \) such that the below inequality (3.3.2) holds, when \(n \) is even

\[
\int_{t_0}^{t} s^{n-i-1} \sigma_i(s) \ddot{\sigma}_i(s) ds \geq \int_{t_0}^{t} s^{n-i} \sigma_i(s) \ddot{\sigma}_i(s) ds, \quad \text{if } t \geq t_1(i = 1, \ldots, m), \quad (3.5)
\]

and the inequalities (3.5) and (3.3.1) hold when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.6. Let \(m = r \), the conditions (2.3), (2.4) be fulfilled, \(\sigma_i(t) \geq \tau_i(t) \) \((i = 1, \ldots, m)\), and for any sufficiently large to there exist \(t_1 - t_1(t_0) \geq t_0 \) to such that the below inequality (3.3.2) holds, when \(n \) is even

\[
\int_{t_0}^{t} s^{n-i} \sigma_i(s) ds \geq \int_{t_0}^{t} s^{n-i} \dot{\sigma}_i(s) ds, \quad \text{if } t \geq t_1 \quad (i = 1, \ldots, m), \quad (3.6)
\]

and the inequalities (3.6) and (3.3.2) hold when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.
Theorem 3.4. Let \(m = t \), the inequality (2.8) be fulfilled, and for any sufficiently large \(t_0 \) there exist \(t_1 = t_2 = \cdots = t_0 \) such that the conditions (2.9) and (3.5a) hold when \(n \) is even and the conditions (2.4) and (3.4) hold when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.7. Let \(m = t \), the inequality (2.8) be fulfilled, \(\sigma_i(t) \leq \tau_i(t) (i = 1, \ldots, m) \), the conditions (2.9) and (3.5a) hold when \(n \) is even and the conditions (2.4) and (3.4) hold when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.8. Let \(m = t \), the inequality (2.8) be fulfilled, \(\sigma_i(t) \geq \tau_i(t) (i = 1, \ldots, m) \), the conditions (2.9) and (3.5a) hold when \(n \) is even and the conditions (2.4) and (3.4) hold when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Below we use the following notation:

\[
\tau_i(t) = \min\{\tau_i(t) : i = 1, \ldots, m\}, \quad \tau^*(t) = \max\{\tau_i(t) : i = 1, \ldots, m\}, \\
\sigma_i(t) = \min\{\sigma_i(t) : i = 1, \ldots, r\}, \quad \sigma^*(t) = \max\{\sigma_i(t) : i = 1, \ldots, r\}.
\]

Theorem 3.5. Let \(\tau^*(t) \leq t \) for \(t \in R_+ \), the condition (2.4) be fulfilled, the below inequality (3.76) hold. when \(n \) is even

\[
\int_{t}^{t_0} s^{n-1} \sum_{i=1}^{m} \tau_i^{-1}(s) \left(p_{\tau_i,\sigma^*}(s) + \frac{\tau_i(s)}{\sigma^*(s)} (p_{i}(s) - p_{\tau_i,\sigma^*}(s)) \right) ds \geq \int_{t}^{t_0} s^{n-1} \sum_{i=1}^{r} \sigma_i^{-1}(s) \eta_i(s) ds \quad \text{if } t \geq t_0,
\]

and the inequalities (3.71) and (3.76) hold when \(n \) is odd, where \(t_0 \) is sufficiently large and the functions \(p_{\tau_i,\sigma^*} \) are defined by (2.1). Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.9. Let \(\tau^*(t) \leq t \) for \(t \in R_+ \), and the condition (2.4) be fulfilled along with one of the following four conditions (to is sufficiently large):

1) \(\tau_i(t) \geq \sigma^*(t) \) for \(t \in R_+ \), the below inequality (3.76) holds, when \(n \) is even

\[
\int_{t}^{t_0} s^{n-1} \sum_{i=1}^{m} \tau_i^{-1}(s) p_i(s) ds \geq \int_{t}^{t_0} s^{n-1} \sum_{i=1}^{r} \sigma_i^{-1}(s) \eta_i(s) ds \quad \text{if } t \geq t_0,
\]

and the inequalities (3.8) and (3.76) hold when \(n \) is odd;

2) \(\tau_i(t) \geq \sigma^*(t) \) for \(t \in R_+ \), the below inequality (3.76) holds, when \(n \) is even

\[
\int_{t}^{t_0} s^{n-1} \frac{\tau_i(s)}{\sigma^*(s)} \sum_{i=1}^{m} \tau_i^{-1}(s) p_i(s) ds \geq \int_{t}^{t_0} s^{n-1} \sum_{i=1}^{r} \sigma_i^{-1}(s) \eta_i(s) ds \quad \text{if } t \geq t_0,
\]

and the inequalities (3.9) and (3.76) hold when \(n \) is odd;

3) \(\tau^*(t) \geq \sigma^*(t) \) for \(t \in R_+ \), the below inequality (3.76) holds, when \(n \) is even

\[
\int_{t}^{t_0} \frac{s^{n-1}}{\tau^*(s)} \sum_{i=1}^{m} \tau_i(s) p_i(s) ds \geq \int_{t}^{t_0} s^{n-1} \sum_{i=1}^{r} \sigma_i^{-1}(s) \eta_i(s) ds \quad \text{if } t \geq t_0,
\]

and the inequalities (3.10) and (3.76) hold when \(n \) is odd;
4) \(\tau^*(t) \leq \sigma^*(t) \) for \(t \in \mathbb{R}_+ \), the below inequality (3.11_{n-2}) holds, when \(n \) is even

\[
\int_{t}^{+\infty} s^{n-1} \sum_{i=1}^{m} \eta_i^*(s)p_i(s)ds \geq \int_{t}^{+\infty} s^{n-1} \sum_{i=1}^{r} \sigma_i^*(s)q_i(s)ds \quad \text{if} \quad t \geq t_0, \quad (3.11_i)
\]

and the inequalities (3.11_i) and (3.11) hold when \(n \) is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.6. Let \(\tau^*(t) \leq t \) for \(t \in \mathbb{R}_+ \), the condition (2.4) be fulfilled, the below inequality (3.12_{n-2}) hold, when \(n \) is even

\[
\int_{t}^{+\infty} s^{n-1} \sum_{i=1}^{m} \eta_i^*(s)\left(p_{r_i,s}(s) + \frac{\eta(s)}{\sigma(s)}(p_i(0) - p_{r_i,s}(s))\right)ds \geq \int_{t}^{+\infty} s^{n-1} \sum_{i=1}^{r} \sigma_i^*(s)q_i(s)ds \quad \text{if} \quad t \geq t_0, \quad (3.12_i)
\]

and the inequalities (3.12_i) and (3.12_{n-2}) holds when \(n \) is odd, where to is sufficiently large and the functions \(p_{r_i,s} \) are defined by (2.1). Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.10. Let \(\tau^*(t) \geq t \) for \(t \in \mathbb{R}_+ \), the condition (2.4) be fulfilled along with one of the following four conditions (to is sufficiently large):

1) \(\tau^*(t) \geq \sigma(t) \) for \(t \in \mathbb{R}_+ \), the below inequality (3.13_{n-2}) holds, when \(n \) is even

\[
\int_{t}^{+\infty} s^{n-1} \sum_{i=1}^{m} \eta_i^*(s)p_i(s)ds \geq \int_{t}^{+\infty} s^{n-1} \sum_{i=1}^{r} \sigma_i^*(s)q_i(s)ds \quad \text{if} \quad t \geq t_0, \quad (3.13_i)
\]

and the inequalities (3.13_i) and (3.13_{n-2}) hold when \(n \) is odd;

2) \(\tau^*(t) \leq \sigma(t) \) for \(t \in \mathbb{R}_+ \), the below inequality (3.14_{n-2}) holds, when \(n \) is even

\[
\int_{t}^{+\infty} s^{n-1} \sigma_*(s) \eta^*(s)p_i(s)ds \geq \int_{t}^{+\infty} s^{n-1} \sigma_*(s) \eta^*(s)p_i(s)ds \quad \text{if} \quad t \geq t_0, \quad (3.14_i)
\]

and the inequalities (3.14_i) and (3.14_{n-2}) hold when \(n \) is odd;

3) \(\tau^*(t) \geq \sigma(t) \) for \(t \in \mathbb{R}_+ \), the below inequality (3.15_{n-2}) holds, when \(n \) is even

\[
\int_{t}^{+\infty} s^{n-1} \sigma_*(s) \eta^*(s)p_i(s)ds \geq \int_{t}^{+\infty} s^{n-1} \sigma_*(s) \eta^*(s)p_i(s)ds \quad \text{if} \quad t \geq t_0, \quad (3.15_i)
\]

and the inequalities (3.15_i) and (3.15_{n-2}) hold when \(n \) is odd;

4) \(\tau^*(t) \leq \sigma(t) \) for \(t \in \mathbb{R}_+ \), the below inequality (3.16_{n-2}) holds, when \(n \) is even

\[
\int_{t}^{+\infty} s^{n-1} \sigma_*(s) \eta^*(s)p_i(s)ds \geq \int_{t}^{+\infty} s^{n-1} \sigma_*(s) \eta^*(s)p_i(s)ds \quad \text{if} \quad t \geq t_0, \quad (3.16_i)
\]

and the inequalities (3.16_i) and (3.16_{n-2}) hold when \(n \) is odd.
Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.7. Let \(\tau(t) \geq t \) for \(n \), the conditions (2.9) and (3.7a) be fulfilled when \(n \) is even and the conditions (2.4) and (3.7a) holds when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.11. Let \(\tau(t) \geq t \) for \(t \in R \), and one of the following four conditions be fulfilled:
1) \(\tau(t) \leq \sigma^*(t) \), the conditions (2.9) and (3.9a) hold when \(n \) is even and the conditions (2.4) and (3.9a) hold when \(n \) is odd;
2) \(\tau(t) \geq \sigma^*(t) \), the conditions (2.9) and (3.8a) hold when \(n \) is even and the conditions (2.4) and (3.8a) hold when \(n \) is odd;
3) \(\tau(t) \leq \sigma^*(t) \), the conditions (2.9) and (3.11a) hold when \(n \) is even and the conditions (2.4) and (3.11a) hold when \(n \) is odd;
4) \(\tau(t) \geq \sigma^*(t) \), the conditions (2.9) and (3.10a) hold when \(n \) is even and the conditions (2.4) and (3.10a) hold when \(n \) is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.8. Let \(\tau(t) \geq t \), the conditions (2.9) and (3.12a) be fulfilled when \(n \) is even and the conditions (2.4) and (3.12a) hold when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.12. Let \(\tau(t) \geq t \) for \(t \in R \), and one of the following four conditions be fulfilled:
1) \(\tau(t) \leq \sigma(t) \), the conditions (2.9) and (3.14a) hold when \(n \) is even and the conditions (2.4) and (3.14a) hold when \(n \) is odd;
2) \(\tau(t) \geq \sigma(t) \), the conditions (2.9) and (3.15a) hold when \(n \) is even and the conditions (2.4) and (3.15a) hold when \(n \) is odd;
3) \(\tau(t) \geq \sigma(t) \), the conditions (2.9) and (3.16a) hold when \(n \) is even and the conditions (2.4) and (3.16a) hold when \(n \) is odd;
4) \(\tau(t) \leq \sigma(t) \), the conditions (2.9) and (3.17a) hold when \(n \) is even and the conditions (2.4) and (3.17a) hold when \(n \) is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.9. Let \(\tau'(t) \leq t \), the condition (2.4) be fulfilled and for any sufficiently large to there exist \(t_1 - t_1(t_0) \geq t \), such that the below inequality (3.17a) holds, when \(n \) is even

\[
\int_{t_0}^t s^{n-1} \sum_{i=1}^m r_i(s)(p_i(s) - p_i(s)) + \frac{\sigma^*(s)}{n(s)} p_i(s) ds \geq 0 \quad t \geq t_1, \tag{3.17a}
\]

and the inequalities (3.17b) and (3.17c) hold when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.
Corollary 3.13. Let \(r^*(t) \leq t \), the condition (2.4) be fulfilled and for any sufficiently large to there exist \(t_1 - t_1(t_0) \geq t_0 \) such that one of the following four conditions is fulfilled:

1) \(r_1(t) \leq \sigma^*(t) \) for \(t \in R_+ \), the below inequality (3.18n-2) holds, when \(n \) is even

\[
\int_{t_0}^{t} s^{n-1} \tau_r(s) \sum_{i=1}^{m} \tau_i^{-1}(s)p_i(s)ds \geq \int_{t_0}^{t} s^{n-1} \sigma^*(s) \sum_{i=1}^{r} \sigma_i^{-1}(s)q_i(s)ds \quad \text{if} \quad t \geq t_1, \quad (3.18_1)
\]

and the inequalities (3.18_1) and (3.18n-2) hold when \(n \) is odd;

2) \(r_1(t) \geq \sigma^*(t) \) for \(t \in R_+ \), the below inequality (3.19n-2) holds, when \(n \) is even

\[
\int_{t_0}^{t} s^{n-2} \tau_1(s) \sum_{i=1}^{m} \tau_i^{-1}(s)p_i(s)ds \geq \int_{t_0}^{t} s^{n-1} \sigma^*(s) \sum_{i=1}^{r} \sigma_i^{-1}(s)q_i(s)ds \quad \text{if} \quad t \geq t_1, \quad (3.19_1)
\]

and the inequalities (3.19_1) and (3.19n-2) hold when \(n \) is odd;

3) \(r^*(t) \leq \sigma^*(t) \) for \(t \in R_+ \), the below inequality (3.20n-2) holds, when \(n \) is even

\[
\int_{t_0}^{t} s^{n-1} \tau_1(s) \sum_{i=1}^{m} \tau_i^{-1}(s)p_i(s)ds \geq \int_{t_0}^{t} s^{n-1} \sigma^*(s) \sum_{i=1}^{r} \sigma_i^{-1}(s)q_i(s)ds \quad \text{if} \quad t \geq t_1, \quad (3.20_1)
\]

and the inequalities (3.20_1) and (3.20n-2) hold when \(n \) is odd;

4) \(r^*(t) \geq \sigma^*(t) \) for \(t \in R_+ \), the below inequality (3.21n-2) holds, when \(n \) is even

\[
\int_{t_0}^{t} s^{n-1} \tau_1(s) \sum_{i=1}^{m} \tau_i^{-1}(s)p_i(s)ds \geq \int_{t_0}^{t} s^{n-1} \sigma^*(s) \sum_{i=1}^{r} \sigma_i^{-1}(s)q_i(s)ds \quad \text{if} \quad t \geq t_1, \quad (3.21_1)
\]

and the inequalities (3.21_1) and (3.21n-2) hold when \(n \) is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.10. Let \(r^*(t) \leq t \), for \(t \in R_+ \) the condition (2.4) be fulfilled and for any sufficiently large to there exist \(t - t_1(t_0) \geq t_0 \) such that the below inequality (3.22n-2) holds, when \(n \) is even

\[
\int_{t_0}^{t} s^{n-1} \sum_{i=1}^{m} \tau_i^{-1}(s)\left((p_i(s) - P_{r_1,\tau_1}(s)) + \frac{\sigma^*(s)}{\tau_1(s)} P_{r_1,\tau_1}(s)\right)ds \geq \int_{t_0}^{t} s^{n-1} \sum_{i=1}^{r} \sigma_i^{-1}(s)q_i(s)ds \quad \text{if} \quad t \geq t_1, \quad (3.22_1)
\]

and the inequalities (3.22_1) and (3.22n-2) hold when \(n \) is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.14. Let \(r^*(t) \leq t \), for \(t \in R_+ \) the condition (2.4) be fulfilled and for any sufficiently large to there exist \(t - t_1(t_0) \geq t_0 \) such that one of the following four conditions is fulfilled:
1) $\tau_t(t) \leq \sigma_t(t)$ for $t \in R_+$, the below inequality (3.33n-2) holds, when n is even

$$\int_{t_0}^{t} s^{n-1} \tau_t(s) \sum_{i=1}^{m} \sigma_i(s) \eta_i(s) ds \geq \int_{t_0}^{t} s^{n-1} \sum_{i=1}^{r} \sigma_i(s) \eta_i(s) ds \quad \forall \ t \geq t_1, \ (3.23_i)$$

and the inequalities (3.23_i) and (3.33n-2) hold when n is odd;

2) $\tau_t(t) \geq \sigma_t(t)$ for $t \in R_+$, the below inequality (3.34n-2) holds, when n is even

$$\int_{t_0}^{t} s^{n-1} \sigma_t(s) \sum_{i=1}^{m} \tau_i^{-1}(s) \eta_i(s) ds \geq \int_{t_0}^{t} s^{n-1} \sum_{i=1}^{r} \sigma_i(s) \eta_i(s) ds \quad \forall \ t \geq t_1, \ (3.24_i)$$

and the inequalities (3.24_i) and (3.34n-2) hold when n is odd;

3) $\tau_t(t) \leq \sigma_t(t)$ for $t \in R_+$, the below inequality (3.35n-2) holds

$$\int_{t_0}^{t} s^{n-1} \sigma_t(s) \sum_{i=1}^{m} \tau_i^{-1}(s) \eta_i(s) ds \geq \int_{t_0}^{t} s^{n-1} \sum_{i=1}^{r} \sigma_i(s) \eta_i(s) ds \quad \forall \ t \geq t_1, \ (3.25_i)$$

when n is even and the inequalities (3.25_i) and (3.35n-2) hold when n is odd;

4) $\tau_t(t) \geq \sigma_t(t)$ for $t \in R_+$, the below inequality (3.36n-2) holds, when n is even

$$\int_{t_0}^{t} s^{n-1} \sigma_t(s) \sum_{i=1}^{m} \tau_i^{-1}(s) \eta_i(s) ds \geq \int_{t_0}^{t} s^{n-1} \sum_{i=1}^{r} \sigma_i(s) \eta_i(s) ds \quad \forall \ t \geq t_1, \ (3.26_i)$$

and the inequalities (3.26_i) and (3.36n-2) hold when n is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.11. Let $\tau_t(t) \geq t$ and for any sufficiently large t_0 there exist $t_1 - t_1(t_0) \geq t_0$ such that the conditions (2.9) and (3.17i) are fulfilled when n is even and the conditions (2.4) and (3.17i) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Corollary 3.15. Let $\tau_t(t) \geq t$ and for any sufficiently large t_0 there exist $t_1 - t_1(t_0) \geq t_0$ such that one of the following four conditions is fulfilled:

1) $\tau_t(t) \leq \sigma_t(t)$, the conditions (2.9) and (3.15x2) hold when n is even and the conditions (2.4) and (3.18i) hold when n is odd;

2) $\tau_t(t) \geq \sigma_t(t)$, the conditions (2.9) and (3.19x2) hold when n is even and the conditions (2.4) and (3.19i) hold when n is odd;

3) $\tau_t(t) \leq \sigma_t(t)$, the conditions (2.9) and (3.20x2) hold when n is even and the conditions (2.4) and (3.20i) hold when n is odd;

4) $\tau_t(t) \geq \sigma_t(t)$, the conditions (2.9) and (3.21x2) hold when n is even and the conditions (2.4) and (3.21i) hold when n is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

Theorem 3.12. Let $\tau_t(t) \geq t$ and for any sufficiently large t_0 there exist $t_1 - t_1(t_0) \geq t_0$ such that the conditions (2.9) and (3.22x2) are fulfilled when n is even and the conditions (2.4) and (3.22i) hold when n is odd. Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.
Corollary 3.16. Let $\tau_2(t) \geq t$ and for any sufficiently large t_0 there exist $t_i - t_i(t_0) \geq t_0$ such that one of the following four conditions is fulfilled:

1) $\tau_2(t) \leq \sigma_2(t)$, the conditions (2.3) and (3.25) hold when n is even and the conditions (2.4) and (3.26) hold when n is odd;

2) $\tau_2(t) \geq \sigma_2(t)$, the conditions (2.3) and (3.25) hold when n is even and the inequalities (2.4) and (3.26) hold when n is odd;

3) $\tau_2(t) \leq \sigma_2(t)$, the conditions (2.3) and (3.25) hold when n is even and the inequalities (2.4) and (3.26) hold when n is odd;

4) $\tau_2(t) \geq \sigma_2(t)$, the conditions (2.3) and (3.25) hold when n is even and the conditions (2.4) and (3.26) hold when n is odd.

Let, moreover, the equation (1.2) have Property B. Then the equation (1.1) also has Property B.

References

Author’s address:
A. Razmadze Mathematical Institute
Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 380093
Georgia