I. Ramishvili

THE LINEARIZED MAXIMUM PRINCIPLE FOR QUASI-LINEAR NEUTRAL OPTIMAL PROBLEMS WITH DISCONTINUOUS INITIAL CONDITION AND VARIABLE DELAYS IN CONTROLS

(Reported on November 17, 2003)

Let \(J = [a, b] \subset R \) be a finite interval, \(O \subset R^n, G \subset R^r \) be open sets; Let the function \(f : J \times O^s \times G^u \rightarrow R^n \) satisfy the following conditions: for almost all \(t \in J \) function \(f(t, x_1, \ldots, x_k, u_1, \ldots, u_m) \) is continuously differentiable with respect to \(x_1 \in O, i = 1, \ldots, s, u_m \in G, m = 1, \ldots, \nu \); for any fixed \((x_1, \ldots, x_k, u_1, \ldots, u_m) \in O^s \times G^u \) the functions \(f(t, x_1, \ldots, x_k, u_1, \ldots, u_m), f_x(\cdot) i = 1, \ldots, s, f_u(\cdot), m = 1, \ldots, \nu \) are measurable on \(J \); for arbitrary compacts \(K \subset O, N \subset G \) there exists a function \(m_{KN}(\cdot) \in L(J, R_+), R_+ = [0, \infty), \) such that for any \((x_1, \ldots, x_k, u_1, \ldots, u_m) \in K^s \times N^u \) and for almost all \(t \in J \) the following inequality is fulfilled

\[
| f(t, x_1, \ldots, x_k, u_1, \ldots, u_m) | + \sum_{i=1}^s | f_x(i) | + \sum_{m=1}^u | f_u(m) | \leq m_{KN}(t).
\]

Let the scalar functions \(\tau_i(t), i = 1, \ldots, s, \theta_m(t), m = 1, \ldots, \nu, t \in R \) and \(\eta_j(t), j = 1, \ldots, k, t \in R \), be absolutely continuous and continuously differentiable, respectively, and satisfy the conditions: \(\tau_i(t) \leq t, \tau_i(t) > 0, i = 1, \ldots, s; \theta_m(t) \leq t, \theta_m(t) > 0, m = 1, \ldots, \nu; \eta_j(t) < t, \eta_j(t) > 0, j = 1, \ldots, k. \) Let \(\Phi \) be the set of continuously differentiable functions \(\varphi : J_1 = [\tau, b] \rightarrow M, \tau = \min \{ \eta_1(a), \ldots, \eta_k(a), \tau_1(a), \ldots, \tau_s(a) \} \), where \(M \subset O \) is a convex set, \(\| \varphi \| = \sup \{ | \varphi(t) | : t \in J_1 \} \); \(\Omega \) be the set of measurable functions \(u : J_2 = [\theta, b] \rightarrow U \), such that \(\text{cl} \{ u(t) : t \in J_2 \} \) is a compact lying in \(G \); \(\theta = \min \{ \theta_1(a), \ldots, \theta_s(a) \} \), where \(U \subset G \) is a convex set, \(\| u \| = \sup \{ | u(t) | : t \in J_2 \} \); \(A_j(t), t \in J, i = 1, \ldots, k, \) be continuous \(n \times n \) matrix functions. The scalar functions \(q^j(t_0, t_1, x_0, x_1) \), \(i = 1, \ldots, l, \) are continuously differentiable on the set \(J_2 \times \Omega^2 \).

To every element \(\lambda = (t_0, t_1, x_0, \varphi, u) \in E = J_2 \times O \times \Phi \times \Omega \) let us correspond the differential equation

\[
\dot{x}(t) = \sum_{j=1}^k A_j(t) \dot{x}(\eta_j(t)) + f(t, x(\tau_1(t)), \ldots, x(\tau_s(t)), u(\theta_1(t)), \ldots, u(\theta_m(t)))
\]

with discontinuous initial condition

\[
x(t) = \varphi(t), \quad t \in [\tau, t_0), x(t_0) = x_0.
\]

Definition 1. Let \(\lambda = (t_0, t_1, x_0, \varphi, u) \in E, t_0 < b. \) The function \(x(t) = x(t; \lambda) \in O, t \in [\tau, t_1], t_1 \in (t_0, b) \) is said to be a solution corresponding to the element \(\lambda \), defined on the interval \([\tau, t_1] \), if on the interval \([\tau, t_0] \) the function \(x(t) \) satisfies the condition (2), while on the interval \([t_0, t_1]\) it is absolutely continuous and almost everywhere satisfies the equation (1).

2000 Mathematics Subject Classification. 49K25.

Key words and phrases. Neutral differential equation, Necessary conditions of optimality.
Definition 2. The element \(\lambda \in E \) is said to be admissible if the corresponding solution \(x(t) = x(t; \lambda) \) satisfies the conditions
\[
q^i(t_0, t_1, x_0, x(t_1)) = 0, \quad i = 1, \ldots, l. \tag{3}
\]
The set of admissible elements will be denoted by \(E_0 \).

Definition 3. The element \(\tilde{\lambda} = (\tilde{t}_0, \tilde{t}_1, \tilde{x}_0, \tilde{\varphi}, \tilde{u}) \in E_0 \) is said to be locally optimal, if there exists a number \(\delta > 0 \) such that for an arbitrary element \(\lambda \in E_0 \) satisfying
\[
| t_0 - \tilde{t}_0 | + | t_1 - \tilde{t}_1 | + | \tilde{x}_0 - x_0 | + \| \tilde{\varphi} - \varphi \| + \| \tilde{u} - u \| \leq \delta
\]
the inequality
\[
q^0(\tilde{t}_0, \tilde{t}_1, \tilde{x}_0, \tilde{x}(\tilde{t}_1)) \leq q^0(t_0, t_1, x_0, x(t_1)) \tag{4}
\]
holds, where \(\tilde{x}(t) = x(t; \tilde{\lambda}) \).

The problem (1)-(4) is said to be optimal problem with discontinuous initial condition and it consists in finding a locally optimal element.

In order to formulate the main results, we will introduce the following notation
\[
s_1 = (\tilde{t}_0, \tilde{x}_0, \tilde{\varphi}(0), \tilde{\varphi}(\tilde{t}_0), \tilde{\varphi}(\tilde{t}_0), \tilde{\varphi}(\tilde{t}_0), \tilde{\varphi}(\tilde{t}_0)), \quad i = 0, \ldots, p;
\]
\[
s_1 = (\gamma_0, \tilde{x}(\gamma_0)), \ldots, \tilde{x}(\gamma_n), x_0, \tilde{x}(\gamma_n), \ldots, \tilde{x}(\gamma_n));
\]
\[
s_1^i = (\gamma_i, \tilde{x}(\gamma_i)), \ldots, \tilde{x}(\gamma_i), x_0, \tilde{x}(\gamma_i), \ldots, \tilde{x}(\gamma_i));
\]
\[
\tilde{\rho}_i = \rho_i(\tilde{t}_0), \quad \gamma_i(t) = \tau^{-1}_i(t), \quad \rho_j(t) = \eta^{-1}_j(t); \quad \omega = (t, x_1, \ldots, x_s);
\]
\[
f_1(\omega) = f(\omega, \tilde{u}(\tilde{t}_1), \ldots, \tilde{u}(\tilde{t}_s)), \quad \tilde{f}_{\alpha_1}[t] = f_{\alpha_1}(t, \tilde{x}(\gamma_1), \ldots, \tilde{x}(\gamma_s); \ldots, \tilde{u}(\tilde{t}_1), \ldots, \tilde{u}(\tilde{t}_s));
\]

\[
Q = (q^0, \ldots, q^p), \quad \tilde{Q}_{\alpha_1} = Q_{\alpha_1}(\tilde{t}_0, \tilde{t}_1, \tilde{x}_0, \tilde{x}(\tilde{t}_1)).
\]

Theorem 1. Let the element \(\tilde{\lambda} = (\tilde{t}_0, \tilde{t}_1, \tilde{x}_0, \tilde{\varphi}, \tilde{u}) \in E_0, \tilde{t}_0 > a \) be locally optimal and the following conditions be fulfilled:

1) \(\gamma_i = \tilde{t}_0, \quad i = 1, \ldots, p; \gamma_{p+1} < \cdots < \gamma_s < \tilde{t}_1, \rho_j < \tilde{t}_1, \quad j = 1, \ldots, k; \)

2) there exists a number \(\delta > 0 \) such that
\[
\gamma_i(t) \leq \cdots \leq \gamma_p(t), \quad t \in (\tilde{t}_0 - \delta, \tilde{t}_0);
\]

3) there exist the finite limits: \(\tilde{\varphi}_i = \tilde{x}(\gamma_i, \tilde{t}_0), \quad i = 1, \ldots, s, \quad \tilde{x}(\gamma_j, \tilde{t}_1)); \quad j = 1, \ldots, k;
\]
\[
\lim_{\omega \to \gamma_i} f_1(\omega) = f_1^{-1}, \quad \omega \in (\tilde{t}_0 - \delta, \tilde{t}_0) \times O^s, \quad i = 0, \ldots, p,
\]
\[
\lim_{(\omega_1, \omega_2) \to (\gamma_i, \gamma_j)} \left[f_1(\omega_1) - f_1(\omega_2) \right] = f_1^{-1}, \quad \omega_1, \omega_2 \in (\gamma_i - \delta, \gamma_i) \times O^s, \quad i = p + 1, \ldots, s,
\]
\[
\lim_{\omega \to \gamma_j} f_1(\omega) = f_1^{-1}, \quad \omega \in (\tilde{t}_1 - \delta, \tilde{t}_1) \times O^s.
\]

Then there exist a non-zero vector \(\pi = (\pi_0, \ldots, \pi_1), \pi_0 \leq 0, \) and a solution \(\chi(t) = (\chi_1(t), \ldots, \chi_n(t)), \psi(t) = (\psi_1(t), \ldots, \psi_n(t)) \) of the system
\[
\begin{align*}
\dot{\chi}(t) &= -\sum_{i=1}^n \psi(\gamma_i(t)) f_1(\gamma_i(t)) \gamma_i(t), \\
\dot{\psi}(t) &= \chi(t) + \sum_{j=1}^k \psi(\rho_j(t)) A_j(\rho_j(t)) \rho_j(t), \quad t \in [\tilde{t}_0, \tilde{t}_1], \\
\psi(t) &= 0, t > \tilde{t}_1,
\end{align*}
\]
such that the following conditions are fulfilled:
Then there exists a non-zero vector

Here

c)

the condition

\[
\int_{\tilde{t}_0}^{\tilde{t}_1} \psi(t) \sum_{m=1}^\nu \tilde{f}_m(t) \omega(t_m(t)) dt \geq \int_{\tilde{t}_0}^{\tilde{t}_1} \psi(t) \sum_{m=1}^\nu \tilde{f}_m(t) u(t_m(t)) dt, \quad \forall u \in \Omega,
\]

\[
\sum_{i=p+1}^s \int_{\tau_i(\tilde{t}_0)}^{\tilde{t}_0} \psi(\gamma_i(t)) \tilde{f}_{\gamma_i(\tilde{t}_0)} \gamma_i(t) \tilde{v}(t) dt + \sum_{j=1}^k \int_{\eta_j(\tilde{t}_0)}^{\tilde{t}_0} \psi(\rho_j(t)) A_j[\rho_j(t)] \rho_j(t) \tilde{v}(t) dt \geq
\]

\[
\geq \sum_{i=p+1}^s \int_{\tau_i(\tilde{t}_0)}^{\tilde{t}_0} \psi(\gamma_i(t)) \tilde{f}_{\gamma_i(\tilde{t}_0)} \gamma_i(t) \varphi(t) dt +
\]

\[
+ \sum_{j=1}^k \int_{\eta_j(\tilde{t}_0)}^{\tilde{t}_0} \psi(\rho_j(t)) A_j[\rho_j(t)] \rho_j(t) \tilde{v}(t) dt, \quad \forall \varphi \in \Phi;
\]

b) the conditions for the moments \(\tilde{t}_0, \tilde{t}_1:\)

\[
\pi \tilde{Q}_{i_0} \geq -\psi(\tilde{t}_0 - |\tilde{v}(\tilde{t}_0)|) - \sum_{i=1}^k A_j(\tilde{t}_0) \tilde{\varphi}(\eta_j(\tilde{t}_0)) + \sum_{i=0}^p (\tilde{\gamma}_i - \tilde{\gamma}_i^-) f_i^- +
\]

\[
+ \sum_{i=p+1}^s \psi(\gamma_i - \gamma_i^-) f_i^- + \tilde{\chi}(\tilde{t}_0) \tilde{v}(\tilde{t}_0),
\]

\[
\pi \tilde{Q}_{i_1} \geq -\psi(\tilde{t}_1) \left[\sum_{j=1}^k A_j(\tilde{t}_1) \tilde{\varphi}(\eta_j(\tilde{t}_1)) + f_{i+1}^+ \right];
\]

c) the condition for the solution \(\chi(t), \psi(t)\):

\[
\pi \tilde{Q}_{x_0} = -\chi(\tilde{t}_0), \quad \pi \tilde{Q}_{x_1} = \psi(\tilde{t}_1) = \chi(\tilde{t}_1).
\]

Here

\[
\tilde{\gamma}_0 = 1, \quad \tilde{\gamma}_i = \hat{\gamma}_i^- + \tilde{\gamma}_i, \quad i = 1, \ldots, p, \quad \tilde{\gamma}_{p+1} = 0;
\]

Theorem 2. Let the element \(\lambda = (\tilde{t}_0, \tilde{t}_1, \tilde{x}_0, \tilde{\varphi}, \tilde{u}) \in E_0, \tilde{t}_1 < b\) be locally optimal and the condition 1) of Theorem 1 and the following conditions be fulfilled:

4) there exists a number \(\delta > 0\) such that

\[
\gamma(t) \leq \gamma(\tilde{t}_0), \quad t \in [\tilde{t}_0, \tilde{t}_0 + \delta);
\]

5) there exist the finite limits:

\[
\lim_{\omega \to \sigma^t} (\tilde{\omega}) = f_{i+1}^+, \quad \omega \in [\tilde{t}_0, \tilde{t}_0 + \delta] \times O^*, \quad i = 0, \ldots, p.
\]

Then there exists a non-zero vector \(\pi = (\pi_0, \ldots, \pi_s), \pi_0 \leq 0\) and a solution \(\chi(t), \psi(t)\) of the system (5) such that the conditions a) and c) are fulfilled. Moreover,

\[
\pi \tilde{Q}_{i_0} \leq -\psi(\tilde{t}_0 - |\tilde{v}(\tilde{t}_0)|) - \sum_{j=1}^k A_j(\tilde{t}_0) \tilde{\varphi}(\eta_j(\tilde{t}_0)) + \sum_{i=0}^p (\tilde{\gamma}_i - \tilde{\gamma}_i^-) f_i^- +
\]

\[
+ \sum_{i=p+1}^s \psi(\gamma_i) f_i^+ + \tilde{\chi}(\tilde{t}_0) \tilde{v}(\tilde{t}_0),
\]

\[
\pi \tilde{Q}_{i_1} \leq -\psi(\tilde{t}_1) \left[\sum_{j=1}^k A_j(\tilde{t}_1) \tilde{\varphi}(\eta_j(\tilde{t}_1)) + f_{i+1}^+ \right].
\]
Here
\[\hat{\gamma}_0^+ = 1, \quad \hat{\gamma}_i^+ = \gamma_i^+, \quad i = 1, \ldots, p, \quad \hat{\gamma}_{p+1}^+ = 0. \]

Theorem 3. Let the element \(\bar{\lambda} = (\bar{t}_0, \bar{t}_1, \bar{x}_0, \bar{u}) \in E_0 \), \(\bar{t}_0, \bar{t}_1 \in (a, b) \) be locally optimal and the conditions of Theorems 1, 2 and the following conditions be fulfilled: the functions \(\dot{\bar{x}}(\eta_j(\bar{t}_1)), j = 1, \ldots, k \), are continuous;
\[\gamma_i, \bar{t}_0 \notin \{ \eta_k \} (\eta_k (\bar{t}_1)), \quad \bar{t}_1 \in (a, b) \]
\(k_m = 1, \ldots, k \), \(i = p + 1, \ldots, s \);
\[\sum_{i=0}^{p}(\hat{\gamma}_{i+1}^- - \hat{\gamma}_i^-) f_i^- = \sum_{i=0}^{p}(\hat{\gamma}_{i+1}^+ - \hat{\gamma}_i^+) f_i^+ = f_0, \]
\[f_i^+ \hat{\gamma}_i^- = f_i^+ \hat{\gamma}_i^+, \quad i = p + 1, \ldots, s, \quad f_{s+1}^+ = f_{s+1}. \]
Then there exists a non-zero vector \(\pi = (\pi_0, \ldots, \pi_l) \), \(\pi_0 \leq 0 \) and a solution \(\chi(t), \psi(t) \) of the system (5) such that the condition a) and c) are fulfilled. Moreover,
\[\pi \hat{Q}_0 = -\psi(\bar{t}_0) \tilde{\varphi}(\bar{t}_0) + \sum_{j=1}^{k} A_j(\bar{t}_0) \tilde{\varphi}(\eta_j(\bar{t}_0)) + f_0 + \sum_{i=p+1}^{s} \psi(\gamma_i) f_i + \chi(\bar{t}_0) \tilde{\varphi}(\bar{t}_0), \]
\[\pi \hat{Q}_0 = -\psi(\bar{t}_0) \sum_{j=1}^{k} A_j(\bar{t}_0) \tilde{\varphi}(\eta_j(\bar{t}_1)) + f_{s+1}. \]

Finally we note that the optimal control problems for various classes of delay and neutral differential equations with discontinuous initial condition are considered in [1]–[4].

References

Author’s address:
Department of Mathematics No. 99
Georgian Technical University
77, M. Kostava St., Tbilisi 0175
Georgia