T. Kiguradze

EXISTENCE AND UNIQUENESS THEOREMS ON PERIODIC SOLUTIONS TO MULTIDIMENSIONAL LINEAR HYPERBOLIC EQUATIONS

(Reported on June 20, 2005)

In \(\mathbb{R}^n \) consider the linear hyperbolic equations

\[
 u^{(m)} = \sum_{\alpha \in \mathcal{E}^m} p_\alpha (x_\alpha) u^{(\alpha)} + \sum_{\alpha \in \mathcal{O}^m} p_\alpha (x_\alpha) u^{(\alpha)} + q(x),
\]

and

\[
 u^{(m)} = p_0(x) + q(x), \tag{2}
\]

where \(u = (x_1, \ldots, x_n) \in \mathbb{R}^n, \ m = (m_1, \ldots, m_n) \in \mathbb{Z}^n_+ \) and \(\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}^n_+ \) are multiindices, and

\[
 u^{(\alpha)} = \frac{\partial^{\alpha_1 + \cdots + \alpha_n} u}{\partial x_{1}^{\alpha_1} \cdots \partial x_{n}^{\alpha_n}}.
\]

We make use of following notations and definitions.

\(\mathbb{Z}_+ \) is the set of all nonnegative integers; \(\mathbb{Z}^n_+ \) is the set of all multiindices \(\alpha = (\alpha_1, \ldots, \alpha_n); \|\alpha\| = \alpha_1 + \cdots + \alpha_n; 0 = (0, \ldots, 0) \in \mathbb{Z}^n_+ \).

The inequalities between the multiindices \(\alpha = (\alpha_1, \ldots, \alpha_n) \) and \(\beta = (\beta_1, \ldots, \beta_n) \) are understood componentwise.

It will be assumed that \(m > 0 \).

If for some multiindex \(\alpha = (\alpha_1, \ldots, \alpha_n) \) we have \(\alpha_1 = \cdots = \alpha_{i_k} = 0 \ (i_1 < \cdots < i_k) \), and \(\alpha_{j_1}, \ldots, \alpha_{j_{n-k}} > 0 \ (j_1 < \cdots < j_{n-k}) \), \(\{j_1, \ldots, j_{n-k}\} \subset \{1, \ldots, n\} \setminus \{i_1, \ldots, i_k\} \), then by \(x_\alpha \) (by \(x^\alpha \)) denote the vector \((x_{i_1}, \ldots, x_{i_k}) \in \mathbb{R}^k \) (the vector \((x_{j_1}, \ldots, x_{j_{n-k}}) \in \mathbb{R}^{n-k} \)).

By \(\mathcal{E}^m \) and \(\mathcal{O}^m \), respectively, denote the sets of all even and odd multiindices not exceeding \(m \) and different from \(m \), i.e.,

\[
 \mathcal{E}^m = \{ \alpha \in \mathbb{Z}^n_+ \setminus \{ m \} : \alpha \leq m, \ \alpha_1, \ldots, \alpha_n \ \text{are even} \},
\]

\[
 \mathcal{O}^m = \{ \alpha \in \mathbb{Z}^n_+ \setminus \{ m \} : \alpha \leq m, \ \alpha_1 + \cdots + \alpha_n \ \text{is odd} \}.
\]

By \(\mathcal{S}^m \) denote the set of nonzero multiindices \(\alpha = (\alpha_1, \ldots, \alpha_n) \) whose components either equal to the corresponding components of \(m \), or equal to 0, i.e.,

\[
 \mathcal{S}^m = \{ \alpha \neq 0 : \alpha_i \in \{0, m_i\} \ (i = 0, \ldots, n) \}.
\]

Let \(\omega = (\omega_1, \ldots, \omega_n) \in \mathbb{R}^n \) be a vector with positive components. Then by \(\Omega \) denote the rectangular box \([0, \omega_1] \times \cdots \times [0, \omega_n] \) in \(\mathbb{R}^n \). Moreover, for an arbitrary multiindex \(\alpha \), similarly as we did above, introduce the vectors \(\omega_\alpha = (\omega_{\alpha_1}, \ldots, \omega_{\alpha_k}) \in \mathbb{R}^k \) and \(\omega^\alpha = (\omega_{j_1}, \ldots, \omega_{j_{n-k}}) \in \mathbb{R}^{n-k} \), and the rectangular boxes \(\Omega_\alpha = [0, \omega_{\alpha_1}] \times \cdots \times [0, \omega_{\alpha_k}] \) in \(\mathbb{R}^k \) and \(\Omega^\alpha = [0, \omega_{j_1}] \times \cdots \times [0, \omega_{j_{n-k}}] \) in \(\mathbb{R}^{n-k} \).

2000 Mathematics Subject Classification. 35L35, 35B10.

Key words and phrases. Periodic solution, multidimensional, linear hyperbolic equation.
We say that a function \(z : \mathbb{R}^n \to \mathbb{R} \) is \(\omega \)-periodic, if
\[
z(x_1, \ldots, x_j + \omega, \ldots, x_n) \equiv z(x_1, \ldots, x_n) \quad (j = 1, \ldots, n).
\]

It will be assumed that the functions \(p_\alpha (\alpha \in \mathcal{E}^m \cup \mathcal{O}^m) \) and \(q \), respectively, are \(\omega_\alpha \)-periodic and \(\omega \)-periodic continuous functions.

Let \(\ell = (l_1, \ldots, l_n) \in \mathbb{Z}_+^n \). By \(\mathcal{C}^\ell \) denote the space of continuous functions \(u : \mathbb{R}^n \to \mathbb{R} \), having continuous partial derivatives \(u(\alpha) (\alpha \leq \ell) \).

By a solution of equation (1) (equation (2)) we will understand a classical solution, i.e., a function \(u \in \mathcal{C}^m \) satisfying equation (1) (equation (2)) everywhere in \(\mathbb{R}^n \).

In the case, where \(n = 2, m_1 = m_2 = 1 (n = 2, m_1 = m_2 = 2) \) sufficient conditions for existence and uniqueness of \((\omega_1, \omega_2) \)-periodic solutions of equation (1) are given in [1–3, 6–8] (in [9, 10]). In the general case the problem on \(\omega \)-periodic solutions to equations (1) and (2) are little investigated. In the present paper optimal sufficient conditions of existence and uniqueness of \(\omega \)-periodic solutions to equation (1) (equation (2)) are given. Similar results for higher order nonlinear ordinary differential equations were obtained by I. Kiguradze and T. Kusano [5].

We consider equations (1) and (2) in two cases, where \(m \) is either even, or odd. Also note that equations (1) and (2) do contain partial derivatives with even or odd (according to the above definitions) multiindices only (e.g., neither of \(m \) and \(\alpha \) can equal to (1, 1, 1, 1)).

Theorem 1. Let \(m \) be even, and let
\[
(-1)^{\frac{|m|+1}{2}} p_\alpha(x_\alpha) \leq 0 \quad \text{for } x \in \mathbb{R}^n, \quad \alpha \in \mathcal{E}^m,
\]

\[
\mathbb{R}^n \setminus I_{p_0} = \mathbb{R}^n,
\]

where \(I_{p_0} = \{x \in \mathbb{R}^n : p_0(x) = 0\} \). Then equation (1) has at most one \(\omega \)-periodic solution.

Theorem 2. Let \(m \) be odd, and let there exist \(j \in \{1, 2\} \) such that along with (4) the inequality
\[
(-1)^{j+1} |\alpha| p_\alpha(x_\alpha) \leq 0 \quad \text{for } x \in \mathbb{R}^n, \quad \alpha \in \mathcal{E}^m
\]

holds. Then equation (1) has at most one \(\omega \)-periodic solution.

Theorems 1 and 2 almost immediately follow from the following lemma.

Lemma 1. Let \(u \in \mathcal{C}^m \) be an \(\omega \)-periodic function. Then
\[
\int_{\Omega^n} u(\alpha)(x) u(x) dx^\alpha = (-1)^{\frac{|m|}{2}} \int_{\Omega^n} |u(\frac{\partial}{\partial x})(x)|^2 dx^\alpha \quad \text{for } \alpha \in \mathcal{E}^m,
\]

\[
\int_{\Omega^n} u(\alpha)(x) u(x) dx^\alpha = 0 \quad \text{for } \alpha \in \mathcal{O}^m.
\]

One can easily prove the lemma using integration by parts and taking into consideration \(\omega \)-periodicity of \(u \).

Proof of Theorem 1. All we need to prove is that if \(q(x) \equiv 0 \), then equation (1) has only a trivial \(\omega \)-periodic solution. Indeed, let \(q(x) \equiv 0 \), and let \(u \) be an arbitrary \(\omega \)-periodic solution of equation (1). After multiplying equation (1) by \(u \) and integrating over the rectangular box \(\Omega \), by Lemma 1 and condition (3), we get
\[
\int_{\Omega} \left(|u(\frac{\partial}{\partial x})(x)|^2 + \sum_{\alpha \in \mathcal{E}^m} |p_\alpha(x_\alpha)| |u(\frac{\partial}{\partial x})(x)|^2 \right) dx = 0.
\]

(4) and (6) immediately imply that \(u(x) \equiv 0 \). \(\square \)

We omit the proof of Theorem 2, since it is similar to the proof of Theorem 1.
Theorem 3. Let \(m \) be even, and let
\[
0 \leq (-1)^{m-1} \frac{\omega_1 \cdots \omega_n}{(2\pi)^{\frac{m}{2}}} \int_{\mathbb{R}^n} f(x) dx = \mathbb{R}^n.
\] (7)
Then equation (2) has at most one \(\omega \)-periodic solution.

To prove the theorem along with Lemma 1 we need the following

Lemma 2. Let \(m \) be even, and let \(u \in C^m \) be an \(\omega \)-periodic function. Then
\[
\int_{\Omega} \left| u^{(m)}(x) \right|^2 dx \leq \frac{\omega_1 \cdots \omega_n}{(2\pi)^{\frac{m}{2}}} \int_{\Omega} \left| u^{(m)}(x) \right|^2 dx.
\] (8)

This lemma immediately follows from Wirtinger's inequality ([4], Theorem 258).

Proof of Theorem 3. Assume the contrary: let \(q(x) \equiv 0 \) and equation (2) have a nontrivial \(\omega \)-periodic solution \(u \). Then we have
\[
u^{(m)}(x) = p_0(x)u(x)
\] (9)
and
\[
\left| u^{(m)}(x) \right|^2 = |p_0(x)u(x)|^2.
\] (10)
Multiplying (9) by \(u \), integrating over \(\Omega \), by Lemma 1, we get
\[
\int_{\Omega} |p_0(x)||u(x)|^2 dx = \int_{\Omega} \left| u^{(m)}(x) \right|^2 dx.
\] (11)
Integrating (10) over \(\Omega \) and assuming that \(u(x) \neq 0 \), by condition (8), we get
\[
\int_{\Omega} \left| u^{(m)}(x) \right|^2 dx = \int_{\Omega} |p_0(x)u(x)|^2 dx < \frac{(2\pi)^{\frac{m}{2}}}{\omega_1 \cdots \omega_n} \int_{\Omega} |p_0(x)||u(x)|^2 dx.
\] (12)
On the other hand, from (8) and (11) we get the inequality
\[
\int_{\Omega} |p_0(x)||u(x)|^2 dx \leq \frac{\omega_1 \cdots \omega_n}{(2\pi)^{\frac{m}{2}}} \int_{\Omega} \left| u^{(m)}(x) \right|^2 dx,
\]
which contradicts to (12). The obtained contradiction completes the proof of the theorem.

Remark 1. In Theorem 3 condition (7) is optimal and it cannot be weakened: strict inequality cannot be replaced by an unstrict one. Indeed, consider the equation
\[
u^{(m)} = l u,
\] (13)
where \(l \) is a constant. If
\[
0 < l < (-1)^m \frac{(2\pi)^{\frac{m}{2}}}{\omega_1 \cdots \omega_n},
\]
then by Theorem 3 equation (13) has only a trivial solution. However, if
\[
l = (-1)^m \frac{(2\pi)^{\frac{m}{2}}}{\omega_1 \cdots \omega_n} \quad (l = 0),
\]
then it is obvious that the function
\[
u(x) = \sin \left(\frac{2\pi}{\omega_1} x_1 \right) \cdots \sin \left(\frac{2\pi}{\omega_n} x_n \right) \quad (u(x) = 1)
\]
is a nontrivial \(\omega \)-solution of equation (13).

Below we formulate existence theorems.
Theorem 4. Let m be even, and let along with (3) the inequalities
\[(-1)^{|m_1|+|m_2|} \int_{\Omega_2} p_\alpha(x_\alpha) \, dx_\alpha < 0 \quad \text{for} \quad \alpha \in S^m, \] (14)
\[\int_{\Omega} p_0(x) \, dx \neq 0 \]
hold. Then equation (1) has one and only one ω-periodic solution.

Theorem 5. Let m_1 be the only odd component of the the multindex m, and let there exist $j \in \{1, 2\}$ such that along with (5) the inequalities
\[(-1)^{j+\frac{m_2}{2}} \int_{\Omega_2} p_\alpha(x_\alpha) \, dx_\alpha < 0 \quad \text{for} \quad \alpha \in S^m, \] (15)
\[(-1)^j \int_0^{\omega_2} \ldots \int_0^{\omega_n} p_0(x_1, x_2, \ldots, x_n) \, dx_2 \ldots dx_n < 0 \quad \text{for} \quad x_1 \in \mathbb{R} \]
hold. Then equation (1) has one and only one ω-periodic solution.

Remark 2. In Theorems 4 (Theorem 5) condition (14) (condition (15)) is essential and it cannot be weakened. If for at least one $\alpha \in S^m$ $p_\alpha(x_\alpha) \equiv 0$, then equation (1) may not have an ω-periodic solution. To verify this, consider the equation
\[u^{(2, 2, 2)} = u^{(2, 2, 0)} + u^{(2, 0, 2)} + u^{(0, 2, 0)} - u^{(0, 0, 2)} + \sin^2(x_1) \, u - 1. \] (16)
In the case, where $n = 3$, $m_1 = m_2 = m_3 = 2$ and $\omega_1 = \omega_2 = \omega_3 = \pi$, this equation satisfies all of the conditions of Theorem 4, except condition (14). For $\alpha = (2, 0, 0)$ we have $p_{\alpha}(x_2, x_3) \equiv 0$. As a result equation (16) has no (π, π, π)-periodic solution. Assume the contrary: let equation (16) have a (π, π, π)-periodic solution u. By Theorem 1, it is unique, and therefore is independent of x_2 and x_3. Hence u satisfies the equation
\[\sin^2(x_1) \, u - 1 = 0. \]
But the latter equation has only a discontinuous solution. The obtained contradiction proves that equation (16) has no (π, π, π)-periodic solution.

Theorem 6. Let m be even, and let
\[0 < (-1)^{|m_1|} p_0(x) < \frac{(2\pi)^{|m_1|}}{\omega_1^{m_1} \ldots \omega_n^{m_n}}. \] (17)
Moreover, let p_0 and $q \in C^m$. Then equation (2) has one and only one ω-periodic solution.

Theorem 7. Let m be even, and let
\[(-1)^{|m_1|} p_0(x) < 0 \quad \text{for} \quad x \in \mathbb{R}^n. \] (18)
Moreover, let p_0 and $q \in C^m$. Then equation (2) has one and only one ω-periodic solution.

Theorem 8. Let m be odd, and let there exist a number $j \in \{1, 2\}$ such that
\[(-1)^j p_0(x) < 0 \quad \text{for} \quad x \in \mathbb{R}^n. \] (19)
Moreover, let p_0 and $q \in C^m$. Then equation (2) has one and only one ω-periodic solution.

Remark 3. In Theorems 6, 7 and 8 the requirement of additional regularity of functions p_0 and q is sharp. If this condition is violated, then equation (2) may not have a ω-periodic classical solution. Indeed, consider the equation
\[u^{(m)} = p_0(x_2, \ldots, x_n) \, u - p_0^2(x_2, \ldots, x_n), \]
where m is even, and $p_0(x_2, \ldots, x_n)$ is an arbitrary continuous $(\omega_2, \ldots, \omega_n)$–periodic function satisfying (18). By Theorem 3, this equation has at most one solution. Hence

$$u(x) = p_0(x_2, \ldots, x_n).$$

But u is a classical solution if and only if $p_0 \in C^m$.

Remark 4. In Theorems 6, 7 and 8, respectively, the strict inequalities (17), (18) and (19) cannot be replaced by unstrict ones. To verify this, consider the equation

$$u^{(m)} = p_0(x_2, \ldots, x_n) u - 1,$$

where m is odd and $p_0(x_2, \ldots, x_n)$ is a smooth $(\omega_2, \ldots, \omega_n)$–periodic function such that $p_0(x_2, \ldots, x_n) \geq 0$, $p_0(x_2, \ldots, x_n) \neq 0$. By Theorem 2, this equation has at most one solution. Therefore u is a solution of the equation

$$p_0(x_2, \ldots, x_n) u - 1 = 0.$$

But the latter equation has a continuous solution if and only if

$$p_0(x_2, \ldots, x_n) > 0 \text{ for } (x_2, \ldots, x_n) \in \mathbb{R}^{n-1}.$$

References

Author’s address:

T. Kiguradze
Florida Institute of Technology
Department of Mathematical Sciences
150 W. University Blvd.
Melbourne, FL 32901
USA
E-mail: tkigurad@fit.edu