ON MINIMAL AND MAXIMAL SOLUTIONS OF TWO–POINT SINGULAR BOUNDARY VALUE PROBLEMS

(Reported on July 4, 2005)

We consider the differential equation
\[u'' = f(t, u, u') \]
(1)
with the boundary conditions
\[u(a+) = c_1, \quad u(b-) = c_2, \]
(2.1)
or
\[u(a+) = c_1, \quad u'(b-) = c_2, \]
(2.2)
where \(-\infty < a < b < +\infty\), \(c_i \in \mathbb{R}\) (\(i = 1, 2\)), and \(f : [a, b] \times \mathbb{R}^2 \to \mathbb{R}\) satisfies the local Carathéodory conditions.

In the case, where the function
\[f_r^*(t) = \max \{|f(t, x, y)| : |x| + |y| \leq r\} \]
is Lebesgue integrable on \([a,b]\) for an arbitrary \(r > 0\), problems (1), (2.1) and (1), (2.2) are called regular, otherwise they are called singular.

The basis for the theory of regular problems of the type (1), (2.1) and (1), (2.2) were laid in the classical works by S. N. Bernshtein [4], M. Nagumo [15] and H. Epheser [5].

From these works originates the tradition of formulation of theorems on solvability of the above-mentioned problems in terms of so-called lower and upper functions of Eq. (1). Precisely, these theorems contain sufficient conditions for existence of a solution of problem (1), (2.1) or (1), (2.2), satisfying the inequalities
\[\sigma_1(t) \leq u(t) \leq \sigma_2(t) \quad \text{for} \quad a < t < b, \]
(3)
where \(\sigma_1\) and \(\sigma_2\) are, respectively, the lower and upper functions of Eq. (1) such that
\[\sigma_1(t) \leq \sigma_2(t) \quad \text{for} \quad a < t < b. \]
(4)

Nowadays there exists a complete enough theory for solvability of the singular boundary value problems (1), (2.1), (3) (\(k = 1, 2\)). The results, obtained in this direction, are contained, e.g., in [1]–[3], [6]–[14], [16]. However, the question for these problems to have minimal and maximal solutions remains so far open. We made an attempt to fill to some extent the existing gap.

To formulate our results, we use the following notations.

\[R = (-\infty, +\infty], \quad R_+ = [0, +\infty[. \]

\(u(t+)\) and \(u(t-)\) are, respectively, the right and the left limits of the function \(u\) at the point \(t\).

\(C^1([t_1, t_2])\) is the space of functions \(u : [t_1, t_2] \to R\) which are absolutely continuous together with their first derivatives.

\(L([t_1, t_2])\) is the space of Lebesgue integrable functions \(u : [t_1, t_2] \to R\).

2000 Mathematics Subject Classification. 34B16, 34B18.

Key words and phrases. Two-point singular boundary value problem, minimal and maximal solutions, lower and upper functions.
\(C_{loc}^1(I) \) and \(L_{loc}(I) \), where \(I \subset \mathbb{R} \) is an open or a half-open interval, is the set of functions \(u : I \to \mathbb{R} \) whose restrictions to any closed interval \([t_1, t_2]\) \(I \) belong to the class \(C^1([t_1, t_2]) \) and \(L((t_1, t_2]) \), respectively.

The function \(u \in C_{loc}^1([a, b]) \) is said to be a solution of Eq. (1) if it satisfies this equation almost everywhere on \([a, b]\).

The solution \(u \) of Eq. (1), satisfying conditions \((2_a), (3)\), is said to be a solution of problem \((1), (2_b), (3)\).

The solution \(\varpi \) (the solution \(\varphi \)) of problem \((1), (2_b), (3)\) is said to be a maximal solution (a minimal solution) if an arbitrary solution \(u \) of this problem satisfies the inequality

\[
 u(t) \leq \varpi(t) \quad (u(t) \geq \varphi(t)) \quad \text{for } a < t < b.
\]

Following [6], let us introduce the definition.

Definition 1. A function \(\sigma : [a, b] \to \mathbb{R} \) is said to be a lower (resp. an upper) function of Eq. (f) if:

(i) \(\sigma \) is locally absolutely continuous and \(\sigma' \) admits the representation

\[
 \sigma'(t) = \gamma(t) + \gamma_0(t),
\]

where \(\gamma : [a, b] \to \mathbb{R} \) is a locally absolutely continuous function, while \(\gamma_0 : [a, b] \to \mathbb{R} \) is a non-decreasing (resp. non-increasing) function whose derivative is equal to zero almost everywhere on \([a, b] \):

(ii) the inequality

\[
 f(t, \sigma(t), \sigma'(t)) \leq \sigma''(t) \quad \text{(resp. } f(t, \sigma(t), \sigma'(t)) \geq \sigma''(t) \text{)}
\]

holds almost everywhere on \([a, b]\).

Throughout the paper it is supposed that \(f(\cdot, x, y) : [a, b] \to \mathbb{R} \) is measurable for any \((x, y) \in \mathbb{R}^2\) and \(f(t, \cdot, \cdot) : \mathbb{R}^2 \to \mathbb{R} \) is continuous for almost all \(t \in [a, b] \). Moreover, the functions \(\sigma_1 : [a, b] \to \mathbb{R} \) and \(\sigma_2 : [a, b] \to \mathbb{R} \) are, respectively, the lower and the upper functions of Eq. (1), satisfying condition (4).

Problem \((1), (2_1), (3)\) is investigated under the assumptions that

there exist finite limits \(\sigma_i(a^+)\), \(\sigma_i(b^-) \) (\(i = 1, 2 \)),

and \(c_1 \in [\sigma_1(a^+), \sigma_2(a^+)\), \(c_2 \in [\sigma_1(b^-), \sigma_2(b^-)\),

\]

and

\[
 f^*_r \in L_{loc}([a, b]) \quad \text{for } r > 0.
\]

As for problem \((1), (2_2), (3)\), it is investigated under the assumptions that

there exist finite limits \(\sigma_i(a^+)\), \(\sigma'_i(b^-) \) (\(i = 1, 2 \)), \(\sigma'_1(b^-) \leq \sigma'_2(b^-),

and \(c_1 \in [\sigma_1(a^+), \sigma_2(a^+)\], \(c_2 \in [\sigma'_1(b^-), \sigma'_2(b^-)\),

and

\[
 f^*_r (\cdot) \in L_{loc}([a, b]) \quad \text{for } r > 0.
\]

Definition 2. A function \(f \) belongs to the class \(B_1(\sigma_1, \sigma_2) \) if there exist numbers \(a_0 \in [a, b], b_0 \in [a, b] \), and a continuous function \(\rho \in [a, b] \to \mathbb{R}_+ \) such that \(\rho \in L([a, b]) \), and for any \(t \in [a, a_0] \), \(t_2 \in [b_0, b] \) and a continuous function \(\eta : [a, b] \to [0, 1] \), an arbitrary solution \(u : [t_1, t_2] \to R \) of the differential equation

\[
 u'' = \eta(t) f(t, u, u'),
\]

satisfying the condition

\[
 \sigma_1(t) \leq u(t) \leq \sigma_2(t) \quad \text{for } t_1 < t < t_2,
\]

admits the estimate

\[
 |u'(t)| \leq \rho(t) \quad \text{for } t_1 \leq t \leq t_2.
\]
Definition 3. A function f belongs to the class $B_2(\sigma_1, \sigma_2)$ if there exist $a_0 \in]a, b[$ and a continuous function $\rho \in]a, b[\rightarrow \mathbb{R}_+$ such that $\rho \in L([a, b])$ and for any $t_0 \in]a, a_0[$ and a continuous function $\eta :]a, b[\rightarrow [0, 1]$, an arbitrary solution $u :]t_0, b[\rightarrow R$ of the differential equation (7), satisfying the conditions

$$\sigma_1(t) \leq u(t) \leq \sigma_2(t) \text{ for } t_0 \leq t \leq b, \quad \sigma_1(b-) \leq u'(b-) \leq \sigma_2(b-),$$

admits the estimate

$$|u'(t)| \leq \rho(t) \text{ for } t_0 \leq t \leq b.$$

Everywhere below the function $\omega : R \rightarrow]0, +\infty]$ is called the Nagumo function if it is continuous and

$$\int_{-\infty}^{0} \frac{dy}{\omega(y)} = +\infty, \quad \int_{0}^{+\infty} \frac{dy}{\omega(y)} = +\infty.$$

Theorem 1. If conditions (51), (61) hold and

$$f \in B_1(\sigma_1, \sigma_2),$$

then problem (1), (2), (3) has a minimal and a maximal solutions.

Theorem 2. If conditions (52), (62) hold and

$$f \in B_2(\sigma_1, \sigma_2),$$

then problem (1), (2), (3) has a minimal and a maximal solutions.

From these theorems several effective conditions for the existence of extremal solutions of problems (1), (2), (3) and (1), (2), (3) are obtained.

In particular, the following statements are valid.

Corollary 11. Let conditions (51), (61) hold and let there exist numbers $a_0 \in]a, b[$, $b_0 \in]a_0, b[,$ a non-negative function $h \in L([a, b])$ and a Nagumo function ω such that

$$f(t, x, y) \text{ sgn } y \geq -\omega(h(t) + |y|) \text{ for } a < t < b_0, \quad \sigma_1(t) \leq x \leq \sigma_2(t), \quad y \in R$$

and

$$f(t, x, y) \text{ sgn } y \leq \omega(h(t) + |y|) \text{ for } a_0 < t < b, \quad \sigma_1(t) \leq x \leq \sigma_2(t), \quad y \in R.$$

Then problem (1), (2), (3) has a minimal and a maximal solutions.

Corollary 12. Let conditions (52), (62) hold and let there exist a non-negative function $h \in L([a, b])$ and a Nagumo function ω such that

$$f(t, x, y) \text{ sgn } y \geq -\omega(h(t) + |y|) \text{ for } a < t < b, \quad \sigma_1(t) \leq x \leq \sigma_2(t), \quad y \in R.$$

Then problem (1), (2), (3) has a minimal and a maximal solutions.

Corollary 21. Let conditions (51), (61) hold and let there exist numbers $a_0 \in]a, b[,$ $b_0 \in]a_0, b[,$ $\lambda \in]0, b - a[,$ $b_2 \in \mathbb{R}_+, \text{ and non-negative functions } h_0 \in L_{loc}(]a, b[)$ and $h_1 \in L([a, b])$ such that

$$\int_{a}^{b} (t - a)(b - t) h_0(t) dt < +\infty$$

and the inequalities

$$f(t, x, y) \text{ sgn } y \geq -h_0(t) - \left[\frac{\lambda}{(t - a)(b - t)} + h_1(t) \right] |y| - h_2y^2$$

for $a < t < b_0, \quad \sigma_1(t) \leq x \leq \sigma_2(t), \quad y \in R.$
and
\[f(t, x, y) \sgn y \leq h_0(t) + \frac{\lambda}{(t-a)(b-t)} + h_1(t) |y| + h_2y^2 \]
for \(a_0 < t < b \), \(\sigma_1(t) \leq x \leq \sigma_2(t) \), \(y \in R \)
are fulfilled. Then problem (1), (2), (3) has a minimal and a maximal solutions.

Corollary 2. Let conditions (5), (6) hold and let there exist numbers \(\lambda \in [0, 1] \), \(h_2 \in \mathbb{R}_+ \), and non-negative functions \(h_0 \in L_{loc}([a, b]) \) and \(h_1 \in L([a, b]) \) such that
\[f(t, x, y) \sgn y \geq -h_0(t) - \frac{\lambda}{t-a} + h_1(t) |y| - h_2y^2 \]
for \(a < t < b \), \(\sigma_1(t) \leq x \leq \sigma_2(t) \), \(y \in R \).
Let, moreover,
\[\int_a^b (t-a)h_0(t) \, dt < +\infty. \]
Then problem (1), (2), (3) has a minimal and a maximal solutions.

As an example, we consider the differential equation
\[u'' = f_0(t, u, u') + f_1(t, u, u')u', \quad (1') \]
where \(f_0 : [a, b] \times \mathbb{R}^2 \to R \) and \(f_1 : [a, b] \times \mathbb{R}^2 \to R \) are functions satisfying the local Carathéodory conditions, and there exists a positive constant \(r_0 \) such that
\[f_0(t, x, y)x \geq 0 \quad \text{for} \quad a < t < b, \quad |x| \geq r_0, \quad y \in R. \]
Then arbitrary constants \(\sigma_1 \in]-\infty, -r_0[\) and \(\sigma_2 \in]r_0, +\infty[\)
are, respectively, the lower and the upper functions of Eq. (1'). Moreover, it is obvious that
if \(c_1 \in [\sigma_1, \sigma_2], \quad c_2 \in [\sigma_1, \sigma_2] \) (if \(c_1 \in [\sigma_1, \sigma_2] \)),
then an arbitrary solution of problem (1'), (2) (of problem (1'), (2)) admits the estimate
\[\sigma_1 \leq u(t) \leq \sigma_2 \quad \text{for} \quad a < t < b. \quad (3') \]
Therefore, in the sequel we consider not problems (1'), (2), (3') and (1'), (2), (3') but problems (1'), (2), and (1'), (2).

Set
\[f_{i,r}(\cdot) = \sup\{|f_0(\cdot, x, y)| : |x| \leq r, \quad y \in R\} \quad \text{for} \quad r > 0 \quad (i = 0, 1). \]
Corollaries 2 and 2 imply the following propositions.

Corollary 3. Let
\[\int_a^b (t-a)(b-t)f_{i,r}(t) \, dt < +\infty, \quad f_{i,r} \in L_{loc}([a, b]) \quad \text{for} \quad r > 0 \]
and there exist numbers \(a_0 \in [a, b], \quad b_0 \in [0, b] \), continuous functions \(\lambda : R \to [0, b-a] \), \(\ell : R \to \mathbb{R}_+ \) and a non-negative function \(h \in L([a, b]) \) such that the inequalities
\[f_1(t, x, y) \geq \frac{\lambda(x)}{(t-a)(b-t)} - \ell(t)(h(t) + |y|) \quad \text{for} \quad a < t < b_0, \quad (x, y) \in R^2 \]
and
\[f_1(t, x, y) \leq \frac{\lambda(x)}{(t-a)(b-t)} + \ell(t)(h(t) + |y|) \quad \text{for} \quad a_0 < t < b, \quad (x, y) \in R^2 \]
are fulfilled. Then problem \((1'), (2_1)\) has a minimal and a maximal solutions.

Corollary 3.2. Let

\[
\int_a^b (t-a)f_{r_0}'(t) \, dt < +\infty, \quad f_{r_0}' \in L_{loc}[a, b]
\]

for \(r > 0\) and there exist continuous functions \(\lambda : R \to [0, 1]\) and \(\ell : R \to R_+\) and a non-negative function \(h \in L([a, b])\) such that on \(\lbrack a, b \rbrack \times R^2\) the inequality

\[
f_1(t, x, y) \geq -\frac{\lambda(x)}{t-a} - \ell(x)(h(t) + |y|)
\]

hold. Then problem \((1'), (2_2)\) has a minimal and a maximal solutions.

Acknowledgement

Supported by INTAS (Grant # 03-51-5007).

References

Authors’ address:
A. Razmadze Mathematical Institute
Georgian Academy of Sciences
1, M. Aleksidze St., Tbilisi 0193
Georgia