Tomoyuki Tanigawa

GENERALIZED REGULARLY VARYING SOLUTIONS OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS WITH DEVIATING ARGUMENTS

Dedicated to 80th birthday anniversary of Professor Kusano Takaši
Abstract. The sharp sufficient conditions of the existence of generalized regularly varying solutions (in the sense of Karamata) of differential equations of the type
\[
(p(t)\varphi(x'(t)))' + \sum_{i=1}^{n} \left[q_i(t)\varphi(x(g_i(t))) + r_i(t)\varphi(x(h_i(t))) \right] = 0
\]
are established. Here, \(p, q_i, r_i : [a, \infty) \to (0, \infty) \) are continuous functions, \(g_i, h_i : [a, +\infty) \to \mathbb{R} \) are continuous and increasing functions such that \(g_i(t) < t, h_i(t) > t \) for \(t \geq a \), \(\lim_{t \to \infty} g_i(t) = \infty \) and \(\varphi(\xi) \equiv |\xi|^{\alpha} \operatorname{sgn} \xi, \alpha > 0 \).

2010 Mathematics Subject Classification. 34C11, 26A12.

Key words and phrases. Second order nonlinear differential equation with deviating arguments, generalized regularly varying solution, asymptotic behavior of a solution.
1. Introduction

The equation to be studied in this paper is

\[(p(t)\varphi(x'(t)))' \pm \sum_{i=1}^{n} [q_i(t)\varphi(x(g_i(t))) + r_i(t)\varphi(x(h_i(t)))] = 0 \quad (A_{\pm})\]

\[(\varphi(\xi) = |\xi|^\alpha \text{sgn} \xi, \ \alpha > 0, \ \xi \in \mathbb{R}),\]

where \(p, q_i, r_i : [a, \infty) \to (0, \infty)\) are continuous functions, \(g_i, h_i\) are continuous and increasing functions with \(g_i(t) < t, h_i(t) > t\) and \(\lim_{t \to \infty} g_i(t) = \infty\) for \(i = 1, 2, \ldots, n\). In what follows we always assume that the function \(p(t)\) satisfies

\[\int_{a}^{\infty} \frac{dt}{p(t)^{\frac{1}{\alpha}}} = \infty. \quad (1.1)\]

It is shown in the monograph [8] that the class of regularly varying functions in the sense of Karamata is a well-suited framework for the asymptotic analysis of nonoscillatory solutions of the second order linear differential equation of the form

\[x''(t) = q(t)x(t), \quad q(t) > 0.\]

The study of asymptotic analysis of nonoscillatory solutions of functional differential equations with deviating arguments in the framework of regularly varying functions (called Karamata functions) was first attempted by Kusano and Marić [5], [6]. They established a sharp condition for the existence of a slowly varying solution of the second order functional differential equation with retarded argument of the form

\[x''(t) = q(t)x(g(t)), \quad (1.2)\]

and the following functional differential equation of the form

\[x''(t) \pm [q(t)x(g(t)) + r(t)x(h(t))] = 0, \quad (1.3)\]

where \(q, r : [a, \infty) \to (0, \infty)\) are continuous functions, \(g, h\) are continuous and increasing with \(g(t) < t, h(t) > t\) for \(t \geq a, \lim_{t \to \infty} g(t) = \infty\).

It is well known that there is the qualitative similarity between linear differential equations and half-linear differential equations (see the book Došlý and Rehák [2]). Therefore, in our previous papers [4], [7] we proved how useful the regularly varying functions were for the study of nonoscillation and asymptotic analysis of the half-linear differential equation involving nonlinear Sturm–Liouville type differential operator of the form

\[(p(t)\varphi(x'(t)))' \pm f(t)\varphi(x(t)) = 0, \quad p(t) > 0, \quad (B_{\pm})\]

and the half-linear functional differential equation with both retarded and advanced arguments of the form

\[(\varphi(x'(t)))' \pm [q(t)\varphi(x(g(t))) + r(t)\varphi(x(h(t)))] = 0, \quad (1.4)\]
where \(f : [a, \infty) \to (0, \infty) \) is a continuous function, \(p, g, h \) are just as in the above equations.

Theorem A (J. Jaroš, T. Kusano and T. Tanigawa [4]). Suppose that (1.1) holds. The equations \((B_\pm)\) have a normalized slowly varying solution with respect to \(P(t) \) and a normalized regularly varying solution of index 1 with respect to \(P(t) \) if and only if

\[
\lim_{t \to \infty} P(t)^\alpha \int_t^\infty f(s) \, ds = 0,
\]

where the function \(P(t) \) is defined by

\[
P(t) = \int_a^t \frac{ds}{p(s)^{1/\alpha}}.
\]

Theorem B (J. Manojlović and T. Tanigawa [7]). Suppose that

\[
\lim_{t \to \infty} \frac{g(t)}{t} = 1 \quad \text{and} \quad \lim_{t \to \infty} \frac{h(t)}{t} = 1
\]

hold. Then the equations \((1.4)\) have a slowly varying solution and a regularly varying solution of index 1 if and only if

\[
\lim_{t \to \infty} t^\alpha \int_t^\infty q(s) \, ds = \lim_{t \to \infty} t^\alpha \int_t^\infty r(s) \, ds = 0.
\]

The objective of this paper is to establish a sharp condition of the existence of a normalized slowly varying solution with respect to \(P(t) \) and a normalized regularly varying solution of index 1 with respect to \(P(t) \) of the equation \((A_\pm)\). Our main result is the following

Theorem 1.1. Suppose that

\[
\lim_{t \to \infty} \frac{P(g_i(t))}{P(t)} = 1 \quad \text{for} \quad i = 1, 2, \ldots, n
\]

and

\[
\lim_{t \to \infty} \frac{P(h_i(t))}{P(t)} = 1 \quad \text{for} \quad i = 1, 2, \ldots, n
\]

hold. The equation \((A_\pm)\) possesses a normalized slowly varying solution with respect to \(P(t) \) and a normalized regularly varying solution of index 1 with respect to \(P(t) \) if and only if

\[
\lim_{t \to \infty} P(t)^\alpha \int_t^\infty q_i(s) \, ds = \lim_{t \to \infty} P(t)^\alpha \int_t^\infty r_i(s) \, ds = 0 \quad \text{for} \quad i = 1, 2, \ldots, n.
\]
This paper is organized as follows. In Section 2 we briefly recall the definitions and properties of the slowly varying and regularly varying functions of index ρ with respect to $P(t)$ which are called the generalized regularly varying functions introduced by Jaroš and Kusano [3]. Explicit expressions for the normalized slowly varying solution with respect to $P(t)$ and the normalized regularly varying solution of index 1 with respect to $P(t)$ of the equations (B_{\pm}) obtained in [4] do not meet our need for application to the functional differential equations (A_{\pm}), and thus we present a modified proof of Theorem A in Section 3. The proof of Theorem 1.1 which is based on Theorems A and B will be presented in Section 4. Some examples illustrating our result will also be presented in Section 5.

2. Definitions and Properties of the Generalized Regularly Varying Functions

For the reader’s convenience we first state the definitions and some basic properties of the regularly varying functions and then refer to the generalized regularly varying functions. The generalized regularly varying functions are introduced for the first time by Jaroš and Kusano [3] in order to gain useful information about an asymptotic behavior of nonoscillatory solutions for the self-adjoint differential equations of the form

$$(p(t)x'(t))' + f(t)x(t) = 0.$$

The definitions and properties of regularly varying functions:

Definition 2.1. A measurable function $f : [a, \infty) \rightarrow (0, \infty)$ is said to be a regularly varying of index ρ if it satisfies

$$\lim_{t \to \infty} \frac{f(\lambda t)}{f(t)} = \lambda^\rho$$

for any $\lambda > 0$, $\rho \in \mathbb{R}$.

Proposition 2.1 (Representation Theorem). A measurable function $f : [a, \infty) \rightarrow (0, \infty)$ is regularly varying of index ρ if and only if it can be written in the form

$$f(t) = c(t) \exp \left\{ \int_{t_0}^{t} \frac{\delta(s)}{s} \, ds \right\}, \quad t \geq t_0,$$

for some $t_0 > a$, where $c(t)$ and $\delta(t)$ are measurable functions such that

$$\lim_{t \to \infty} c(t) = c \in (0, \infty) \quad \text{and} \quad \lim_{t \to \infty} \delta(t) = \rho.$$

The totality of regularly varying functions of index ρ is denoted by $RV(\rho)$. The symbol SV is used to denote $RV(0)$ and a member of $SV = RV(0)$ is referred to as a slowly varying function. If $f(t) \in RV(\rho)$, then $f(t) = t^\rho L(t)$ for some $L(t) \in SV$. Therefore, the class of slowly varying functions is of
fundamental importance in the theory of regular variation. In addition to
the functions tending to positive constants as \(t \to \infty \), the following functions
\[
\prod_{i=1}^{N} (\log t)^{m_i} (m_i \in \mathbb{R}), \quad \exp \left\{ \prod_{i=1}^{N} (\log t)^{u_i} \right\} \quad (0 < u_i < 1), \quad \exp \left\{ \frac{\log t}{\log_2 t} \right\},
\]
where \(\log_h t = \log t \) and \(\log_k t = \log \log_{k-1} t \) for \(k = 2, 3, \ldots, N \), also belong
to the set of slowly varying functions.

Proposition 2.2. Let \(L(t) \) be any slowly varying function. Then, for
any \(\gamma > 0 \),
\[
\lim_{t \to \infty} \frac{t^\gamma L(t)}{L(t)} = \infty \quad \text{and} \quad \lim_{t \to \infty} \frac{t^{-\gamma} L(t)}{L(t)} = 0.
\]

Proposition 2.3 (Karamata’s integration theorem). Let \(L(t) \in SV \).
Then

(i) if \(\gamma > -1 \),
\[
\int_{a}^{t} s^\gamma L(s) \, ds \sim \frac{t^{\gamma+1}}{\gamma+1} L(t), \quad \text{as} \quad t \to \infty;
\]
(ii) if \(\gamma < -1 \),
\[
\int_{t}^{\infty} s^\gamma L(s) \, ds \sim -\frac{t^{\gamma+1}}{\gamma+1} L(t), \quad \text{as} \quad t \to \infty.
\]

Here and hereafter the notation \(\varphi(t) \sim \psi(t) \) as \(t \to \infty \) is used to mean
the asymptotic equivalence of \(\varphi(t) \) and \(\psi(t) \): \(\lim_{t \to \infty} \psi(t)/\varphi(t) = 1 \).

For an excellent explanation of the theory of regularly varying functions
the reader is referred to the book [1].

The definitions and properties of generalized regularly varying functions:

Definition 2.2. A measurable function \(f : [a, \infty) \to (0, \infty) \) is said to be
slowly varying with respect to \(P(t) \) if the function \(f \circ P(t)^{-1} \) is slowly varying
in the sense of Karamata, where the function \(P(t) \) is defined by (1.6) and
\(P(t)^{-1} \) denotes the inverse function of \(P(t) \). The totality of slowly varying
functions with respect to \(P(t) \) is denoted by \(SV_P \).

Definition 2.3. A measurable function \(g : [a, \infty) \to (0, \infty) \) is said to be
regularly varying function of index \(\rho \) with respect to \(P(t) \) if the function
\(g \circ P(t)^{-1} \) is regularly varying of index \(\rho \) in the sense of Karamata. The set
of all regularly varying functions of index \(\rho \) with respect to \(P(t) \) is denoted
by \(RV_P(\rho) \).

Of fundamental importance is the following representation theorem for
the generalized slowly and regularly varying functions, which is an immediate
consequence of Proposition 2.1.
Proposition 2.4.
(i) A function \(f(t) \) is slowly varying with respect to \(P(t) \) if and only if it can be expressed in the form
\[
f(t) = c(t) \exp \left\{ \int_{t_0}^{t} \frac{\delta(s)}{p(s)^{\frac{1}{\alpha}} P(s)} \, ds \right\}, \quad t \geq t_0
\]
for some \(t_0 > a \), where \(c(t) \) and \(\delta(t) \) are measurable functions such that
\[
\lim_{t \to \infty} c(t) = c \in (0, \infty) \quad \text{and} \quad \lim_{t \to \infty} \delta(t) = 0.
\]
(ii) A function \(g(t) \) is regularly varying of index \(\rho \) with respect to \(P(t) \) if and only if it has the representation
\[
g(t) = c(t) \exp \left\{ \int_{t_0}^{t} \frac{\delta(s)}{p(s)^{\gamma} P(s)} \, ds \right\}, \quad t \geq t_0
\]
for some \(t_0 > a \), where \(c(t) \) and \(\delta(t) \) are measurable functions such that
\[
\lim_{t \to \infty} c(t) = c \in (0, \infty) \quad \text{and} \quad \lim_{t \to \infty} \delta(t) = \rho.
\]

If the function \(c(t) \) in (2.1) (or (2.2)) is identically a constant on \([t_0, \infty)\), then the function \(f(t) \) (or \(g(t) \)) is called normalized slowly varying (or normalized regularly varying of index \(\rho \)) with respect to \(P(t) \). The totality of such functions is denoted by \(n-SV_P \) (or \(n-RV_P \)).

Proposition 2.5. Let \(f(t) \in SV_P \). Then, for any \(\gamma > 0 \),
\[
\lim_{t \to \infty} P(t)^{\gamma} f(t) = \infty \quad \text{and} \quad \lim_{t \to \infty} P(t)^{-\gamma} f(t) = 0.
\]

The Karamata’s integration theorem is generalized in the following manner.

Proposition 2.6 (The generalized Karamata’s integration theorem). Let \(f(t) \in n-SV_P \). Then
(i) If \(\gamma > -1 \),
\[
\int_{t_0}^{t} \frac{P(s)^{\gamma}}{p(s)^{\frac{1}{\alpha}}} f(s) \, ds \sim \frac{P(t)^{\gamma + 1}}{\gamma + 1} f(t) \quad \text{as} \quad t \to \infty;
\]
(ii) If \(\gamma < -1 \),
\[
\int_{t_0}^{t} \frac{P(t)^{\gamma}}{p(t)^{\frac{1}{\alpha}}} f(t) \, dt < \infty \quad \text{and}
\]
\[
\int_{t}^{\infty} \frac{P(s)^{\gamma}}{p(s)^{\frac{1}{\alpha}}} f(s) \, ds \sim -\frac{P(t)^{\gamma + 1}}{\gamma + 1} f(t) \quad \text{as} \quad t \to \infty.
\]
3. The Existence of Generalized Regularly Varying Solution of Self-Adjoint Differential Equation without Deviating Arguments

Theorem 3.1. Put \(F(t) = P(t)^\alpha \int_t^{\infty} f(s) \, ds \), \(\hat{F}(t) = \sup_{s \geq t} F(s) \),

\[
F_+(t, w) = |1 + F(t) - w|^{1 + \frac{1}{\alpha}} + \left(1 + \frac{1}{\alpha} \right) w - 1, \tag{3.1}
\]
and

\[
F_-(t, w) = 1 + \left(1 + \frac{1}{\alpha} \right) w - |1 + F(t) - w|^{1 + \frac{1}{\alpha}}. \tag{3.2}
\]

(i) The equation \((B_+)\) possesses a \(n\)-SV \(P\) solution \(x(t)\) having the expression

\[
x(t) = \exp \left\{ \int_{t_0}^t \left(\frac{v(s) + F(s)}{p(s)P(s)^{\alpha}} \right)^{\frac{1}{\alpha}} ds \right\}, \quad t \geq t_0 \tag{3.3}
\]
for some \(t_0 > a\), in which \(v(t)\) satisfies

\[
v(t) = \alpha P(t)^\alpha \int_t^{\infty} \left(\frac{v(s) + F(s)}{p(s)P(s)^{\alpha}} \right)^{1 + \frac{1}{\alpha}} ds, \quad t \geq t_0 \tag{3.4}
\]
and

\[
0 \leq v(t) \leq \hat{F}(t_0) \quad \text{for} \quad t \geq t_0 \tag{3.5}
\]
if and only if (1.5) holds.

(ii) The equation \((B_+)\) possesses a \(n\)-RV \(P(1)\) solution \(x(t)\) having the expression

\[
x(t) = \exp \left\{ \int_{t_1}^t \left(\frac{1 + F(s) - w(s)}{p(s)P(s)^{\alpha}} \right)^{\frac{1}{\alpha}} ds \right\}, \quad t \geq t_1 \tag{3.6}
\]
for some \(t_1 > a\), in which \(w(t)\) satisfies

\[
w(t) = \frac{\alpha}{P(t)} \int_t^{\infty} F_+(s, w(s)) \, ds, \quad t \geq t_1 \tag{3.7}
\]
and

\[
0 \leq w(t) \leq \sqrt{\hat{F}(t_1)} \quad \text{for} \quad t \geq t_1 \tag{3.8}
\]
if and only if (1.5) holds.

(iii) The equation \((B_-)\) possesses a \(n\)-SV \(P\) solution \(x(t)\) having the expression

\[
x(t) = \exp \left\{ \int_{t_0}^t \left(\frac{v(s) - F(s)}{p(s)P(s)^{\alpha}} \right)^{\frac{1}{\alpha}} ds \right\}, \quad t \geq t_0 \tag{3.9}
\]
for some $t_0 > a$, in which $v(t)$ satisfies
\[v(t) = \alpha P(t)^\alpha \int_t^\infty \frac{|x(s) - F(s)|^{1+\frac{1}{\alpha}}}{p(s)^{\frac{1}{\alpha}} P(s)^{\alpha+1}} ds, \quad t \geq t_0 \] (3.10)

and (3.5) if and only if (1.5) holds. Here, the meaning of the asterisk notation is defined by $\xi^{\gamma^*} = |\xi|^\gamma \text{sgn} \xi, \gamma > 0, \xi \in \mathbb{R}$.

(iv) The equation (B_-) possesses a n-RV$_P(1)$ solution $x(t)$ having the expression
\[x(t) = \exp \left\{ \int_{t_1}^t \left(\frac{1 - F(s) + w(s)}{P(s)P^{\alpha}(s)} \right)^{\frac{1}{\alpha}} ds \right\}, \quad t \geq t_1 \] (3.11)

for some $t_1 > a$, in which $w(t)$ satisfies
\[w(t) = \frac{\alpha}{P(t)} \int_t^\infty F_-(s, w(s)) ds, \quad t \geq t_1 \] (3.12)

and (3.8) if and only if (1.5) holds.

Our purpose in this section is to give a proof of the above Theorem 3.1. The following lemma will be needed for our purpose.

Lemma 3.1.
(i) If $x(t)$, a nonoscillatory solution of (B_\pm), is not zero on $[a, \infty)$, then the function $u(t) = p(t)\varphi(x'(t)/x(t))$ satisfies the generalized Riccati equation
\[u'(t) + \frac{|u(t)|^{1+\frac{1}{\alpha}}}{p(t)^{\frac{1}{\alpha}}} \pm f(t) = 0, \quad t \geq a. \] (C$_\pm$)

(ii) If $u(t)$ is a solution of (C$_\pm$), then the function
\[x(t) = \exp \left\{ \int_a^t \left(\frac{u(s)}{p(s)} \right)^{\frac{1}{\alpha^*}} ds \right\} \]
is a nonoscillatory solution of (B_\pm) on $[a, \infty)$.

Proof of Theorem 3.1. Since the idea of the proof of Theorem 3.1 for the equation (B_-) is similar to the way of proving the equation (B_+), we restrict our attention to the proof for equation (B_+). (The “only if” part): Let $x(t)$ be a positive solution of (B_+) belonging to n-SV$_P$ or n-RV$_P(1)$, respectively. Then, by the representation theorem,
\[x(t) = \exp \left\{ \int_{t_0}^t \frac{\delta(s)}{p(s)^{\frac{1}{\alpha}} P(s)} ds \right\}, \quad t \geq t_0, \]
for some $t_0 > a$, where $\lim_{t \to \infty} \delta(t) = 0$ or 1 according as $x(t) \in n$-SV$_P$ or $x(t) \in n$-RV$_P(1)$. Since the function
\[
u(t) = p(t)\varphi\left(\frac{x'(t)}{x(t)}\right) = \varphi\left(\frac{\delta(t)}{P(t)}\right)
\]
satisfies the generalized Riccati equation (C$_+$) and $\nu(t) \to 0$ as $t \to \infty$, we obtain
\[
u(t) = \alpha \int_t^\infty \frac{|P(s)^{\alpha}u(s)|^{1+\frac{1}{\alpha}}}{p(s)^{\frac{1}{\alpha}} P(s)^{\alpha+1}} \, ds + \int_t^\infty f(s) \, ds
\]
or
\[
u(t) = \alpha P(t)^\alpha \int_t^\infty \frac{|P(s)^{\alpha}u(s)|^{1+\frac{1}{\alpha}}}{p(s)^{\frac{1}{\alpha}} P(s)^{\alpha+1}} \, ds + P(t)^\alpha \int_t^\infty f(s) \, ds, \quad t \geq t_0.
\]

Letting $t \to \infty$ in (3.13), we easily conclude that (1.5) holds in either case of $P(t)^\alpha u(t) \to 0$ or $P(t)^\alpha u(t) \to 1$ as $t \to \infty$.

(The “if” part) Suppose that (1.5) holds.

(The existence of a n-SV$_P$ solution of (B$_+$)): Choose $t_0 > \max\{a, 1\}$ so large that
\[
\phi = (\hat{F}(t_0))^{\frac{1}{\alpha}} \max\left\{2, 1 + \frac{1}{\alpha}\right\} < 1,
\]
and define the set of continuous functions V and the integral operators \mathcal{F} by
\[
V = \left\{ v \in C_0[t_0, \infty) : 0 \leq v(t) \leq \hat{F}(t_0), \; t \geq t_0 \right\}
\]
and
\[
\mathcal{F}v(t) = \alpha P(t)^\alpha \int_t^\infty \frac{(v(s) + F(s))^{1+\frac{1}{\alpha}}}{p(s)^{\frac{1}{\alpha}} P(s)^{\alpha+1}} \, ds, \quad t \geq t_0,
\]
where $C_0[t_0, \infty)$ denotes the Banach space consisting of all continuous functions on $[t_0, \infty)$ and tend to 0 as $t \to \infty$ and equipped with the norm $\|v\|_0 = \sup_{t \geq t_0} |v(t)|$. It can be verified that \mathcal{F} is a contraction mapping on V.

In fact, using (3.14), we see that $v \in V$ implies $\lim_{t \to \infty} \mathcal{F}v(t) = 0$ and
\[
\mathcal{F}v(t) \leq \alpha (2\hat{F}(t_0))^{1 + \frac{1}{\alpha}} P(t)^\alpha \int_t^\infty \frac{ds}{p(s)^{\frac{1}{\alpha}} P(s)^{\alpha+1}} = (2\hat{F}(t_0))^{1 + \frac{1}{\alpha}} \leq \hat{F}(t_0),
\]
and that \(v_1, v_2 \in V \) implies
\[
\left| \left| v_1(t) + F(t) \right|^{1 + \frac{1}{\alpha}} - \left| v_2(t) + F(t) \right|^{1 + \frac{1}{\alpha}} \right| \leq
\[
\leq \left(1 + \frac{1}{\alpha} \right) 2 \tilde{F}(t_0)^{1 + \frac{1}{\alpha}} |v_1(t) - v_2(t)| \leq \phi |v_1(t) - v_2(t)|, \quad t \geq t_0,
\]
which ensures that \(F \) is a contraction mapping. Therefore, there exists a unique element \(v_0 \in V \) such that \(v_0 = Fv_0 \), that is,
\[
v_0(t) = a P(t)^{\alpha} \int_t^\infty \frac{(v_0(s) + F(s))^{1 + \frac{1}{\alpha}}}{p(s)^{1 + \frac{1}{\alpha}} P(s)^{\alpha + 1}} \, ds, \quad t \geq t_0.
\]
Obviously, \(v_0(t) \) satisfies the integral equation
\[
\left(\frac{v_0(t)}{P(t)^{\alpha}} \right)' + \frac{(v(t) + F(t))^{1 + \frac{1}{\alpha}}}{p(t)^{1 + \frac{1}{\alpha}} P(t)^{\alpha + 1}} = 0, \quad t \geq t_0.
\]
By virtue of the function \(v_0(t) \) we define the function
\[
x_0(t) = \exp \left\{ \int_t^{t_0} \left(\frac{1 + F(s) - w(s)}{p(s)P(s)^{\alpha}} \right)^{\frac{1}{\alpha}} ds \right\}, \quad t \geq t_0.
\]
Since the function \(u(t) = v_0(t) + F(t)/P(t)^{\alpha} \) satisfies the generalized Riccati equation (\(C_+ \)) associated with (B\(\alpha+1 \)) which is easily seen to be equivalent to (3.17), \(x_0(t) \) is a solution of the differential equation (B\(\alpha+1 \)).

(The existence of a n-RV\(\alpha+1 \) solution of (B\(\alpha+1 \))): We will construct a n-RV\(\alpha+1 \) solution of (B\(\alpha+1 \)). Let us consider the function
\[
x(t) = \exp \left\{ \int_t^{t_1} \left(\frac{1 + F(s) - w(s)}{p(s)P(s)^{\alpha}} \right)^{\frac{1}{\alpha}} ds \right\}, \quad t \geq t_1
\]
for some \(t_1 > a \) to be determined later. According to (ii) of Lemma 3.1, the function \(x(t) \) is a solution of (B\(\alpha+1 \)) on \([t_1, \infty)\) if \(w(t) \) is chosen in such way that \(u(t) = 1 + F(t) - w(t)/P(t)^{\alpha} \) satisfies the generalized Riccati equation (C\(\alpha+1 \)) on \([t_1, \infty)\). Then the differential equation for \(w(t) \) is derived:
\[
w'(t) - \frac{\alpha}{p(t)^{\frac{1}{\alpha}} P(t)} w(t) + \frac{\alpha}{p(t)^{\frac{1}{\alpha}} P(t)} \left[1 - \left| 1 + F(t) - w(t) \right|^{1 + \frac{1}{\alpha}} \right] = 0.
\]
We rewrite (3.19) as
\[
(P(t)w(t))' - \frac{\alpha}{p(t)^{\frac{1}{\alpha}}} F_+(t, w(t)) = 0,
\]
where \(F_+(t, w(t)) \) is defined with (3.1). It is convenient to express \(F_+(t, w) \) as
\[
F_+(t, w) = G(t, w) + H(t, w) + k(t),
\]
with \(G(t, w), H(t, w) \) and \(k(t) \) defined, respectively, by
\[
G(t, w) = |1 + F(t) - w|^{1 + \frac{1}{\alpha}} + \left(1 + \frac{1}{\alpha} \right)(1 + F(t))^{\frac{1}{\alpha}} w - (1 + F(t))^{1 + \frac{1}{\alpha}},
\]
and
\[
H(t, w) = \left(1 + \frac{1}{\alpha} \right) \left(1 + F(t) \right)^{\frac{1}{\alpha}} w.
\]
\[H(t, w) = \left(1 + \frac{1}{\alpha} \right) \left(1 - (1 + F(t))^{\frac{1}{\alpha}} \right) w, \quad (3.23) \]

and

\[k(t) = (1 + F(t))^{1 + \frac{1}{\alpha}} - 1. \quad (3.24) \]

Since \(F(t) \to 0 \) as \(t \to \infty \) by hypothesis, we can choose \(t_1 > \max\{a, 1\} \) such that

\[\left(1 + \frac{1}{\alpha} \right) [K + L + \alpha] \sqrt{\hat{F}(t_1)} \leq 1, \quad (3.25) \]

where \(K \) and \(L \) are positive constants such that

\[
K = \begin{cases}
\left(\frac{4}{3} \right)^{\frac{1 - \alpha}{2}} & \text{if } \alpha > 1; \\
\left(\frac{3}{2} \right)^{\frac{\alpha - 1}{2}} & \text{if } \alpha \leq 1.
\end{cases} \quad (3.26)
\]

Noting that since \(1 + 1/\alpha > 1 \) and \(K + L + \alpha \geq 2 \), we have in view of (3.25) that \(\sqrt{\hat{F}(t_1)} \leq 1/2 \) and \(F(t) \leq 1/4 \) for all \(t \geq t_1 \). It is easily shown that, using the mean value theorem and L'Hospital rule, the following inequalities hold for (3.22), (3.23) and (3.24):

\[
| \frac{\partial G(t, w)}{\partial w} | \leq \frac{1}{\alpha} \left(1 + \frac{1}{\alpha} \right) K |w|, \quad (3.27)
\]

\[
| \frac{\partial H(t, w)}{\partial w} | \leq \frac{1}{\alpha} \left(1 + \frac{1}{\alpha} \right) L F(t), \quad (3.28)
\]

\[
| G(t, w) | \leq \frac{1}{\alpha} \left(1 + \frac{1}{\alpha} \right) L w^2, \quad (3.29)
\]

\[
| H(t, w) | \leq \frac{1}{\alpha} \left(1 + \frac{1}{\alpha} \right) L F(t) |w|, \quad (3.30)
\]

and

\[
| k(t) | \leq \left(1 + \frac{1}{\alpha} \right) F(t) \quad (3.31)
\]

for \(t \geq t_1 \) and for \(|w| \leq 1/4 \).

Consider the set \(W \subset C_0[t_1, \infty) \) defined by

\[
W = \left\{ w \in C_0[t_1, \infty) : |w(t)| \leq \sqrt{\hat{F}(t_1)}, \ t \geq t_1 \right\} \quad (3.32)
\]

and define the integral operator \(\mathcal{G} : W \to C_0[t_1, \infty) \) by

\[
\mathcal{G}w(t) = \frac{\alpha}{P(t)} \int_{t_1}^{t} \frac{F_+(s, w(s))}{p(s)^{1/2}} \, ds, \quad t \geq t_1, \quad (3.33)
\]

where \(F_+(t, w) \) is given by (3.1). Then, it can be shown that \(\mathcal{G} \) is a contraction mapping on \(W \). In fact, if \(w \in W \), then, by means of (3.29)–(3.31)
and (3.25), we can see that

\[|Gw(t)| \leq \frac{\alpha}{P(t)} \int_{t_1}^{t} \frac{1}{p(s)^{\frac{1}{p}}} \left[|G(s,w)| + |H(s,w)| + |k(s)| \right] ds \leq \]

\[\leq \left(1 + \frac{1}{\alpha}\right) \frac{1}{P(t)} \int_{t_1}^{t} \frac{1}{p(s)^{\frac{1}{p}}} \left[Lw(s)^2 + L\hat{F}(s)|w(s)| + \alpha F(s) \right] ds \leq \]

\[\leq \left(1 + \frac{1}{\alpha}\right) \left[L\hat{F}(t_1) + L\hat{F}(t_1)^{\frac{3}{2}} + \alpha\hat{F}(t_1) \right] \]

\[= \left(1 + \frac{1}{\alpha}\right) \hat{F}(t_1) \left[L + L\sqrt{\hat{F}(t_1)} + \alpha \right] \leq \]

\[\leq \sqrt{\hat{F}(t_1)} \left(1 + \frac{1}{\alpha}\right)[K + L + \alpha] \sqrt{\hat{F}(t_1)} \leq \sqrt{\hat{F}(t_1)}, \quad t \geq t_1. \]

Since \(F_+(t, w(t)) \to 0 \) as \(t \to \infty \), we obtain \(\lim_{t \to \infty} Gw(t) = 0 \). Thus, it follows that \(Gw \in W \), and hence \(G \) maps \(W \) into itself. Moreover, if \(w_1, w_2 \in W \), then, using (3.27) and (3.28), we obtain

\[|Gw_1(t) - Gw_2(t)| \leq \frac{\alpha}{P(t)} \times \]

\[\times \int_{t_1}^{t} \frac{1}{p(s)^{\frac{1}{p}}} \left[|G(s,w_1(s)) - G(s,w_2(s))| + |H(s,w_1(s)) - H(s,w_2(s))| \right] ds \leq \]

\[\leq \left(1 + \frac{1}{\alpha}\right) \sqrt{\hat{F}(t_1)} \left[K + L\sqrt{\hat{F}(t_1)} \right] \|w_1 - w_2\|_0 \leq \]

\[\leq \left(1 + \frac{1}{\alpha}\right)[K + L] \sqrt{\hat{F}(t_1)} \|w_1 - w_2\|_0, \]

which implies that

\[\|Gw_1 - Gw_2\|_0 \leq \left(1 + \frac{1}{\alpha}\right)[K + L] \sqrt{\hat{F}(t_1)} \|w_1 - w_2\|_0. \]

In view of (3.25) this shows that \(G \) is a contraction mapping on \(W \). Therefore, the contraction mapping principle ensures the existence of a unique fixed element \(w_1 \in W \) such that \(w_1 = Gw_1 \), which is equivalent to the integral equation

\[w_1(t) = \frac{\alpha}{P(t)} \int_{t_1}^{t} \frac{F_+(s,w_1(s))}{p(s)^{\frac{1}{p}}} ds, \quad t \geq t_1. \quad (3.34) \]

Differentiation of (3.34) shows that \(w_1(t) \) satisfies the differential equation (3.20), and substitution of this \(w_1(t) \) into (3.6) gives rise to a solution \(x(t) \) of the half-linear differential equation \((B_+) \) defined on \([t_1, \infty)\). Furthermore, since \(\lim_{t \to \infty} w_1(t) = 0 \), it follows from the representation theorem that
$x(t) \in n$-RV$_P$(1). This completes the proof of Theorem 3.1 for the equation (B$_+$).

\[(p(t)\varphi(x'(t)))' + \tilde{f}(t)\varphi(x(t)) = 0, \quad (\tilde{B}_+) \]

Remark 3.1. Consider another half-linear differential equation

\[(p(t)\varphi(x'(t)))' + \tilde{f}(t)\varphi(x(t)) = 0, \quad (\tilde{B}_+) \]

where $\tilde{f}(t)$ is a positive continuous function such that

\[\tilde{f}(t) \geq f(t), \quad t \geq a \]

and

\[\lim_{t \to \infty} P(t)^\alpha \int_t^\infty \tilde{f}(s) \, ds = 0. \]

We take $t_0 > \max\{a, 1\}$ so large that

\[(2F(t_0))^\frac{\alpha}{\beta} \max\left\{2, 1 + \frac{1}{\alpha}\right\} < 1 \]

where $F(t) = P(t)^\alpha \int_t^\infty \tilde{f}(s) \, ds$.

Then, by means of Theorem 3.1, both $x_0(t)$ and $\tilde{x}_0(t)$ are given, respectively, by (3.3) and

\[\tilde{x}_0(t) = \exp \left\{ \int_{t_0}^t \left(\frac{\tilde{v}_0(s) + \tilde{F}(s)}{p(s)P(s)^\alpha} \right)^{\frac{1}{\beta}} \right\} ds, \quad t \geq t_0, \]

where $\tilde{v}_0(t)$ is a solution of the integral equation

\[\tilde{v}_0(t) = \alpha P(t)^\alpha \int_t^\infty \frac{(\tilde{v}_0(s) + \tilde{F}(s))^{1+\frac{1}{\beta}}}{p(s)^{\frac{1}{\beta}}P(s)^{\alpha+1}} \, ds, \quad t \geq t_0. \]

We here compare $x_0(t)$ with $\tilde{x}_0(t)$. From the proof of Theorem 3.1, $v_0(t)$ and $\tilde{v}_0(t)$ are the fixed points of the contraction mapping F and \tilde{F} given, respectively, by (3.16) and

\[\tilde{F}(t) = \alpha P(t)^\alpha \int_t^\infty \frac{(\tilde{v}_0(s) + \tilde{F}(s))^{1+\frac{1}{\beta}}}{p(s)^{\frac{1}{\beta}}P(s)^{\alpha+1}} \, ds, \quad t \geq t_0. \]

Noting that $v_0(t)$ and $\tilde{v}_0(t)$ are the limit points of uniform convergence on $[t_0, \infty)$ of the sequences defined by

\[v_{n+1}(t) = Fv_n(t), \quad t \geq t_0, \quad n = 1, 2, \ldots, \quad v_1(t) = 0 \]

and

\[\tilde{v}_{n+1}(t) = \tilde{F}\tilde{v}_n(t), \quad t \geq t_0, \quad n = 1, 2, \ldots, \quad \tilde{v}_1(t) = 0. \]

We conclude that $\tilde{v}_0(t) \geq v_0(t)$, $t \geq t_0$, which implies that $\tilde{x}_0(t) \geq x_0(t)$ for $t \geq t_0$.

In this section we first present the proof of Theorem 1.1 for equation (A_+) and then give the proof for the equation (A_-).

4.1. The proof of Theorem 1.1 for the equation (A_+). (The “only if” part) Suppose that there exists a positive solution $x_1(t) \in n$-SV$_P$ or $x_2(t) \in n$-RV$_P(1)$ of (A_+). The equation (A_+) can be written as the half-linear differential equation without retarded and advanced arguments

$$\left(p(t)\varphi(x'(t))\right)' + \sum_{i=1}^{n} [q_{x,g_i}(t) + r_{x,h_i}(t)] \varphi(x(t)) = 0, \quad (4.1)$$

where

$$q_{x,g_i}(t) = q_i(t) \varphi\left(\frac{x(g_i(t))}{x(t)}\right) \quad \text{and} \quad r_{x,h_i}(t) = r_i(t) \varphi\left(\frac{x(h_i(t))}{x(t)}\right), \quad i = 1, 2, \ldots, n. \quad (4.2)$$

Here, applying Theorem 3.1, we see that

$$\lim_{t \to \infty} P(t)^{\alpha} \int_{t}^{\infty} \left[q_{x,g_i}(s) + r_{x,h_i}(s)\right] ds = 0$$

or

$$\lim_{t \to \infty} P(t)^{\alpha} \int_{t}^{\infty} q_{x,g_i}(s) ds = \lim_{t \to \infty} P(t)^{\alpha} \int_{t}^{\infty} r_{x,h_i}(s) ds = 0.$$

By the representation theorem, $x_j(t), j = 1, 2$ can be expressed as

$$x_j(t) = \exp\left\{ \int_{t_0}^{t} \frac{\delta_j(s)}{p(s)^{\frac{1}{\alpha}} P(s)} ds \right\}, \quad j = 1, 2$$

for some $t_0 > a$, where $\delta_j(t)$ satisfies

$$\lim_{t \to \infty} \delta_j(t) = \begin{cases} 0 & (j = 1) \\ 1 & (j = 2). \end{cases}$$

The solutions $x_j(t), j = 1, 2$ satisfy

$$\frac{x_j(g_i(t))}{x_j(t)} = \exp\left\{ - \int_{g_i(t)}^{t} \frac{\delta_j(s)}{p(s)^{\frac{1}{\alpha}} P(s)} ds \right\}, \quad t \geq t_1,$$

and

$$\frac{x_j(h_i(t))}{x_j(t)} = \exp\left\{ \int_{t}^{h_i(t)} \frac{\delta_j(s)}{p(s)^{\frac{1}{\alpha}} P(s)} ds \right\}, \quad t \geq t_1,$$
respectively, where \(t_i \) is such that \(g_i(t_i) \geq t_0, \ i = 1, 2, \ldots, n \). Then, using the properties of \(\delta_j(t) \), (1.7) and (1.8), we see that

\[
\int_{g_i(t)}^{t} \frac{\|\delta_j(s)\|}{p(s)P(s)} \, ds \leq \sup_{s \geq g_i(t)} |\delta_j(s)| \cdot \log \frac{P(t)}{P(g_i(t))} \to 0 \text{ as } t \to \infty
\]

and

\[
\int_{t}^{h_i(t)} \frac{\|\delta_j(s)\|}{p(s)P(s)} \, ds \leq \sup_{s \geq t} |\delta_j(s)| \cdot \log \frac{P(h_i(t))}{P(t)} \to 0 \text{ as } t \to \infty.
\]

Thus, it follows that

\[
\lim_{t \to \infty} \frac{x_j(g_i(t))}{x_j(t)} = \lim_{t \to \infty} \frac{x_j(h_i(t))}{x_j(t)} = 1, \ i = 1, 2, \ldots, n, \ j = 1, 2. \tag{4.3}
\]

Consequently, from (4.3) we find that (1.9) holds.

(The “if” part)

(1) The existence of a n-SV solution of \((A_+))\): Suppose that (1.9) is satisfied. Choose \(t_0 > a \) so large that \(t_* = \min_{i=1,2,\ldots,n} \left\{ \inf_{t \geq t_0} g_i(t) \right\} > \max\{a,1\}, \)

\[
\left\{ 2 \sum_{i=1}^{n} \left[\hat{Q}_i(t_0) + 2^n \hat{R}_i(t_0) \right] \right\}^{\frac{1}{2}} \max \left\{ 2, 1 + \frac{1}{\alpha} \right\} < 1 \tag{4.4}
\]

and

\[
\left(2 \sum_{i=1}^{n} [Q_i(t_0) + 2^n R_i(t_0)] \right)^{\frac{1}{2}} \log \frac{P(h_i(t))}{P(t)} \leq \log 2, \ t \geq t_0, \tag{4.5}
\]

where \(Q_i(t), R_i(t), \hat{Q}_i(t) \) and \(\hat{R}_i(t) \) for \(i = 1, 2, \ldots, n \) are defined by

\[
Q_i(t) = P(t)\alpha \int_{t}^{\infty} q_i(s) \, ds, \quad \hat{Q}_i(t) = \sup_{s \geq t} Q_i(s) \tag{4.6}
\]

and

\[
R_i(t) = P(t)\alpha \int_{t}^{\infty} r_i(s) \, ds, \quad \hat{R}_i(t) = \sup_{s \geq t} R_i(s). \tag{4.7}
\]

Let \(\Xi \) denote the set of all positive continuous nondecreasing functions \(\xi(t) \) on \([t_*, \infty)\) satisfying

\[
\xi(t) = 1 \text{ for } t_* \leq t \leq t_0; \tag{4.8}
\]

\[
\xi(t) \leq \exp \left\{ \int_{t_0}^{\infty} \left(\frac{v_0(s) + \sum_{i=1}^{n} [Q_i(s) + 2^n R_i(s)]}{p(s)P(s)^\alpha} \right)^{\frac{1}{2}} \, ds \right\} \text{ for } t \geq t_0; \tag{4.9}
\]

\[
\frac{\xi(h_i(t))}{\xi(t)} \leq 2 \text{ for } t \geq t_0 \tag{4.10}
\]
for \(i = 1, 2, \ldots, n \), where \(v_0(t) \) satisfies the following integral equation:

\[
v_0(t) = \alpha P(t)^{\alpha} \int_{t_0}^{\infty} \left[v_0(s) + \sum_{i=1}^{n} [Q_i(s) + 2^\alpha R_i(s)] \right]^{1 + \frac{\alpha}{2}} \frac{ds}{p(s)^{3/2} P(s)^{\alpha+1}} \quad t \geq t_0. \tag{4.11}
\]

We note that the function

\[
X_0(t) = \exp \left\{ \int_{t_0}^{t} \left(v_0(s) + \sum_{i=1}^{n} [Q_i(s) + 2^\alpha R_i(s)] \right) \frac{ds}{p(s) P(s)^{\alpha}} \right\}, \quad t \geq t_0 \tag{4.12}
\]

is a solution of the half-linear differential equation

\[
(p(t)\phi(x'(t)))' + \sum_{i=1}^{n} [q_i(t) + 2^\alpha r_i(t)] \phi(x(t)) = 0, \tag{4.13}
\]

since the function

\[
u(t) = \frac{v_0(t) + \sum_{i=1}^{n} [Q_i(t) + 2^\alpha R_i(t)]}{P(t)^{\alpha}} \tag{4.14}
\]

satisfies the generalized Riccati equation

\[
u'(t) + \alpha \left| \frac{u(t)}{p(t)^{3/2}} \right|^{1 + \frac{\alpha}{2}} + \sum_{i=1}^{n} [q_i(t) + 2^\alpha r_i(t)] = 0. \tag{4.15}
\]

Since \(v_0(t) + \sum_{i=1}^{n} [Q_i(t) + 2^\alpha R_i(t)] \to 0 \) as \(t \to \infty \), \(X_0(t) \) is a normalized slowly varying function with respect to \(P(t) \) by the representation theorem. It is obvious that \(\Xi \) is a nonvoid closed and convex subset of the locally convex space \(C[t_0, \infty) \) of all continuous functions on \([t_0, \infty) \) equipped with the metric topology of uniform convergence on compact subintervals of \([t_0, \infty) \).

For any \(\xi \in \Xi \), we define \(q_{\xi,g_i}(t) \) and \(r_{\xi,h_i}(t) \) by

\[
q_{\xi,g_i}(t) = q_i(t) \phi\left(\frac{\xi(g_i(t))}{\xi(t)} \right) \quad \text{and} \quad r_{\xi,h_i}(t) = r_i(t) \phi\left(\frac{\xi(h_i(t))}{\xi(t)} \right), \tag{4.16}
\]

respectively. Taking into account (4.10), we have

\[
\sum_{i=1}^{n} q_{\xi,g_i}(t) \leq \sum_{i=1}^{n} q_i(t), \quad \sum_{i=1}^{n} r_{\xi,h_i}(t) \leq 2^\alpha \sum_{i=1}^{n} r_i(t), \tag{4.17}
\]

and accordingly,

\[
\sum_{i=1}^{n} Q_{\xi,g_i}(t) \leq \sum_{i=1}^{n} Q_i(t), \quad \sum_{i=1}^{n} R_{\xi,h_i}(t) \leq 2^\alpha \sum_{i=1}^{n} R_i(t) \tag{4.18}
\]

where \(Q_{\xi,g_i}(t) \) and \(R_{\xi,h_i}(t) \) are defined by

\[
Q_{\xi,g_i}(t) = P(t)^{\alpha} \int_{t}^{\infty} q_{\xi,g_i}(s) \, ds, \quad R_{\xi,h_i}(t) = P(t)^{\alpha} \int_{t}^{\infty} r_{\xi,h_i}(s) \, ds. \tag{4.19}
\]
Consequently, it follows from (4.4) that

\[
\left\{ 2 \sum_{i=1}^{n} \left[\hat{Q}_{\xi,g_{i}}(t_{0}) + 2^{\alpha} \hat{R}_{\xi,h_{i}}(t_{0}) \right] \right\} \frac{1}{\alpha} \max \left\{ 2, 1 + \frac{1}{\alpha} \right\} < 1, \tag{4.20} \]

where \(\hat{Q}_{\xi,g_{i}}(t) = \sup_{s \geq t} Q_{\xi,g_{i}}(s) \) and \(\hat{R}_{\xi,h_{i}}(t) = \sup_{s \geq t} R_{\xi,h_{i}}(s) \). Thus, Theorem 3.1 implies that for any \(\xi \in \Xi \) the half-linear differential equation

\[
(p(t) \varphi(x'(t)))' + \sum_{i=1}^{n} \left[q_{x,g_{i}}(t) + r_{x,h_{i}}(t) \right] \varphi(x(t)) = 0 \tag{4.21} \]

has a \(n \)-SV \(_P\) solution

\[
X_{\xi}(t) = \exp \left\{ \frac{1}{\alpha} \int_{t_{0}}^{t} \left(\frac{v_{\xi}(s) + \sum_{i=1}^{n} [Q_{\xi,g_{i}}(s) + R_{\xi,h_{i}}(s)]}{p(s)P(s)^{\alpha}} \right) \frac{1}{\alpha} ds \right\}, \quad t \geq t_{0}, \tag{4.22} \]

where \(v_{\xi}(t) \) is a solution of the integral equation

\[
v_{\xi}(t) = \alpha P(t)^{\alpha} \int_{t_{0}}^{t} \left(\frac{v_{\xi}(s) + \sum_{i=1}^{n} [Q_{\xi,g_{i}}(s) + R_{\xi,h_{i}}(s)]}{p(s)P(s)^{\alpha+1}} \right)^{1+\frac{1}{\alpha}} ds, \quad t \geq t_{0}, \tag{4.23} \]

and satisfies

\[
0 \leq v_{\xi}(t) \leq \sum_{i=1}^{n} \left[\hat{Q}_{\xi,g_{i}}(t_{0}) + \hat{R}_{\xi,h_{i}}(t_{0}) \right] \leq \sum_{i=1}^{n} \left[\hat{Q}_{i}(t_{0}) + 2^{\alpha} \hat{R}_{i}(t_{0}) \right] \quad \text{for} \quad t \geq t_{0}. \]

Let us now define the mapping \(\Phi \) which assigns to each \(\xi \in \Xi \) the function given by

\[
\Phi \xi(t) = 1 \quad \text{for} \quad t_{*} \leq t \leq t_{0}, \quad \Phi \xi(t) = X_{\xi}(t) \quad \text{for} \quad t \geq t_{0}. \tag{4.24} \]

To apply the Schauder–Tychonoff fixed point theorem to \(\Phi \) we will show that \(\Phi \) is a continuous mapping which sends \(\Xi \) into a relatively compact subset of \(\Xi \).

(i) \(\Phi \) maps \(\Xi \) into itself. Let \(\xi \in \Xi \). Then

\[
\Phi \xi(t) = X_{\xi}(t) = \exp \left\{ \frac{1}{\alpha} \int_{t_{0}}^{t} \left(\frac{v_{\xi}(s) + \sum_{i=1}^{n} [Q_{\xi,g_{i}}(s) + R_{\xi,h_{i}}(s)]}{p(s)P(s)^{\alpha}} \right) \frac{1}{\alpha} ds \right\} \leq \exp \left\{ \frac{1}{\alpha} \int_{t_{0}}^{t} \left(\frac{v_{\xi}(s) + \sum_{i=1}^{n} [Q_{i}(s) + 2^{\alpha} R_{i}(s)]}{p(s)P(s)^{\alpha}} \right) \frac{1}{\alpha} ds \right\} \leq \exp \left\{ \frac{1}{\alpha} \int_{t_{0}}^{t} \left(\frac{v_{0}(s) + \sum_{i=1}^{n} [Q_{i}(s) + 2^{\alpha} R_{i}(s)]}{p(s)P(s)^{\alpha}} \right) \frac{1}{\alpha} ds \right\}, \quad t \geq t_{0}, \]

\[
\leq \exp \left\{ \frac{1}{\alpha} \int_{t_{0}}^{t} \left(\frac{v_{\xi}(s) + \sum_{i=1}^{n} [Q_{\xi,g_{i}}(s) + R_{\xi,h_{i}}(s)]}{p(s)P(s)^{\alpha}} \right) \frac{1}{\alpha} ds \right\} \leq \exp \left\{ \frac{1}{\alpha} \int_{t_{0}}^{t} \left(\frac{v_{\xi}(s) + \sum_{i=1}^{n} [Q_{\xi,g_{i}}(s) + R_{\xi,h_{i}}(s)]}{p(s)P(s)^{\alpha}} \right) \frac{1}{\alpha} ds \right\}, \quad t \geq t_{0}, \]

\[
\leq \exp \left\{ \frac{1}{\alpha} \int_{t_{0}}^{t} \left(\frac{v_{\xi}(s) + \sum_{i=1}^{n} [Q_{\xi,g_{i}}(s) + R_{\xi,h_{i}}(s)]}{p(s)P(s)^{\alpha}} \right) \frac{1}{\alpha} ds \right\}, \quad t \geq t_{0}, \]
where we make use of the fact that \(v_\xi(t) \leq v_0(t) \), \(t \geq t_0 \) for all \(\xi \in \Xi \) (cf. Remark 3.1). Furthermore, since \(v_\xi(t) \leq \sum_{i=1}^n [\tilde{Q}_i(t_0) + 2^n \tilde{R}_i(t_0)] \), using (4.5), we see that

\[
\Phi(\xi(h_i(t))) = \exp \left\{ \int_{t_0}^{t} \left(\frac{v_\xi(s) + \sum_{i=1}^n [Q_\xi,g_i(s) + R_\xi,h_i(s)]}{p(s)P(s)^\alpha} \right)^{\frac{1}{\alpha}} ds \right\} \leq \exp \left\{ \left(2 \sum_{i=1}^n [\tilde{Q}_i(t_0) + 2^n \tilde{R}_i(t_0)] \right)^{\frac{1}{\alpha}} \int_{t_0}^{t} \frac{ds}{p(s)P(s)} \right\} = \exp \left\{ \left(2 \sum_{i=1}^n [\tilde{Q}_i(t_0) + 2^n \tilde{R}_i(t_0)] \right)^{\frac{1}{\alpha}} \log \frac{P(h_i(t))}{P(t)} \right\} \leq 2, \ t \geq t_0.
\]

This shows that \(\Phi \xi \in \Xi \), that is, \(\Phi \) is a self-map on \(\Xi \).

(ii) \(\Phi(\Xi) \) is relatively compact in \(C[t_\ast, \infty) \). Since \(\Phi \) maps \(\Xi \) into itself, that is, \(\Phi(\Xi) \subset \Xi \), \(\Phi(\Xi) \) is locally uniformly bounded on \([t_\ast, \infty) \), and since \(\xi \in \Xi \) implies

\[
0 \leq \frac{d}{dt} \Phi \xi(t) = \frac{d}{dt} X_\xi(t) = \exp \left\{ \left(\frac{v_\xi(t) + \sum_{i=1}^n [Q_\xi,g_i(t) + R_\xi,h_i(t)]}{p(t)P(t)^\alpha} \right)^{\frac{1}{\alpha}} \right\} \times \left(\frac{v_\xi(t) + \sum_{i=1}^n [Q_\xi,g_i(t) + R_\xi,h_i(t)]}{p(t)P(t)^\alpha} \right)^{\frac{1}{\alpha}} \leq \exp \left\{ \left(2 \sum_{i=1}^n [\tilde{Q}_i(t_0) + 2^n \tilde{R}_i(t_0)] \right)^{\frac{1}{\alpha}} \log \frac{P(t)}{P(t_0)} \right\} \times \left(\frac{2 \sum_{i=1}^n [\tilde{Q}_i(t_0) + 2^n \tilde{R}_i(t_0)]}{p(t)P(t)^\alpha} \right)^{\frac{1}{\alpha}},
\]

\(\Phi(\Xi) \) is locally equi-continuous on \([t_\ast, \infty) \). From the Arzela–Ascoli lemma it then follows that \(\Phi(\Xi) \) is relatively compact in \(C[t_\ast, \infty) \).

(iii) \(\Phi \) is a continuous mapping. Let \(\{\xi_m(t)\} \) be a sequence of functions in \(\Xi \) converging to \(\delta(t) \) uniformly on the compact subintervals of \([t_\ast, \infty) \). To prove the continuity of \(\Phi \), we have to prove that \(\{\Phi \xi_m(t)\} \) converges to \(\Phi \delta(t) \) uniformly on compact subintervals in \([t_\ast, \infty) \). Applying the mean
value theorem, for $t \geq t_\ast$ we obtain

$$|\Phi_{\xi}(t) - \Phi_{\delta}(t)| = |X_{\xi}(t) - X_{\delta}(t)| =$$

$$\left| \exp \left\{ \int_{t_0}^{t} \left(\frac{v_{\xi}(s) + \sum_{i=1}^{n} [Q_{\xi,g_i}(s) + R_{\xi,h_i}(s)]}{p(s)P(s)} \right)^\frac{1}{\alpha} ds \right\} - \exp \left\{ \int_{t_0}^{t} \left(\frac{v_{\delta}(s) + \sum_{i=1}^{n} [Q_{\delta,g_i}(s) + R_{\delta,h_i}(s)]}{p(s)P(s)} \right)^\frac{1}{\alpha} ds \right\} \right| \leq \exp \left\{ \int_{t_0}^{t} \left(\frac{v_{0}(s) + \sum_{i=1}^{n} [\hat{Q}_i(s) + 2^\alpha \hat{R}_i(s)]}{p(s)P(s)} \right)^\frac{1}{\alpha} ds \right\} \times$$

$$\times \left| \int_{t_0}^{t} \frac{1}{P(s)^{\alpha}} \left(\frac{v_{\xi}(s) + \sum_{i=1}^{n} [Q_{\xi,g_i}(s) + R_{\xi,h_i}(s)]}{P(s)} \right)^\frac{1}{\alpha} ds \right| \left(\frac{v_{\delta}(s) + \sum_{i=1}^{n} [Q_{\delta,g_i}(s) + R_{\delta,h_i}(s)]}{P(s)} \right)^\frac{1}{\alpha} ds.$$

By means of the inequality $|x^\lambda - y^\lambda| \leq |x - y|^\lambda$ for $x, y \in \mathbb{R}^+$ and $0 < \lambda < 1$, we find that the integrand of the last integral in the previous inequality is bounded from above by the function

$$\left(\frac{v_{\xi}(t) + \sum_{i=1}^{n} [Q_{\xi,g_i}(t) + R_{\xi,h_i}(t)]}{P(t)^{\alpha}} \right)^\frac{1}{\alpha} - \left(\frac{v_{\delta}(t) + \sum_{i=1}^{n} [Q_{\delta,g_i}(t) + R_{\delta,h_i}(t)]}{P(t)^{\alpha}} \right)^\frac{1}{\alpha} \leq$$

$$\left(\frac{|v_{\xi}(t) - v_{\delta}(t)| + \sum_{i=1}^{n} |Q_{\xi,g_i}(t) - Q_{\delta,g_i}(t)| + \sum_{i=1}^{n} |R_{\xi,h_i}(t) - R_{\delta,h_i}(t)|}{P(t)^{\alpha}} \right)^{\frac{1}{\alpha}}$$

if $\alpha > 1$.

Similarity, using the mean value theorem, we find that

$$\left(\frac{v_{\xi}(t) + \sum_{i=1}^{n} [Q_{\xi,g_i}(t) + R_{\xi,h_i}(t)]}{P(t)^{\alpha}} \right)^\frac{1}{\alpha} - \left(\frac{v_{\delta}(t) + \sum_{i=1}^{n} [Q_{\delta,g_i}(t) + R_{\delta,h_i}(t)]}{P(t)^{\alpha}} \right)^\frac{1}{\alpha} \leq$$
The convergence of the second sequence in (4.25) follows from the Lebesgue theorem. Therefore, we have

\[|v_{\xi_m}(t) - v_\delta(t)| + \sum_{i=1}^n |Q_{\xi_m,g_i}(t) - Q_{\delta,g_i}(t)| + \sum_{i=1}^n |R_{\xi_m,h_i}(t) - R_{\delta,h_i}(t)| \]

\[\leq C_1 \frac{1}{P(t)^{\alpha}} \]

where \(C_1 \) is a constant depending only on \(\alpha, \hat{Q}_i(t_0) \) and \(\hat{R}_i(t_0) \). Accordingly, the continuity of \(\Phi \) is guaranteed if we prove that the two sequences

\[\frac{|v_{\xi_m}(t) - v_\delta(t)|}{P(t)^{\alpha}}, \sum_{i=1}^n |Q_{\xi_m,g_i}(t) - Q_{\delta,g_i}(t)| + \sum_{i=1}^n |R_{\xi_m,h_i}(t) - R_{\delta,h_i}(t)| \]

(4.25)

converge to 0 on any compact subinterval of \([t_*, \infty)\). In fact, it can be shown more strongly that they converge to 0 uniformly on \([t_*, \infty)\). The uniform convergence of the second sequence in (4.25) follows from the Lebesgue dominated convergence theorem applied to the inequality

\[\sum_{i=1}^n |Q_{\xi_m,g_i}(t) - Q_{\delta,g_i}(t)| + \sum_{i=1}^n |R_{\xi_m,h_i}(t) - R_{\delta,h_i}(t)| \]

\[\leq \int_t^\infty \left[\sum_{i=1}^n q_i(s) \left| \varphi \left(\frac{\xi_m(g_i(s))}{\xi_m(s)} \right) - \varphi \left(\frac{\xi_m(h_i(s))}{\xi_m(s)} \right) \right| + \right. \]

\[\left. + \sum_{i=1}^n r_i(s) \left| \varphi \left(\frac{\xi_m(h_i(s))}{\xi_m(s)} \right) - \varphi \left(\frac{\delta(h_i(s))}{\delta(s)} \right) \right| \right] ds \]

for \(t \geq t_0 \). To examine the first sequence in (4.25) we proceed as follows. Using (4.23) and the mean value theorem, we obtain

\[\frac{|v_{\xi_m}(t) - v_\delta(t)|}{P(t)^{\alpha}} \leq \alpha \int_t^\infty \frac{1}{p(s)^{\frac{\alpha}{2}} P(s)^{\alpha+1}} \times \left(v_{\xi_m}(s) + \sum_{i=1}^n [Q_{\xi_m,g_i}(s) + R_{\xi_m,h_i}(s)] \right)^{1 + \frac{1}{\alpha}} \]

\[\times \left(v_\delta(s) + \sum_{i=1}^n [Q_{\delta,g_i}(s) + R_{\delta,h_i}(s)] \right)^{1 + \frac{1}{\alpha}} ds. \]

Therefore, we have

\[\frac{|v_{\xi_m}(t) - v_\delta(t)|}{P(t)^{\alpha}} \leq \alpha \tau_1 \left[\int_t^\infty \frac{1}{p(s)^{\frac{\alpha}{2}}} \left| \frac{v_{\xi_m}(s) - v_\delta(s)}{P(s)^{\alpha+1}} \right| ds + \int_t^\infty \frac{1}{p(s)^{\frac{\alpha}{2}}} \frac{S_m,n(s)}{P(s)^{\alpha+1}} ds \right]. \]

(4.26)
where \(\tau_1 \) is a positive constant defined by

\[
\tau_1 = \left(1 + \frac{1}{\alpha}\right) \left\{ \frac{2}{\alpha} \sum_{i=1}^{n} [\tilde{Q}_i(t_0) + 2^\alpha \tilde{R}_i(t_0)] \right\}^{\frac{1}{\alpha}}
\]

(4.27)

and \(S_{m,n}(t) \) is defined by

\[
S_{m,n}(t) = \sum_{i=1}^{n} \left[|Q_{\xi_m,gi}(t) - Q_{\xi_m,gi}(t)| + |R_{\xi_m,hi}(t) - R_{\xi_m,hi}(t)| \right].
\]

Note that \(\tau_1 < 1 \) by (4.27). Letting

\[
Z_m(t) = \int_{t}^{\infty} \frac{|v_{\xi_m}(s) - v_{\xi}(s)|}{p(s)^{\frac{1}{2}} P(s)^{\frac{1}{2}+\alpha}} \, ds,
\]

(4.28)

we derive from (4.26) the following differential inequality for \(z_m(t) \):

\[
(P(t)^{\alpha \tau_1} Z_m(t))' \geq -\alpha \tau_1 \frac{P(t)^{\alpha \tau_1-1}}{P(t)^{\frac{1}{2}}} \int_{t}^{\infty} \frac{S_{m,n}(s)}{p(s)^{\frac{1}{2}} P(s)^{\frac{1}{2}+\alpha}} \, ds.
\]

(4.29)

Noting that \(P(t)^{\alpha \tau_1} Z_m(t) \to \infty \) and that the right-hand side of (4.29) is integrated over \([t, \infty)\), we obtain

\[
Z_m(t) \leq \frac{1}{P(t)^{\alpha \tau_1}} \int_{t}^{\infty} \frac{S_{m,n}(s)}{p(s)^{\frac{1}{2}} P(s)^{\frac{1}{2}+\alpha}} \, ds, \quad t \geq t_0.
\]

(4.30)

Combining (4.26) with (4.30), we have

\[
\frac{|v_{\xi_m}(t) - v_{\xi}(t)|}{P(t)^{\alpha}} \leq \alpha \tau_1 \int_{t}^{\infty} \frac{S_{m,n}(s)}{p(s)^{\frac{1}{2}} P(s)^{\frac{1}{2}+\alpha}} \, ds + \int_{t}^{\infty} \frac{S_{m,n}(s)}{p(s)^{\frac{1}{2}} P(s)^{\frac{1}{2}+\alpha}} \, ds \leq \alpha \tau_1 \int_{t}^{\infty} \frac{S_{m,n}(s)}{p(s)^{\frac{1}{2}} P(s)^{\frac{1}{2}+\alpha}} \, ds, \quad t \geq t_0.
\]

This shows that \(|v_{\xi_m}(t) - v_{\xi}(t)|/P(t)^{\alpha} \) converges to 0 uniformly on \([t_*, \infty)\).

We therefore conclude that the mapping \(\Phi \) defined by (4.24) is continuous in the topology of \(C[t_*, \infty) \). Thus, all the hypotheses of the Schauder–Tychonoff fixed point theorem are fulfilled, and hence there exists \(\xi_0(t) \in \Xi \) satisfying the half-linear functional differential equation

\[
(p(t)\varphi(\xi_0'(t)))' + \sum_{i=1}^{n} [q_{\xi_0,gi}(t) + r_{\xi_0,hi}(t)] \varphi(\xi_0(t)) = 0, \quad t \geq t_0,
\]

which is rewritten as

\[
(p(t)\varphi(\xi_0'(t)))' + \sum_{i=1}^{n} \left[q_i(t)\varphi(\xi_0(g_i(t))) + r_i(t)\varphi(\xi_0(h_i(t))) \right] = 0, \quad t \geq t_0.
\]
This implies that the equation (Aₜ) has a n-SVₚ solution ξ₀(t) existing on [t₀, ∞).

(The existence of a n-RVₚ(1) solution of (A₊)): Next, we will be concerned with the construction of a n-RVₚ(1) solution of equation (A₊) under the condition (1.9). Choose t₁ > a so large that

\[t₁ = \min_{i=1,2,...,n} \left\{ \inf_{t \geq t₁} gᵢ(t) \right\} > \max\{a, 1\}, \]

\[\left(1 + \frac{1}{\alpha}\right)^{K + \alpha + \alpha} \left[\sum_{i=1}^{n} \left[\hat{Q}_i(t₁) + 2^{\alpha} \hat{R}_i(t₁) \right] \right] \leq 1, \quad t ≥ t₁ \]

(4.31)

and

\[\left(\frac{3}{2} + \sum_{i=1}^{n} \left[\hat{Q}_i(t₁) + 2^α \hat{R}_i(t₁) \right] \right) ^{\frac{1}{\alpha}} \log \frac{P(hᵢ(t))}{P(t)} ≤ \log 2, \quad t ≥ t₁. \]

(4.32)

Let \(\mathbb{H} \) denote the set of all continuous nondecreasing functions \(η(t) \) on \([t₁, ∞)\) satisfying

\[η(t) = 1 \quad \text{for} \quad t₁ ≤ t ≤ t₁; \]

\[1 ≤ η(t) ≤ \exp \left\{ \int_{t₁}^{t} \left(\frac{\frac{3}{2} + \sum_{i=1}^{n} \left[Q_i(s) + 2^α R_i(s) \right]}{p(s)P(s)^{\alpha}} \right) \frac{1}{\eta(s)} ds \right\} \quad \text{for} \quad t ≥ t₁; \]

\[\frac{η(hᵢ(t))}{η(t)} ≤ 2 \quad \text{for} \quad t ≥ t₁, \quad i = 1, 2, \ldots, n. \]

(4.35)

For any \(η ∈ \mathbb{H} \) we consider the differential equation

\[\left(p(t) \varphi(x'(t)) \right) + \sum_{i=1}^{n} \left[q_{η,gᵢ}(t) + r_{η,hᵢ}(t) \right] \varphi(x(t)) = 0, \quad t ≥ t₁, \]

(4.36)

where

\[q_{η,gᵢ}(t) = qᵢ(t) \varphi \left(\frac{η(gᵢ(t))}{η(t)} \right) \quad \text{and} \quad r_{η,hᵢ}(t) = rᵢ(t) \varphi \left(\frac{η(hᵢ(t))}{η(t)} \right), \quad i = 1, 2, \ldots, n. \]

Since \(η(gᵢ(t))/η(t) ≤ 1 \) and \(η(hᵢ(t))/η(t) ≤ 2 \), we have

\[q_{η,gᵢ}(t) ≤ qᵢ(t) \quad \text{and} \quad r_{η,hᵢ}(t) ≤ 2^α rᵢ(t), \quad t ≥ t₁ \quad \text{for} \quad i = 1, 2, \ldots, n, \]

so that

\[Q_{η,gᵢ}(t) := \int_{t}^{∞} q_{η,gᵢ}(s) ds ≤ P(t)^{α} \int_{t}^{∞} qᵢ(s) ds = Qᵢ(t), \quad t ≥ t₁, \]

(4.37)

\[R_{η,hᵢ}(t) := \int_{t}^{∞} r_{η,hᵢ}(s) ds ≤ 2^α P(t)^{α} \int_{t}^{∞} rᵢ(s) ds = 2^α Rᵢ(t), \quad t ≥ t₁. \]

(4.38)
Accordingly, from (4.31) we have
\[
\left(1 + \frac{1}{\alpha}\right)[K + L + \alpha] \sqrt{\frac{1}{n} \sum_{i=1}^{n} \left[\hat{Q}_{\eta,g_i}(t_1) + \hat{R}_{\eta,h_i}(t_1) \right]} \leq 1,
\]
(4.39)
where \(\hat{Q}_{\eta,g_i}(t) = \sup_{s \geq t} Q_{\eta,g_i}(s)\) and \(\hat{R}_{\eta,h_i}(t) = \sup_{s \geq t} R_{\eta,h_i}(s)\). Moreover, we notice that from \(K + L + \alpha > 2\) and \(1 + \frac{1}{\alpha} > 1\) follows
\[
\sqrt{\frac{1}{n} \sum_{i=1}^{n} \left[\hat{Q}_{\eta,g_i}(t_1) + \hat{R}_{\eta,h_i}(t_1) \right]} \leq \frac{1}{2},
\]
(4.40)
This enables us to apply Theorem 3.1 and thus we conclude that half-linear differential equation (4.36) has a n-RV \(P(1)\) solution of the form
\[
X_{\eta}(t) = \exp \left\{ \int_{t_1}^{t} \left(\frac{1 + \sum_{i=1}^{n} [Q_{\eta,g_i}(s) + R_{\eta,h_i}(s)] - w_{\eta}(s)}{p(s)P(s)^{\alpha}} \right)^{\frac{1}{2}} ds \right\}, \quad t \geq t_1,
\]
(4.41)
where \(w_{\eta}(t)\) is a solution of the integral equation
\[
w_{\eta}(t) = \frac{\alpha}{P(t)} \int_{t_1}^{\infty} F_{\eta}(s, w_{\eta}(s)) \frac{1}{p(s)^{\frac{1}{2}}} ds, \quad t \geq t_1,
\]
(4.42)
satisfying \(|w_{\eta}(t)| \leq \sqrt{\sum_{i=1}^{n} [\hat{Q}_{\eta,g_i}(t_1) + \hat{R}_{\eta,h_i}(t_1)]}\) for \(t \geq t_1\). Furthermore, it follows from (4.40) that \(|w_{\eta}(t)| \leq 1/2\) for \(t \geq t_1\). Here \(F_{\eta}(t, w_{\eta}(t))\) is
\[
F_{\eta}(t, w_{\eta}) = \left| 1 + \sum_{i=1}^{n} [Q_{\eta,g_i}(t) + R_{\eta,h_i}(t)] - w_{\eta} \right|^{1 + \frac{1}{\alpha}} + \left(1 + \frac{1}{\alpha}\right) w_{\eta} - 1, \quad t \geq t_1.
\]

Denote by \(\Psi\) the mapping which assigns to each \(\eta \in \mathbb{H}\) the function \(\Psi_{\eta}(t)\) defined by
\[
\Psi_{\eta}(t) = 1 \quad \text{for} \quad t_1 \leq t \leq t_1, \quad \Psi_{\eta}(t) = X_{\eta}(t) \quad \text{for} \quad t \geq t_1, \quad (4.43)
\]
(i) \(\Psi\) is a self-map on \(\mathbb{H}\). For any \(\eta \in \mathbb{H}\) from (4.37) and (4.38), for \(t \geq t_1\) we find that
\[
1 + \sum_{i=1}^{n} [Q_{\xi,g_i}(t) + R_{\xi,h_i}(t)] - w_{\eta}(t) \leq
\]
\[
\leq 1 + \sum_{i=1}^{n} [Q_{i}(t) + 2^{\alpha} R_{i}(t)] \leq |w_{\eta}(t)| \leq \frac{3}{2} + \sum_{i=1}^{n} [Q_{i}(t) + 2^{\alpha} R_{i}(t)],
\]
or accordingly,

\[
X_\eta(t) \leq \exp \left\{ \int_{t_1}^{t} \left(\frac{\frac{3}{2} + \sum_{i=1}^{n} [Q_{i}(s) + 2^\alpha R_{s}(s)]}{p(s) P(s)^{\alpha}} \right)^{\frac{1}{2}} ds \right\}, \quad t \geq t_1.
\]

Moreover, we have

\[
\frac{\Psi(h_\eta(t))}{\Psi(t)} = \exp \left\{ \int_{t}^{h_\eta(t)} \left(\frac{\frac{3}{2} + \sum_{i=1}^{n} [Q_{i}(s) + 2^\alpha R_{s}(s)]}{p(s) P(s)} \right)^{\frac{1}{2}} ds \right\} \leq \exp \left\{ \int_{t}^{h_\eta(t)} \left(\frac{\frac{3}{2} + \sum_{i=1}^{n} \hat{Q}_{i}(s) + 2^\alpha \hat{R}_{i}(s)}{p(s) P(s)} \right)^{\frac{1}{2}} ds \right\} \leq \exp \left\{ \left(\frac{3}{2} + \sum_{i=1}^{n} \hat{Q}_{i}(s) + 2^\alpha \hat{R}_{i}(s) \right)^{\frac{1}{2}} \log \frac{P(h_\eta(t))}{P(t)} \right\} \leq 2, \quad t \geq t_1.
\]

(ii) \(\Psi(\mathbb{H}) \) is relatively compact in \(C(t_*, \infty) \). This is a consequence of the inclusion \(\Psi(\mathbb{H}) \subset \mathbb{H} \) and the following inequality holding for any \(\eta \in \mathbb{H} \):

\[
0 \leq \frac{d}{dt} \Psi(t) = \frac{d}{dt} X_\eta(t) = \left(\frac{1 + \sum_{i=1}^{n} [Q_{i}(t) + R_{i}(t)] - w(t)}{p(t) P(t)^{\alpha}} \right)^{\frac{1}{2}} X_\eta(t) \leq \left(\frac{\frac{3}{2} + \sum_{i=1}^{n} \hat{Q}_{i}(t_1) + 2^\alpha \hat{R}_{i}(t_1)}{p(t) P(t)^{\alpha}} \right)^{\frac{1}{2}} \times \exp \left\{ \left(\frac{3}{2} + \sum_{i=1}^{n} \hat{Q}_{i}(t_1) + 2^\alpha \hat{R}_{i}(t_1) \right)^{\frac{1}{2}} \log \frac{P(t)}{P(t_1)} \right\}.
\]

(iii) \(\Psi \) is continuous in the topology of \(C(t_*, \infty) \). Let \(\{ \eta_n \} \) be a sequence in \(\mathbb{H} \) converging to \(\theta \in \mathbb{H} \), which amounts to supposing that the sequence \(\{ \eta_n(t) \} \) converges to \(\theta(t) \) uniformly on the compact subintervals of \([t_*, \infty) \). We will show that \(\{ \Psi_{\eta_n(t)} \} \) converges to \(\Psi \theta(t) \) uniformly on the compact subintervals \([t_*, \infty) \). In order to simplify notation, for arbitrary \(\eta \in \mathbb{H} \) we denote

\[
V_\eta(t) = \frac{1 + \sum_{i=1}^{n} [Q_{i,\eta}(t) + R_{i,\eta}(t)] - w(t)}{P(t)^{\alpha}}, \quad t \geq t_1.
\]
In view of (4.41), we have

\[
|\Psi_{\eta m}(t) - \Psi_{\theta}(t)| = |X_{\eta m}(t) - X_{\theta}(t)| = \\
\exp\left\{ \int_{t_1}^{t} \left(\frac{V_{\eta m}(s)}{p(s)} \right)^{\frac{3}{2}} ds \right\} - \exp\left\{ \int_{t_1}^{t} \left(\frac{V_{\theta}(s)}{p(s)} \right)^{\frac{3}{2}} ds \right\} \leq \\
\exp\left\{ \int_{t_1}^{t} \left(\frac{\frac{3}{2} + \sum_{i=1}^{n} |Q_i(s) + 2^\alpha R_i(s)|}{p(s)P(s)\alpha} \right)^{\frac{3}{2}} ds \right\} \times \\
\times \int_{t_1}^{t} \frac{1}{p(s)\alpha} \left| \left(\frac{V_{\eta m}(s)}{p(s)} \right)^{\frac{3}{2}} - \left(\frac{V_{\theta}(s)}{p(s)} \right)^{\frac{3}{2}} \right| ds.
\]

As in the previous part of the proof, we can verify that the integrand of the last integral is bounded from the above by

\[
\sum_{i=1}^{n} |Q_{\eta m,g_i}(t) - Q_{\theta, g_i}(t)| + \sum_{i=1}^{n} |R_{\eta m,h_i}(t) - R_{\theta, h_i}(t)| + |w_{\eta m}(t) - w_{\theta}(t)| \\
P(t)^{\alpha} \quad \text{if } \alpha > 1,
\]

\[
C_2 \sum_{i=1}^{n} |Q_{\eta m,g_i}(t) - Q_{\theta, g_i}(t)| + \sum_{i=1}^{n} |R_{\eta m,h_i}(t) - R_{\theta, h_i}(t)| + |w_{\eta m}(t) - w_{\theta}(t)| \\
P(t)^{\alpha} \quad \text{if } \alpha \leq 1,
\]

where \(C_2\) is a constant depending only on \(\alpha\), \(\hat{Q}_i(t_1)\) and \(\hat{R}_i(t_1)\). Accordingly, it suffices to prove the uniform convergence to 0 on the compact subintervals of the two sequences

\[
\frac{|w_{\eta m}(t) - w_{\theta}(t)|}{P(t)^{\alpha}} \quad \text{and} \quad \frac{\pi_{m,n}(t)}{P(t)^{\alpha}},
\]

where

\[
\pi_{m,n}(t) = \sum_{i=1}^{n} |Q_{\eta m,g_i}(t) - Q_{\theta, g_i}(t)| + \sum_{i=1}^{n} |R_{\eta m,h_i}(t) - R_{\theta, h_i}(t)|.
\]

The uniform convergence of the sequence \(\pi_{m,n}(t)/P(t)^{\alpha}\) is an immediate consequence of the Lebesgue dominated convergence theorem. Therefore, let us examine the sequence \(|w_{\eta m}(t) - w_{\theta}(t)|/P(t)^{\alpha}\). Applying the mean value theorem to \(F_{\eta m}(t, w_{\eta m}(t))\) and \(F_{\theta}(t, w_{\theta}(t))\) in \(|w_{\eta m}(t) - w_{\theta}(t)|/P(t)^{\alpha}\),
Consequently, the sequence we obtain for \(t \geq t_1 \)

\[
|\{F_{\eta_m}(t, w_{\eta_m}(t)) - F_{\theta}(t, w_{\theta}(t))\} | \leq \left(1 + \frac{1}{\alpha} \right) |w_{\eta_m}(t) - w_{\theta}(t)| + \\
+ \left| 1 + \sum_{i=1}^{n} [Q_{\eta_m, g_i}(t) + R_{\eta_m, h_i}(t)] - w_{\eta_m}(t) \right|^{1 + \frac{1}{\alpha}} - \\
- \left| 1 + \sum_{i=1}^{n} [Q_{\theta, g_i}(t) + R_{\theta, h_i}(t)] - w_{\theta}(t) \right|^{1 + \frac{1}{\alpha}} \\
\leq \left(1 + \frac{1}{\alpha} \right) (1 + \tau_2) |w_{\eta_m}(t) - w_{\theta}(t)| + \left(1 + \frac{1}{\alpha} \right) \tau_2 \pi_{n, m}(t),
\]

where \(\tau_2 \) is a positive constant depending only on \(\alpha, \tilde{Q}_i(t_1) \) and \(\tilde{R}_i(t_1) \). Consequently, the sequence \(|w_{\eta_m}(t) - w_{\theta}(t)|/P(t)^\alpha \) implies

\[
\frac{|w_{\eta_m}(t) - w_{\theta}(t)|}{P(t)^\alpha} \leq \frac{(\alpha + 1) (1 + \tau_2)}{P(t)^\alpha} \left(\int_{t_1}^{t} \frac{|w_{\eta_m}(s) - w_{\theta}(s)|}{P(s)^\alpha} ds + \\
+ \frac{(\alpha + 1) \tau_2}{P(t)^{\alpha+1}} \int_{t_1}^{t} \frac{\pi_{m,n}(s)}{p(s)^{\frac{\alpha}{2}}} ds, \quad t \geq t_1. \tag{4.45}
\]

Putting for simplicity

\[
W_m(t) = \int_{t_1}^{t} \frac{|w_{\eta_m}(s) - w_{\theta}(s)|}{P(s)^\alpha} ds, \tag{4.46}
\]

we transform (4.45) into

\[
(P(t)^{-(\alpha+1)(1+\tau_2)}W_m(t))' \leq \frac{(\alpha + 1) \tau_2}{p(t)^{\frac{\alpha}{2}} P(t)^{\alpha+1}(1+\tau_2)} \int_{t_1}^{t} \pi_{m,n}(s) ds, \quad t \geq t_1,
\]

which, after integration over \([t_1, t]\), yields

\[
W_m(t) \leq \frac{\tau_2}{1 + \tau_2} P(t)^{\alpha+1}(1+\tau_2) \int_{t_1}^{t} \frac{\pi_{m,n}(s)}{P(s)^{(\alpha+1)(1+\tau_2)}} ds, \quad t \geq t_1. \tag{4.47}
\]

Combining (4.45) with (4.47), we have

\[
\frac{|w_{\eta_m}(t) - w_{\theta}(t)|}{P(t)^\alpha} \leq \frac{(\alpha + 1) \tau_2}{P(t)^{-(\alpha+1)\tau_2}} \left(\int_{t_1}^{t} \frac{\pi_{m,n}(s)}{P(s)^{\alpha+1}(1+\tau_2)} ds + \\
+ \frac{(\alpha + 1) \tau_2}{P(t)^{\alpha+1}} \int_{t_1}^{t} \frac{\pi_{m,n}(s)}{p(s)^{\frac{\alpha}{2}}} ds, \quad t \geq t_1.
\]
This ensures the desired convergence of the sequence \(|w_{\eta_0}(t) - w_{\eta}(t)|/P(t)^{\alpha} \), whence the continuity of the mapping \(\Psi \) has been assured. Thus, all the hypotheses of the Schauder–Tychonoff fixed point theorem are fulfilled, and so there exists \(\eta_0 \in \mathbb{H} \) such that \(\eta_0 = \Psi \eta_0 \). Since \(\eta_0(t) = X_{\eta_0}(t) \) for \(t \geq t_1 \), \(\eta_0(t) \) satisfies the differential equation

\[
(p(t)\varphi(\eta_0(t)))' + \sum_{i=1}^{n} \left[q_{\eta_0, g_i}(t) + r_{\eta_0, h_i}(t)\right] \varphi(\eta_0(t)) = 0, \quad t \geq t_1
\]

or

\[
(p(t)\varphi(\eta_0(t)))' + \sum_{i=1}^{n} \left[q_i(t)\varphi(\eta_0(g_i(t))) + r_i(t)\varphi(h_i(t))\right] = 0, \quad t \geq t_1.
\]

Therefore, \(\eta_0(t) \) is a desired n-RV \(P(1) \) solution of the functional differential equation \((A+) \) on \([t_1, \infty)\).

The proof of Theorem 1.1 for the equation \((A-) \).

(The existence of a n-SV \(P \) solution of \((A-) \)): Suppose that (1.9) holds. Choose \(t_0 > a \) so large that \(t_* = \min \{ \inf_{t \geq t_0} g_i(t) \} > \max\{a, 1\} \) and such that

\[
\left(2 \sum_{i=1}^{n} [2^a \tilde{Q}_i(t_0) + \tilde{R}_i(t_0)]\right)^{\frac{1}{2}} \max \left\{ 2, 1 + \frac{1}{\alpha} \right\} < 1, \quad (4.48)
\]

\[
\left(2 \sum_{i=1}^{n} [2^a \tilde{Q}_i(t_0) + \tilde{R}_i(t_0)]\right)^{\frac{1}{2}} \log \frac{P(t)}{P(g_i(t))} < \log 2, \quad (4.49)
\]

are satisfied for all \(t \geq t_0 \), where \(\tilde{Q}_i(t) \) and \(\tilde{R}_i(t) \) are defined by (4.6) and (4.7).

Let \(M \) denote the set of all positive continuous nonincreasing functions \(\mu(t) \) on \([t_*, \infty)\) with the properties

\[
\mu(t) = 1 \quad \text{for} \quad t_* \leq t \leq t_0; \quad (4.50)
\]

\[
\mu(t) \geq \exp \left\{ \int_{t_0}^{t} \frac{\left(2 \sum_{i=1}^{n} [2^a \tilde{Q}_i(s) + \tilde{R}_i(s)]\right)^{\frac{1}{2}}}{p(s)^{\frac{1}{2}} P(s)} ds \right\} \quad \text{for} \quad t \geq t_0; \quad (4.51)
\]

\[
\frac{\mu(g_i(t))}{\mu(t)} \leq 2 \quad \text{for} \quad t \geq t_0, \quad i = 1, 2, \ldots, n. \quad (4.52)
\]

We here consider the following differential equation:

\[
(p(t)\varphi(x'(t)))' = \sum_{i=1}^{n} \left[q_{\mu, g_i}(t) + r_{\mu, h_i}(t)\right] \varphi(x(t)) \quad (4.53)
\]

where, for arbitrary \(\mu \in M \), the functions \(q_{\mu, g_i}(t) \) and \(r_{\mu, h_i}(t) \) are defined by (4.2). In view of Theorem 3.1, for each \(\mu \in M \), the equation (4.53) has
a n-SV$_P$ solution $X_{\mu}(t)$ having the representation

$$X_{\mu}(t) = \exp \left\{ \int_{t_0}^{t} \left(\frac{r_{\mu}(s) - \sum_{i=1}^{n} [Q_{\mu,g_i}(s) + R_{\mu,h_i}(s)]}{p(s)P(s)\alpha} \right)^{\frac{1}{\alpha}} ds \right\}, \quad t \geq t_0,$$

where $r_{\mu}(t)$ is a solution of the integral equation

$$r_{\mu}(t) = \alpha P(t)^{\alpha} \int_{t}^{\infty} \frac{|r_{\mu}(s) - \sum_{i=1}^{n} [Q_{\mu,g_i}(s) + R_{\mu,h_i}(s)]|^{1+\frac{1}{\alpha}} ds}{p(s)^{\frac{1}{\alpha}} P(s)^{\alpha+1}}, \quad t \geq t_0,$$

satisfying the inequality

$$0 \leq r_{\mu}(t) \leq \sum_{i=1}^{n} [\hat{Q}_{\mu,g_i}(t_0) + \hat{R}_{\mu,h_i}(t_0)] \leq$$

$$\leq \sum_{i=1}^{n} [2^n \hat{Q}_i(t_0) + \hat{R}_i(t_0)], \quad t \geq t_0.$$ (4.56)

Here $Q_{\mu,g_i}(t)$ and $R_{\mu,h_i}(t)$ are defined by (4.19) and $\hat{Q}_{\mu,g_i}(s) = \sup_{s \geq t} Q_{\mu,g_i}(s)$ and $\hat{R}_{\mu,h_i}(s) = \sup_{s \geq t} R_{\mu,h_i}(s)$. Furthermore, using the decreasing nature of $\mu(t)$, we have

$$q_{\mu,g_i}(t) \leq 2^n q_i(t) \quad \text{and} \quad r_{\mu,h_i}(t) \leq r_i(t), \quad t \geq t_0, \quad i = 1, 2, \ldots, n,$$

accordingly,

$$\sum_{i=1}^{n} [Q_{\mu,g_i}(t) + R_{\mu,h_i}(t)] \leq \sum_{i=1}^{n} [2^n \hat{Q}_i(t_0) + \hat{R}_i(t_0)] \leq$$

$$\leq \sum_{i=1}^{n} [2^n \hat{Q}_i(t_0) + \hat{R}_i(t_0)], \quad t \geq t_0.$$ (4.57)

Let us now define \mathcal{H} to be the mapping which assigns to each $\mu \in \mathcal{M}$ the function H_{μ} given by

$$H_{\mu}(t) = 1 \quad \text{for} \quad t_* \leq t \leq t_0, \quad H_{\mu}(t) = X_{\mu}(t) \quad \text{for} \quad t \geq t_0.$$ (4.58)

Proceeding as in the proof of the existence of n-SV$_P$ solution of (A$_+$), it can be proved that \mathcal{H} maps \mathcal{M} into a relatively compact subset of \mathcal{M} with the help of the Schauder–Tychonoff fixed point theorem, so that there exists a $\mu_0 \in \mathcal{M}$ such that

$$\mu_0(t) = X_{\mu_0}(t) =$$

$$= \exp \left\{ \int_{t_0}^{t} \left(\frac{r_{\mu_0}(s) - \sum_{i=1}^{n} [Q_{\mu_0,g_i}(s) + R_{\mu_0,h_i}(s)]}{p(s)P(s)\alpha} \right)^{\frac{1}{\alpha}} ds \right\}, \quad t \geq t_0.$$
This means that $\mu_0(t)$ is a solution satisfying the functional differential equation

$$(p(t)\varphi(\mu_0(t)))' = \sum_{i=1}^{n} \left[q_{i}(t)\varphi(\mu_0(g_i(t))) + r_i(t)\varphi(\mu_0(h_i(t))) \right], \quad t \geq t_0$$

or consequently,

$$(p(t)\varphi(\mu_0(t)))' = \sum_{i=1}^{n} \left[q_i(t)\varphi(\mu_0(g_i(t))) + r_i(t)\varphi(\mu_0(h_i(t))) \right], \quad t \geq t_0.$$

Therefore, we conclude that the equation (A_-) has a n-SV$_p$ solution.

(The existence of a n-RV$_P(1)$ solution of (A_-)): Suppose that (1.9) is satisfied. Choose $t_1 > a$ so large that $t_* = \min_{i=1,2,...,n} \left\{ \inf_{t \geq t_1} g_i(t) \right\} > \max \{ a, 1 \}$

$$(1 + \frac{1}{\alpha}) [\tilde{K} + \tilde{L} + \alpha] \sqrt{\sum_{i=1}^{n} [\tilde{Q}_i(t_1) + 2^\alpha \tilde{R}_i(t_1)]} \leq 1 \quad (4.59)$$

and

$$\left\{ 1 + \sqrt{\sum_{i=1}^{n} [\tilde{Q}_i(t_1) + 2^\alpha \tilde{R}_i(t_1)]} \right\}^{\frac{1}{\alpha}} \log \frac{P(h_i(t))}{P(t)} \leq \log 2, \quad (4.60)$$

where the functions $Q_i(t), R_i(t), \tilde{Q}_i(t)$ and $\tilde{R}_i(t)$ are defined by (4.6) and (4.7), while

$$\tilde{K} = \begin{cases}
\left(\frac{4}{3} \right)^{1-\frac{1}{\alpha}} & \text{if } \alpha > 1 \\
\left(\frac{3}{2} \right)^{\frac{1}{\alpha} - 1} & \text{if } \alpha \leq 1
\end{cases} \quad \text{and} \quad \tilde{L} = \begin{cases}
\left(\frac{4}{3} \right)^{1-\frac{1}{\alpha}} & \text{if } \alpha > 1 \\
1 & \text{if } \alpha \leq 1
\end{cases}. \quad (4.61)$$

Let \mathbb{K} define the set of all positive continuous nondecreasing functions $\nu(t)$ on $[t_*, \infty)$ satisfying

$$\nu(t) = 1 \quad \text{for } t_* \leq t \leq t_1; \quad (4.62)$$

$$1 \leq \nu(t) \leq \exp \left\{ \int_{t_1}^{t} \left(\frac{1 + \rho(s)}{P(s)} \right)^{\frac{1}{\alpha}} \frac{1}{P(s)} ds \right\} \quad \text{for } t \geq t_1; \quad (4.63)$$

$$\frac{\nu(h_i(t))}{\nu(t)} \leq 2 \quad \text{for } t \geq t_1, \quad i = 1, 2, \ldots, n, \quad (4.64)$$

where $\rho(t)$ is a solution of the integral equation

$$\rho(t) = \left(1 + \frac{1}{\alpha} \right) \sum_{i=1}^{n} \left[\tilde{Q}_i(t_1) + 2^\alpha \tilde{R}_i(t_1) \right] \frac{1}{P(t)} \int_{t_1}^{t} \left[\tilde{L} \rho(s) + \tilde{L} + \alpha \right] \frac{1}{P(s)} ds. \quad (4.65)$$
In order to verify that \(\rho(t) \) is a solution of (4.65), we now consider the integral operator \(\mathcal{R} \) defined by

\[
\mathcal{R}\rho(t) = \left(1 + \frac{1}{\alpha}\right) \sum_{i=1}^{n} \left[\hat{Q}_i(t_1) + 2^\alpha \hat{R}_i(t_1) \right] \times \frac{1}{P(t)} \int_{t_1}^{t} \frac{1}{p(s)^{\frac{1}{\alpha}}} \left[\bar{L}\rho(s) + \bar{L} + \alpha \right] ds \tag{4.66}
\]
on the set

\[
\mathbb{P} = \left\{ \rho \in C_0[t_1, \infty) : 0 \leq \rho(t) \leq \sum_{i=1}^{n} \left[\hat{Q}_i(t_1) + 2^\alpha \hat{R}_i(t_1) \right], \ t \geq t_1 \right\}.
\]

It is easy to see that \(\mathcal{R} \) sends \(\mathbb{P} \) into itself and satisfies

\[
\| \mathcal{R}\rho_1 - \mathcal{R}\rho_2 \| \leq \sum_{i=1}^{n} \left[\hat{Q}_i(t_1) + 2^\alpha \hat{R}_i(t_1) \right] \left(1 + \frac{1}{\alpha}\right) \bar{L}\|\rho_1 - \rho_2\|_0, \ \rho_1, \rho_2 \in \mathbb{R}.
\]

Therefore, there exists a unique fixed point of \(\mathcal{R} \) which solves the integral equation (4.65).

Consider a family of half-linear differential equations

\[
(p(t)\phi(x'(t)))' = \sum_{i=1}^{n} \left[q_{\nu, g_i}(t) + r_{\nu, h_i}(t) \right] \phi(x(t)), \ t \geq t_1, \tag{4.67}
\]

where, for any \(\nu \in \mathbb{K} \), the functions \(q_{\nu, g_i}(t) \) and \(r_{\nu, h_i}(t) \) are defined by

\[
q_{\nu, g_i}(t) = q_i(t) \phi \left(\frac{\nu(g_i(t))}{\nu(t)} \right) \quad \text{and} \quad r_{\nu, h_i}(t) = r_i(t) \phi \left(\frac{\nu(h_i(t))}{\nu(t)} \right).
\]

Then, we define \(Q_{\nu, g_i}(t) \), \(R_{\nu, h_i}(t) \) for every \(\nu \in \mathbb{K} \) by (4.19) and \(\hat{Q}_{\nu, g_i}(t) = \sup_{s \geq t} Q_{\nu, g_i}(t) \), \(\hat{R}_{\nu, h_i}(t) = \sup_{s \geq t} R_{\nu, h_i}(t) \). It follows from Theorem 3.1 that for each \(\nu \in \mathbb{K} \), the equation (4.67) has a n-RV \(P(t) \) solution \(X_{\nu}(t) \) expressed in the form

\[
X_{\nu}(t) = \exp \left\{ \int_{t_1}^{t} \left(1 - \sum_{i=1}^{n} \frac{[Q_{\nu, g_i}(s) + R_{\nu, h_i}(s)] + w_{\nu}(s)}{p(s)p(s)^{\frac{1}{\alpha}}} \right)^{\frac{1}{\alpha}} ds \right\}, \tag{4.68}
\]

where \(w_{\nu}(t) \) is a solution of the integral equation

\[
w_{\nu}(t) = \frac{\alpha}{P(t)} \int_{t_1}^{t} \frac{\tilde{F}_{\nu}(s, w_{\nu}(s))}{p(s)^{\frac{1}{\alpha}}} ds, \ t \geq t_1 \tag{4.69}
\]
\[\widetilde{F}_\nu(t, w_\nu) = 1 + \left(1 + \frac{1}{\alpha}\right)w_\nu - \left|1 - \sum_{i=1}^{n} [Q_{\nu, g_i}(t) + R_{\nu, h_i}(t)] + w_\nu \right|^{1 + \frac{1}{\alpha}}. \quad (4.70) \]

We notice that for some fixed \(\nu \in \mathbb{K} \), \(w_\nu(t) \) is a fixed point of the contraction mapping \(\mathcal{F}_\nu \) defined by

\[\mathcal{F}_\nu w_\nu(t) = \frac{\alpha}{F(t)} \int_{t_1}^{t} \tilde{F}_\nu(s, w_\nu(s)) \frac{ds}{p(s)}, \quad t \geq t_1, \quad (4.71) \]

which satisfies

\[|w_\nu(t)| \leq \sqrt{\sum_{i=1}^{n} \left[\tilde{Q}_{\nu, g_i}(t_1) + \tilde{R}_{\nu, h_i}(t_1) \right]}, \quad t \geq t_1. \quad (4.72) \]

Furthermore, using the increasing nature of \(\nu(t) \), we obtain

\[q_{\nu, g_i}(t) \leq q_i(t), \quad r_{\nu, h_i}(t) \leq 2^{\alpha} r_i(t) \quad \text{for} \quad t \geq t_1, \quad \nu \in \mathbb{K}, \]

or consequently,

\[\sum_{i=1}^{n} \left[Q_{\nu, g_i}(t) + R_{\nu, h_i}(t) \right] \leq \sum_{i=1}^{n} \left[\tilde{Q}_i(t_1) + 2^{\alpha} \tilde{R}_i(t_1) \right], \quad t \geq t_1. \quad (4.73) \]

We will show that for every \(\nu \in \mathbb{K} \),

\[|w_\nu(t)| \leq \rho(t), \quad t \geq t_1. \quad (4.74) \]

To this end, it is convenient to express \(\widetilde{F}_\nu(t, w_\nu) \) as

\[\widetilde{F}_\nu(t, w_\nu) = \tilde{G}_\nu(t, w_\nu) + \tilde{H}_\nu(t, w_\nu) + \tilde{k}_\nu(t), \]

where \(\tilde{G}_\nu(t, w_\nu) \), \(\tilde{H}_\nu(t, w_\nu) \) and \(\tilde{k}_\nu(t) \) are defined, respectively, by

\[
\tilde{G}_\nu(t, w_\nu) = \left(1 - \sum_{i=1}^{n} [Q_{\nu, g_i}(t) + R_{\nu, h_i}(t)] \right)^{-\frac{1}{\alpha}} + \\
\quad \left(1 + \frac{1}{\alpha}\right) \left(1 - \sum_{i=1}^{n} [Q_{\nu, g_i}(t) + R_{\nu, h_i}(t)] \right)^{1 + \frac{1}{\alpha}} w_\nu - \\
\quad \left|1 - \sum_{i=1}^{n} [Q_{\nu, g_i}(t) + R_{\nu, h_i}(t)] + w_\nu \right|^{1 + \frac{1}{\alpha}}, \\
\tilde{H}_\nu(t, w_\nu) = \left(1 + \frac{1}{\alpha}\right) \left\{1 - \left(1 - \sum_{i=1}^{n} [Q_{\nu, g_i}(t) + R_{\nu, h_i}(t)] \right)^{\frac{1}{\alpha}} \right\} w_\nu, \\
\tilde{k}_\nu(t) = \left(1 + \frac{1}{\alpha}\right) \left\{1 - \left(1 - \sum_{i=1}^{n} [Q_{\nu, g_i}(t) + R_{\nu, h_i}(t)] \right)^{\frac{1}{\alpha}} \right\} w_\nu, \\
\tilde{k}_\nu(t) = \left(1 + \frac{1}{\alpha}\right) \left\{1 - \left(1 - \sum_{i=1}^{n} [Q_{\nu, g_i}(t) + R_{\nu, h_i}(t)] \right)^{\frac{1}{\alpha}} \right\} w_\nu, \]

and

\[
\tilde{F}_\nu(t, w_\nu) = 1 + \left(1 + \frac{1}{\alpha}\right)w_\nu - \left|1 - \sum_{i=1}^{n} [Q_{\nu, g_i}(t) + R_{\nu, h_i}(t)] + w_\nu \right|^{1 + \frac{1}{\alpha}}. \quad (4.70) \]
and

\[\tilde{k}_\nu(t) = 1 - \left(1 - \sum_{i=1}^{n} [Q_{\nu,g_i}(t) + R_{\nu,h_i}(t)]\right)^{1+\frac{1}{\alpha}}. \]

Using the mean value theorem, we find that for some \(\theta \in (0, 1) \) the inequalities hold:

\[
|\tilde{H}_\nu(t, w_\nu(t))| \leq \frac{1}{\alpha} \left(1 + \frac{1}{\alpha}\right) \left|1 - (1 - \theta)\left(\sum_{i=1}^{n} [Q_{\nu,g_i}(t) + R_{\nu,h_i}(t)]\right)\right|^{\frac{1}{\alpha} - 1} \times \\
\sum_{i=1}^{n} [Q_{\nu,g_i}(t) + R_{\nu,h_i}(t)] |w_\nu(t)|
\]

\[
\leq \frac{1}{\alpha} \left(1 + \frac{1}{\alpha}\right) \tilde{L} \sum_{i=1}^{n} [\tilde{Q}_i(t_1) + 2^{\alpha} \tilde{R}_i(t_1)] |w_\nu(t)|
\]

(4.75)

and

\[
|\tilde{k}_\nu(t)| \leq \left(1 + \frac{1}{\alpha}\right) \left|1 - (1 - \theta)\sum_{i=1}^{n} [Q_{\nu,g_i}(t) + R_{\nu,h_i}(t)]\right|^{\frac{1}{\alpha} - 1} \times \\
\sum_{i=1}^{n} [Q_{\nu,g_i}(t) + R_{\nu,h_i}(t)] \leq \\
\leq \left(1 + \frac{1}{\alpha}\right) \sum_{i=1}^{n} [\tilde{Q}_i(t_1) + 2^{\alpha} \tilde{R}_i(t_1)], \quad t \geq t_1.
\]

(4.76)

Moreover, by means of the mean value theorem and L’Hospital rule, it follows that

\[
|\tilde{G}_\nu(t, w_\nu(t))| \leq \frac{1}{\alpha} \left(1 + \frac{1}{\alpha}\right) \tilde{L} w_\nu^2(t), \quad t \geq t_1.
\]

(4.77)

Let \(\nu \in K \) be fixed. Recalling that \(\rho \) and \(w_\nu \) are the fixed point of the contraction mappings \(K \) and \(F_\nu \) defined by (4.66) and (4.71), we see that \(\rho \) and \(w_\nu \) are constructed, respectively, as the limits as \(n \to \infty \) of the sequences \(\{\rho_n = R\rho_{n-1}, \, n = 1, 2, \ldots, \, \text{with} \, \rho_0 = 0\} \) and \(\{w_n = F_\nu w_{n-1}, \, n = 1, 2, \ldots, n, \, \text{with} \, w_0 = 0\} \). First we note that for \(t \geq t_1 \),

\[
|w_1(t)| = F_\nu w_0(t) = \\
= \frac{\alpha}{P(t)} \int_{t_1}^{t} \frac{1}{p(s) \tilde{p}} \left[1 - \left|1 + \sum_{i=1}^{n} [Q_{\nu,g_i}(s) + R_{\nu,h_i}(s)]\right|^{1+\frac{1}{\alpha}}\right] ds \leq \\
\leq \frac{\alpha + 1}{P(t)} \int_{t_1}^{t} \frac{1}{p(s) \tilde{p}} \sum_{i=1}^{n} [Q_{\nu,g_i}(s) + R_{\nu,h_i}(s)] ds \leq \\
\leq (\alpha + 1) \sum_{i=1}^{n} [\tilde{Q}_i(t_1)(t) + 2^{\alpha} \tilde{R}_i(t_1)] \leq \\
\leq [\tilde{Q}_i(t_1)(t) + 2^{\alpha} \tilde{R}_i(t_1)] \left(1 + \frac{1}{\alpha}\right) \tilde{L} + \alpha = \rho_1(t), \quad t \geq t_1.
\]
Then, assuming that $|w_n(t)| \leq \rho_n(t)$, $t \geq t_1$, for some $n \in \mathbb{N}$ and using (4.75), (4.76) and (4.77), we have

$$|w_{n+1}(t)| = F_{\nu} w_n(t) =$$

$$= \frac{\alpha}{P(t)} \int_{t_1}^{t} \frac{1}{p(s)^{\alpha}} \left[|\tilde{G}_\nu(s, w_n(s))| + |\tilde{H}_\nu(s, w_n(s))| + |\tilde{k}_\nu(s)| \right] ds \leq$$

$$\leq \frac{\alpha + 1}{P(t)} \int_{t_1}^{t} \frac{1}{p(s)^{\alpha}} \left[\frac{\tilde{L}}{\alpha} w_n^2(s) + \frac{\tilde{L}}{\alpha} \sum_{i=1}^{n} [\tilde{Q}_i(t_1) + 2^\alpha \tilde{R}_i(t_1)] |w_n(s)| + \sum_{i=1}^{n} [\tilde{Q}_i(t_1) + 2^\alpha \tilde{R}_i(t_1)] \right] ds \leq$$

$$\leq \left(1 + \frac{1}{\alpha} \right) \sum_{i=1}^{n} [\tilde{Q}_i(t_1) + 2^\alpha \tilde{R}_i(t_1)] \frac{1}{P(t)} \int_{t_1}^{t} \left[\tilde{L} + \tilde{L}_\rho_n(s) + \alpha \right] P(s) \alpha^{1/\alpha} ds = \rho_{n+1}(t).$$

Therefore, inductive arguments ensure the validity of (4.74).

We define by \mathcal{M} the mapping which assigns to each $\nu \in K$ the function $H_\nu(t)$ defined by

$$H_\nu(t) = 1 \text{ for } t_* \leq t \leq t_1, \quad H_\nu(t) = X_\nu(t) \text{ for } t \geq t_1.$$

(i) \mathcal{M} is a self-map on K, since it readily follows from (4.60) and $0 \leq \rho(t) \leq \sqrt{\sum_{i=1}^{n} [\tilde{Q}_i(t) + 2^\alpha \tilde{R}_i(t_1)]}$, $t \geq t_1$ that

$$1 \leq X_\nu(t) \leq \exp \left\{ \int_{t_1}^{t} \left(\frac{1 + \rho(s)}{p(s)\alpha^{1/\alpha}} \right)^{\frac{1}{\beta}} ds \right\}, \quad t \geq t_1 \text{ for any } \nu \in K$$

and

$$\mathcal{M}_\nu(h_\nu(t)) =$$

$$= \exp \left\{ \int_{t}^{h_\nu(t)} \left(1 - \frac{\sum_{i=1}^{n} [Q_{\nu, g_i}(s) + R_{\nu, h_i}(s)] + w_\nu(s)}{p(s)\alpha^{1/\alpha}} \right)^{\frac{1}{\beta}} ds \right\} \leq$$

$$\leq \exp \left\{ \int_{t}^{h_\nu(t)} \left(\frac{1 + \rho(s)}{p(s)\alpha^{1/\alpha}} \right)^{\frac{1}{\beta}} ds \right\} \leq$$

$$\leq \exp \left\{ \left(1 + \sqrt{\sum_{i=1}^{n} [\tilde{Q}_i(t_1) + 2^\alpha \tilde{R}_i(t_1)]} \right)^{\frac{1}{\beta}} \log \frac{P(h_\nu(t))}{P(t)} \right\} \leq 2, \quad t \geq t_1.
(ii) $\mathcal{M}(\mathbb{F})$ is relatively compact in $C[t_*, \infty)$. The inclusion $\mathcal{M}(\mathbb{F}) \subset \mathbb{K}$ shows that $\mathcal{M}(\mathbb{F})$ is locally uniformly bounded on $[t_*, \infty)$. Since

$$0 \leq \frac{d}{dt} \mathcal{M}_\nu(t) = \frac{d}{dt} X_\nu(t) = \left(1 - \sum_{i=1}^n [Q_{\nu, g_i}(t) + R_{\nu, h_i}(t)] + w_\nu(t) \right) \frac{P(t)}{p(t)P(t)^\alpha} \leq$$

$$\leq \left\{1 + \sqrt{\sum_{i=1}^n [\tilde{Q}_i(t_1) + 2^\alpha \tilde{R}_i(t_1)]} \right\}^\frac{1}{2}$$

$$\times \exp \left\{ \left(1 + \sqrt{\sum_{i=1}^n [\tilde{Q}_i(t_1) + 2^\alpha \tilde{R}_i(t_1)]} \right) \frac{\sqrt{\log P(t)}}{P(t)} \right\},$$

we conclude that $\mathcal{M}(\mathbb{F})$ is locally equi-continuous on $[t_*, \infty)$.

(iii) \mathcal{M} is continuous in the topology of $C[t_*, \infty)$. Let $\{\nu_m(t)\}$ be a sequence in \mathcal{K} converging to $\delta(t)$ uniformly on compact subintervals of $[t_*, \infty)$. We have to prove that $\{\mathcal{M}_\nu(t)\}$ converges to $\mathcal{M}_\delta(t)$ uniformly on any compact subintervals of $[t_*, \infty)$. In order to simplify the notation, for arbitrary $\nu \in \mathbb{K}$ we define

$$Z_\nu(t) = \frac{1 - \sum_{i=1}^n [Q_{\nu, g_i}(t) + R_{\nu, h_i}(t)] + w_\nu(t)}{P(t)^\alpha}, \quad t \geq t_1.$$ \hspace{1cm} (4.78)

Then, using (4.68) and the mean value theorem, we get

$$|\mathcal{M}_\nu(t) - \mathcal{M}_\delta(t)| = |X_{\nu_m}(t) - X_{\delta}(t)| =$$

$$= \left| \exp \left\{ \int_{t_1}^t \left(\frac{Z_{\nu_m}(s)}{p(s)} \right) \frac{1}{p(s)} ds \right\} - \exp \left\{ \int_{t_1}^t \left(\frac{Z_{\delta}(s)}{p(s)} \right) \frac{1}{p(s)} ds \right\} \right| \leq$$

$$\leq \exp \left\{ \int_{t_1}^t \left(\frac{1 + \rho(s)}{P(s)} \right) \frac{1}{P(s)} ds \right\} \int_{t_1}^t \frac{|Z_{\nu_m}(s)| - |Z_{\delta}(s)|}{p(s)} \frac{1}{p(s)} ds.$$

As in the proof of the existence of a n-RV $P(1)$ solution of the equation (A_+), we can show that the integrand of the last integral is bounded from above by the functions

$$\left(\sum_{i=1}^n |Q_{\nu_m, g_i}(t) - Q_{\delta, g_i}(t)| + \sum_{i=1}^n |R_{\nu_m, h_i}(t) - R_{\delta, h_i}(t)| + |w_{\nu_m}(t) - w_{\delta}(t)| \right) \frac{1}{P(t)^\alpha}$$

if $\alpha > 1$,

\hspace{1cm}
of the two sequences suffices to prove the uniform convergence to 0 on the compact subintervals. Therefore, it suffices to prove the uniform convergence to 0 on the compact subintervals of the two sequences

\[
C_3 \frac{\sum_{i=1}^{n} |Q_{\nu, g_i} - Q_{\delta, g_i}| + \sum_{i=1}^{n} |R_{\nu, h_i} - R_{\delta, h_i}| + |w_{\nu}(t) - w_{\delta}(t)|}{P(t)^{\alpha}}
\]

if \(\alpha \leq 1 \),

where \(C_3 \) is a positive constant depending only on \(\alpha \) and \(\rho(t_1) \). The second sequence in (4.79) can be dealt with exactly as in the case of the first sequence in (4.79), we consider \(\tilde{F}_{\nu}(t, w_{\nu}) \) and \(\tilde{F}_{\delta}(t, w_{\delta}) \) defined by (4.70). Applying the mean value theorem, for \(t \geq t_1 \) we get

\[
|\tilde{F}_{\nu}(t, w_{\nu}(t)) - \tilde{F}_{\delta}(t, w_{\delta}(t))| \leq \left(1 + \frac{1}{\alpha} \right) \left| w_{\nu}(t) - w_{\delta}(t) \right| + \\
\left| \left[1 - \sum_{i=1}^{n} \left[Q_{\nu, g_i}(t) + R_{\nu, h_i}(t) \right] + w_{\nu}(t) \right] \right|^{1 + \frac{1}{\alpha}} - \\
\left| \left[1 - \sum_{i=1}^{n} \left[Q_{\delta, g_i}(t) + R_{\delta, h_i}(t) \right] + w_{\delta}(t) \right] \right|^{1 + \frac{1}{\alpha}} \leq \\
\left(1 + \frac{1}{\alpha} \right) \left| w_{\nu}(t) - w_{\delta}(t) \right| + \left(1 + \frac{1}{\alpha} \right) \tau_3 \left\{ \tilde{S}_{m,n}(t) + \left| w_{\nu}(t) - w_{\delta}(t) \right| \right\}
\]

where \(\tau_3 \) is a positive constant depending only on \(\alpha, \tilde{Q}_1(t_1) \) and \(\tilde{R}_1(t_1) \). Consequently, the first sequence in (4.79) implies that

\[
\frac{|w_{\nu}(t) - w_{\delta}(t)|}{P(t)^{\alpha}} \leq \frac{(\alpha + 1)(1 + \tau_3)}{P(t)^{(\alpha+1)}} \int_{t_1}^{t} \frac{|w_{\nu}(s) - w_{\delta}(s)|}{p(s)^{\frac{1}{\alpha}}} ds + \\
\frac{(\alpha + 1)\tau_3}{P(t)^{\alpha+1}} \int_{t_1}^{t} \frac{\tilde{S}_{m,n}(s)}{p(s)^{\frac{1}{\alpha}}} ds, \ t \geq t_1.
\]

Putting for brevity

\[
\tilde{W}_{m}(t) = \int_{t_1}^{t} \frac{|w_{\nu}(s) - w_{\delta}(s)|}{p(s)^{\frac{1}{\alpha}}} ds
\]
we derive the following differential inequality for \(\tilde{W}_m(t) \):
\[
(P(t)^{-(\alpha+1)(1+\tau_3)} \tilde{W}_m(t))' \leq \frac{(\alpha + 1)\tau_3}{p(t)^{\alpha+1}P(t)^{(\alpha+1)(\tau_3+1)+1}} \int_{t_1}^{t} \frac{\tilde{S}_{m,n}(s)}{p(s)^{1/\alpha}P(s)^{1/(\alpha+1)(\tau_3+1)+1}} ds, \quad t \geq t_1. \tag{4.81}
\]

Integrating (4.81) from \(t_1 \) to \(t \), we obtain
\[
\tilde{W}_m(t) \leq \frac{\tau_3}{\tau_3+1} \frac{1}{P(t)^{(\alpha+1)(\tau_3+1)+1}} \int_{t_1}^{t} \frac{\tilde{S}_{m,n}(s)}{p(s)^{1/\alpha}P(s)^{1/(\alpha+1)(\tau_3+1)+1}} ds, \quad t \geq t_1. \tag{4.82}
\]

Using (4.80) and (4.82), we conclude that
\[
\left| w_\nu(t) - w_\delta(t) \right| \leq \frac{(\alpha + 1)\tau_3}{p(t)^{\alpha+1}P(t)^{(\alpha+1)(\tau_3+1)+1}} \int_{t_1}^{t} \frac{\tilde{S}_{m,n}(s)}{p(s)^{1/\alpha}P(s)^{1/(\alpha+1)(\tau_3+1)+1}} ds + \frac{(\alpha + 1)\tau_3}{P(t)^{(\alpha+1)(\tau_3+1)+1}} \int_{t_1}^{t} \frac{\tilde{S}_{m,n}(s)}{P(s)^{1/(\alpha+1)(\tau_3+1)+1}} ds, \quad t \geq t_1,
\]

whence it follows that the sequence \(|w_\nu(t) - w_\delta(t)|/P(t)^{\alpha} \) converges to 0 uniformly on \([t_1, \infty)\). Therefore, we have proved that the mapping \(M \) is continuous in the topology of \(C([t_\ast, \infty)) \). Thus, applying the Schauder–Tychonoff fixed point theorem, \(M \) has a fixed point \(\nu_0 \) in \(K \). Since \(\nu_0 = X_\nu(t) \) for \(t \geq t_1 \), \(\nu_0(t) \) satisfies the functional differential equation
\[
(p(t)\varphi(\nu_0'(t)))' = \sum_{i=1}^{n} q_i(t)\varphi(\nu_0(g_i(t))) + r_i(t)\varphi(\nu_0(h_i(t))), \quad t \geq t_1. \tag{4.83}
\]

It is obvious that \(\nu_0(t) \) is a n-SV\(_P\)(1) solution of the equation \((A_-)\). This completes the proof of Theorem 1.1.

5. Examples

We here present four examples illustrating application of Theorem 1.1 to the functional differential equations of the type \((A_+)\) and \((A_-)\), respectively. We begin with two examples of the existence of n-SV\(_P\) and n-RV\(_P\)(1) solutions of the type \((A_+)\) with the case \(i = 1 \).

Example 5.1. Consider the following functional differential equation with both retarded and advanced arguments
\[
(e^{-\alpha t}\varphi(x'(t)))' + q(t)\varphi\left(x\left(t - \frac{1}{\log t}\right)\right) + r(t)\varphi\left(x\left(t + \frac{1}{\log t}\right)\right) = 0, \quad t \geq e. \tag{5.1}
\]
where the functions $q(t)$ and $r(t)$ are given by
\[
q(t) = \frac{\alpha}{2e^{\alpha t} t^\alpha} \left(1 + \frac{\lambda}{\log t}\right)^{-\frac{1}{\alpha}} \left[1 - \frac{\lambda}{t \log t} + \frac{\lambda(\lambda - 1)}{t(\log t)^2} + \frac{\lambda}{\log t}\right] \times \left(\frac{1}{t \log t} - \frac{1}{(1 + \frac{1}{\log t})}\right)^{-\frac{1}{\alpha}} \{1 + \log(1 - \frac{1}{(\log t)})}^{-\frac{1}{\alpha}} \}
\]
and
\[
r(t) = \frac{\alpha}{2e^{\alpha t} t^\alpha} \left(1 + \frac{\lambda}{\log t}\right)^{-\frac{1}{\alpha}} \left[1 - \frac{\lambda}{t \log t} + \frac{\lambda(\lambda - 1)}{t(\log t)^2} + \frac{\lambda}{\log t}\right] \times \left(\frac{1}{t \log t} - \frac{1}{(1 + \frac{1}{\log t})}\right)^{-\frac{1}{\alpha}} \{1 + \log(1 + \frac{1}{(\log t)})}^{-\frac{1}{\alpha}} \}
\]
for λ being a positive constant. The function $p(t) = e^{-\alpha t}$ satisfies (1.1) and the function $P(t)$ given by (1.6) is $P(t) \sim e^t$. Moreover, the functions $g(t) = t - \frac{1}{\log t}$ and $h(t) = t + \frac{1}{\log t}$ satisfy the conditions (1.7) and (1.8). The condition (1.9) is satisfied for this equation, since
\[
\int_t^\infty q(s) \, ds \sim \frac{\alpha}{2t^{\alpha-1}} \quad \text{and} \quad \int_t^\infty h(s) \, ds \sim \frac{\alpha}{2t^{\alpha-1}} \quad \text{as} \quad t \to \infty.
\]
Therefore, equation (5.1) has a n-SV$_{e^t}$ solution $x(t)$ by Theorem 1.1. One such solution is $x(t) = t(\log t)$.

Example 5.2. Consider the following functional differential equation:
\[
(t^\mu \varphi(x'(t)))' + q(t)\varphi(x(te^{-t})) + r(t)\varphi(x(te^t)) = 0, \quad t \geq e^e, \tag{5.3}
\]
where the functions $q(t)$ and $r(t)$ are given by
\[
q(t) = \frac{\alpha \mu}{2t(\log t)^{\alpha+1/2} \log_2 t} \left(1 - \frac{\mu}{\log_2 t}\right)^{-\frac{1}{\alpha}} \left(1 - \frac{\mu + 1}{\log_2 t}\right) \times \left(\frac{1}{t \log t} - \frac{1}{(1 + \frac{1}{\log t})}\right)^{-\frac{1}{\alpha}} \{1 + \log(1 - \frac{1}{(\log t)})}^{-\frac{1}{\alpha}} \}
\]
and
\[
r(t) = \frac{\alpha \mu}{2t(\log t)^{\alpha+1/2} \log_2 t} \left(1 - \frac{\mu}{\log_2 t}\right)^{-\frac{1}{\alpha}} \left(1 - \frac{\mu + 1}{\log_2 t}\right) \times \left(\frac{1}{t \log t} - \frac{1}{(1 + \frac{1}{\log t})}\right)^{-\frac{1}{\alpha}} \{1 + \log(1 + \frac{1}{(\log t)})}^{-\frac{1}{\alpha}} \}
\]
respectively, and μ is a positive constant. The function $p(t) = t^{\alpha}$ satisfies (1.1) and the function $P(t)$ reduces to $P(t) \sim \log t$, while the functions
\(g(t) = te^{-\frac{t}{2}}\) and \(h(t) = te^{\frac{t}{2}}\) satisfy the conditions (1.7) and (1.8). Moreover, since

\[
\int_{t}^{\infty} q(s) \, ds \sim \frac{\alpha\mu}{2t(\log t)^{\alpha+1} \log 2} t \quad \text{and} \quad \int_{t}^{\infty} h(s) \, ds \sim \frac{\alpha\mu}{2t(\log t)^{\alpha+1} \log 2} t
\]
as \(t \to \infty\),

the condition (1.9) is satisfied and thus, the equation (5.3) possesses a n-RV solution by Theorem 1.1. One such solution is \(\log t / (\log 2t)\).

Next, two examples illustrating application of Theorem 1.1 to the functional differential equation of the type \((A_{-})\) with the case \(i = 1\) will be presented below.

Example 5.3. We consider the functional differential equation with both retarded and advanced arguments

\[
(e^{-\alpha t} \varphi(x'(t)))' = q(t)\varphi\left(x\left(t - \frac{1}{\log t}\right)\right) + r(t)\varphi\left(x\left(t + \frac{1}{\log t}\right)\right), \quad t \geq e, \quad (5.4)
\]

where the functions \(q(t)\) and \(r(t)\) are given by

\[
q(t) = \frac{\alpha}{2t^\alpha e^{\alpha t}} \left(1 - \frac{\lambda}{\log t}\right)^{\alpha-1} \times
\]

\[
\times \left[\left(1 + \frac{2}{t}\right)\left(1 - \frac{\lambda}{\log t}\right) + \frac{\lambda}{t\log t} \left(1 - \frac{\lambda}{\log t}\right) + \frac{\lambda}{t(\log t)^2}\right] \times
\]

\[
\times \left(1 - \frac{1}{t\log t}\right)^\alpha \left\{1 + \frac{\log(1 - \frac{1}{\log t})}{\log t}\right\}^{-\alpha\lambda},
\]

\[
r(t) = \frac{\alpha}{2t^\alpha e^{\alpha t}} \left(1 - \frac{\lambda}{\log t}\right)^{\alpha-1} \times
\]

\[
\times \left[\left(1 + \frac{2}{t}\right)\left(1 - \frac{\lambda}{\log t}\right) + \frac{\lambda}{t\log t} \left(1 - \frac{\lambda}{\log t}\right) + \frac{\lambda}{t(\log t)^2}\right] \times
\]

\[
\times \left(1 + \frac{1}{t\log t}\right)^\alpha \left\{1 + \frac{\log(1 + \frac{1}{\log t})}{\log t}\right\}^{-\alpha\lambda},
\]

for \(\lambda\) being a positive constant. As in Example 5.1, it could be shown without difficulty that all conditions of Theorem 1.1 are satisfied, so that the equation (5.4) has a n-SV solution \(x(t)\) by Theorem 1.1. One such solution is \((\log t)^{\lambda} / \log t\).

Example 5.4. Consider the following functional differential equation:

\[
(t^\alpha \varphi(x'(t)))' = q(t)\varphi\left(x(t(e^{-\frac{t}{2}}))\right) + r(t)\varphi\left(x(t(e^{\frac{t}{2}}))\right), \quad t \geq e, \quad (5.5)
\]

where the functions \(q(t)\) and \(r(t)\) are given by

\[
q(t) = \frac{\alpha\mu}{2t(\log t)^{\alpha+1} \log 2} \left(1 + \frac{\mu}{\log_2 t}\right)^{\alpha-1} \left(1 + \frac{\mu - 1}{\log_2 t}\right) \times
\]
\[\times \left(1 - \frac{1}{t \log t} \right)^{-\alpha} \left\{ 1 + \frac{\log(1 - \frac{1}{t \log t})}{\log_2 t} \right\}^{-\alpha \mu} \]

and
\[r(t) = \frac{\alpha \mu}{2(\log t)^{\alpha+1} \log_2 t} \left(1 + \frac{\mu}{\log_2 t} \right)^{\alpha-1} \left(1 + \frac{\mu - 1}{\log_2 t} \right) \times \]
\[\times \left(1 + \frac{1}{t \log t} \right)^{-\alpha} \left\{ 1 + \frac{\log(1 + \frac{1}{t \log t})}{\log_2 t} \right\}^{-\alpha \mu} , \]

respectively, and \(\mu \) is a positive constant. As in Example 5.2, it can be verified that all conditions of Theorem 1.1 are satisfied. Therefore, the equation (5.5) possesses a n-RV\(_{\log t}\) solution \(x(t) \). One such solution is \(x(t) = \log(t)(\log_2 t)^\mu \).

Acknowledgement

This research was supported by Grant-in-Aid for Scientific Research (C) (No. 23540218), the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

7. J. Manojlović and T. Tanigawa, Regularly varying solutions of half-linear differential equations with retarded and advanced arguments. (Submitted for publication)

(Received 16.06.2012)

Author’s address:

Kumamoto University, Department of Mathematics, Faculty of Education, 2–40–1, Kurokami, Chuo-ku, Kumamoto, 860–8555, Japan.

e-mail: tanigawa@educ.kumamoto-u.ac.jp