w-JORDAN NEAR-RINGS I

A. Benini

Facoltà di Ingegneria, Università, I-25123 Brescia, Via Branze 9, Italia.

S. Pellegrini

Facoltà di Ingegneria, Università, I-25123 Brescia, Via Branze 9, Italia.

Received January 1991

AMS Subject Classification: 16 Y 30.

Keywords: Near-ring, nilpotent near-ring, radical, invariant series.

Abstract: Let N be a zero-symmetric near-ring with an invariant series whose factors are N-simple. We prove that the radical $J_2 (N)$ is nilpotent and the factor $N/J_2 (N)$ is a direct sum of a finite number of A-simple and strongly monogenic near-rings. Moreover we characterize nilpotent near-rings with invariant series whose factors are of prime order.

Introduction and general results

Many authors have studied near-rings containing particular chains of ideals (see [5,8,10]) and have often shown the existence of links between these chains of ideals and the structure of the near-rings under consideration. In this paper we begin a study of near-rings with an invariant series whose factors belong to certain given classes. In particular we study here the zero-symmetric case; the general case and the construction of finite near-rings satisfying these conditions will be covered in future papers.

For the zero-symmetric near-rings with an invariant series whose factors are N-simple, we obtain a result analogous to the Artin-Noether theorem. We prove that a zero-symmetric near-ring N with an invariant
series whose factors are N-simple has the radical $J_2(N)$ nilpotent and
the factor $N/J_2(N)$ is a direct sum of A-simple and strongly monogenic
near-rings. Moreover we discuss the finite case and characterize the
near-rings with an invariant series whose factors are of prime order.
We prove a necessary and sufficient condition so that N is nilpotent
and we establish a link between the nilpotence index and the length of
the series. In the case in which index and length coincide, we prove
that the order of N is a prime power.

In the following we will often refer to [12] without express recall.
Let N be a left near-ring. A finite system of subnear-rings of N
contained in one another
\[N = N_1 \supset N_2 \supset \ldots \supset N_n = \{0\} \]
is called a normal series of N if every subnear-ring N_i, $i \in \{1, 2, \ldots, n\}$, is a proper ideal in N_{i-1}, an invariant series of N if every subnear-ring N_i, $i \in \{1, 2, \ldots, n\}$, is a proper ideal of N. The factor-near-rings N_i/N_{i+1} are called principal factors of the invariant series. For invariant
series, in the following, we will indicate $N_i/N_{i+1}, N_i/N_{i+2}, \ldots, N_i/N_{i+k}$
respectively with $N'_i, N''_i, \ldots, N^k_i$ and with $f'_i, f''_i, \ldots, f^k_i$ the corresponding
canonical epimorphisms.

Let us consider now the following classes of near-rings:

- S_0: class of simple near-rings;
- S_1: class of simple and strongly monogenic near-rings;
- S_2: class of N_0-simple near-rings\(^{(1)}\);
- S_3: class of near-rings without proper subnear-rings;
- S_4: class of near-rings of prime order.

Definition 1. A near-ring N is a w-Jordan near-ring \((wJ\text{-near-ring})\) if it has an invariant series whose factors belong to S_w \((w \in \{0, 1, 2, 3, 4\})\).

We can observe that in near-ring-theory the classes S_i \((i \in \{0, 1, 2, 3, 4\})\) never coincide without further conditions while in ring-theory, for instance, S_1 and S_2 coincide.

In order to establish relationships between the classes S_w, let us state some results that concern the near-rings belonging to S_2. We
recall that: A near-ring N is N_0-simple if it is without proper additive subgroups S such that $SN_0 \subseteq S$.

\(^{(1)}\) We observe that if N is zero-symmetric, N_0-simplicity and N-simplicity coincide.
Definition 2. A zero-symmetric near-ring \(N \) is \(A \)-simple if it is without non-zero \(N \)-subgroups \(H \) such that \(HN = \{0\} \).

Theorem 1. A near-ring \(N \) belongs to \(S_2 \) iff \(N \) is a zero-ring of prime order, a constant near-ring of prime order or an \(A \)-simple and strongly monogenic near-ring.

Proof. Let \(N \) be an \(N_0 \)-simple near-ring. The constant and the zero-symmetric parts are both \(N_0 \)-subgroups of \(N \), hence \(N \) is constant or zero-symmetric. By [2] and Ex.3.9 p.78 of [12] a constant near-ring is \(N_0 \)-simple iff it is cyclic of prime order. If \(N \) is zero-symmetric then \(nN = \{0\} \) for every \(n \in N \), and thus \(N \) is a zero-ring of prime order, or \(N \) is strongly monogenic and obviously \(A \)-simple. Conversely, if \(N \) is a zero-ring of prime order or a constant near-ring of prime order, then \(N \) is \(N_0 \)-simple. Let \(N \) be an \(A \)-simple and strongly monogenic near-ring. Let us suppose that \(M \) is a proper \(N_0 \)-subgroup of \(N \). Since \(N \) is an \(A \)-simple near-ring, then \(MN \neq \{0\} \) and since \(N \) is a strongly monogenic near-ring there is an element \(h \in M \) such that \(hN = N \). Since \(M \) is an \(N_0 \)-subgroup, \(hN \) is contained in \(M \), a contradiction. Thus \(N \) is \(N_0 \)-simple. \(\Diamond \)

We observe that a zero-symmetric near-ring which is \(A \)-simple and strongly monogenic is Blackett simple ([4]).

Definition 3. A near-ring \(N \) is strongly \(N_0 \)-simple if its subnear-rings belong to \(S_2 \).

We will call \(S_2^* \) the class of the strongly \(N_0 \)-simple near-rings.

Theorem 2. If \(N \) is an \(N_0 \)-simple near-ring and every subnear-ring \(M \) of \(N \) satisfies the d.c.c. on the \(M \)-subgroups, then \(N \) is strongly \(N_0 \)-simple.

Proof. By Th.1, if \(N \) is a zero-ring of prime order or a constant near-ring of prime order, then \(N \) is strongly \(N_0 \)-simple. Let \(N \) be an \(A \)-simple and strongly monogenic near-ring and let \(M \) be a subnear-ring of \(N \) with d.c.c. on the \(M \)-subgroups. Our aim is to show that \(M \) does not contain additive subgroups \(S \) so proving that \(SM \subseteq S \). Let us suppose \(S \) to be a proper \(M \)-subgroup of \(M \). Since \(N \) is \(A \)-simple then \(SN \neq \{0\} \), thus there is an element \(s \in S \) such that \(sN = N \), given that \(N \) is strongly monogenic. Firstly we observe that \(r(s) = \{0\} \) (where \(r(s) \) is the right annihilator of the element \(s \)). In fact \(r(s) \neq \{0\} \) implies \(r(s)N \neq \{0\} \), because \(r(s) \) is an \(N \)-subgroup of \(N \) and \(N \) is \(A \)-simple; thus \(r(s)N = N \) and \(N = sN = s[r(s)N] = \{0\}N = \{0\} \) and this is absurd. Moreover, since \(S \) is a proper \(M \)-subgroup of \(M \), \(sM \)
is strictly contained in \(M \). We set \(M_1 = sM \) and consider \(sM_1 \). It is an \(M \)-subgroup of \(M \) strictly contained in \(M_1 \), in fact if \(sM_1 = M_1 \), it would be \(ssM = sM \), that is \(s(sM - M) = \{0\} \). Since \(r(s) = \{0\} \), then \(sM = M \) and this was previously excluded. In this way we obtain a chain \(M_1 \supset sM_1 \supset s^2M_1 \supset \ldots \) which becomes stationary, due to d.c.c. on the \(M \)-subgroups. Since this is excluded, \(M \) is \(M \)-simple.

Proposition 1. If \(N \) is a \(wJ \)-near-ring, then \(N \) is a \((w - 1)J \)-near-ring.

Proof. We can easily prove that \(S_4 \subset S_3 \subset S_2 \subset S_1 \subset S_0 \) and consequently that a \(wJ \)-near-ring is a \((w - 1)J \)-near-ring.

Proposition 2. The classes \(S_w (w \in \{0, 1, 2, 3, 4\}) \) are closed under homomorphisms and the classes \(S_w (w \in \{3, 4\}) \) are closed under substructures.

Proof. The near-rings belonging to \(S_3 \) and \(S_4 \) are without substructures and simple, so they do not have proper homomorphic images. Moreover, if \(N' = \varphi(N) \) is a homomorphic image of \(N \), each proper \(N_0 \)-subgroup (ideal) of \(N' \) derives from some proper \(N_0 \)-subgroup (ideal) of \(N \), thus \(N \in S_2 \) implies \(N' \in S_2 \) \((N \in S_0 \) implies \(N' \in S_0 \)). Moreover, if \(N \) is strongly monogenic and simple, then \(N' \) is strongly monogenic and simple, therefore \(N \in S_1 \) implies \(N' \in S_1 \).

Hence, by Prop.6 of [1]:

Proposition 3. The classes of the \(3J \)-near-rings and of the \(4J \)-near-rings are closed under substructures, homomorphic images and \(N_0 \)-subgroups.

We should observe that the classes \(S_w (w \in \{0, 1, 2\}) \) are not closed under substructures. In fact for example \(Q \in S_2 \) but \(\mathbb{Z} \notin S_0 \). Therefore we cannot apply Prop.6 of [1] and, in fact, even if we can prove that \(S_2 \) is closed under \(N_0 \)-subgroups, the class of the \(2J \)-near-rings is not closed under \(N_0 \)-subgroups.

2-Jordan near-rings

The following Th.3, which provides a necessary and sufficient condition so that the class \(S_2 \) is closed w.r.t. substructures, uses the Th.1.33 of [11].

Let \(I \) be an ideal of a near-ring \(N \) and \(S \) a subnear-ring of \(N \). Then \(I \cap S \) is an ideal of \(S \), \(I \) is an ideal of \(I + S \) and \(I + S/I \) is isomorphic to \(S/I \cap S \).
Theorem 3. A near-ring N has all its subnear-rings as $2J$-near-rings iff it contains an invariant series $N = N_1 \supset N_2 \supset \ldots \supset N_n =\{0\}$ whose principal factors N'_i belong to S_2^*.

Proof. Let N be a near-ring whose subnear-rings are $2J$-near-rings. So N is also a $2J$-near-ring. Hence let us consider an invariant series of N,

(α) \[N = N_1 \supset N_2 \supset \ldots \supset N_n = \{0\} \]

whose principal factors belong to S_2. In order to show that the principal factors of (α) belong to S_2^*, we will show that every subnear-ring M of N'_i has the d.c.c. on the M-subgroups. Let M be a subnear-ring of N'_i. Since M is a homomorphic image of a subnear-ring of N_i and consequently of N, by Proposition 2, it is a $2J$-near-ring. Therefore M has an invariant series $M = M_1 \supset M_2 \supset \ldots \supset M_n = \{0\}$ whose factors belong to S_2. Hence these factors have the d.c.c. on the $(M'_i)_0$-subgroups. By Th.1 and Ex a) of [1] we can deduce that M also has the d.c.c. on M-subgroups. Thus N'_i belong to S_2 and every subnear-ring M of N'_i has the d.c.c. M. We apply Th.2 and $N'_i \in S_2^*$.

Conversely, let N be a near-ring with an invariant series $N = N_1 \supset \ldots \supset N_n = \{0\}$ whose principal factors N'_i belong to S_2^*. We can prove that the subnear-rings of N are $2J$-near-rings. Let M be a subnear-ring of N. We set $M_i = M \cap N_i$ and we obtain an invariant series of $M : M = M_1 \supset M_2 \supset \ldots \supset M_n = \{0\}$.

By the Theorem 1.33 of [11], $N_{i+1} \cap M_i/N_{i+1}$ is isomorphic to $M_i/N_{i+1} \cap M_i$ that coincides with M_i/M_{i+1}. Therefore M'_i is isomorphic to $N_{i+1} + M_i/N_{i+1}$ and the latter is a subnear-ring of N'_i. Since N'_i belongs to S_2^*, M'_i belongs to S_2 and M is a $2J$-near-ring. ◊

Corollary 1. The class of finite $2J$-near-rings is closed under substructures.

Proof. It follows from Th.2 and 3, given that, in the finite case, the d.c.c. hold. ◊

In the following N will be a zero-symmetric near-ring.

Theorem 4. If N is a near-ring with an A-simple and strongly monogenic ideal I such that N/I is a zero-ring of prime order, then $N = I \oplus J$ where $J = J_2(N)$.\(^{(2)}\)

\(^{(2)}\) $J_2(N)$ is the intersection of right annihilators of N_0-simple N-groups, see [12] p. 136.
Proof. Let I be a proper ideal of N, otherwise the thesis is trivial. Since N is zero-symmetric, I is an N-subgroup of N, therefore $I J_2(N) = \{0\}$ and $J_2(N) \neq N$, $J_2(N) \neq I$ because I is A-simple. Moreover $J_2(N) \neq \{0\}$. In fact: if $J_2(N) = \{0\}$, then $J_2(I) = \{0\}$ and I is 2-semisimple with d.c.c. on the right annihilators. Hence I has a left identity e (see [2], [4], [12] p. 146) and by Pierce decomposition $N = r(e) + eN$. We observe that $r(e) \neq \{0\}$. In fact $r(e) = \{0\}$ implies $N = eN \subseteq I$ and this is excluded. Moreover N/I is a zero-ring, therefore $[r(e)]^2 \subseteq I$ and hence $[r(e)]^2 = \{0\}$. In this way $r(e)$ is a non trivial nilpotent N-subgroup of N and therefore $r(e) \subseteq J_2(N) = \{0\}$ (see [12] p. 153, [13]), a contradiction. Finally $I \cap J_2(N) = \{0\}$ because I is simple and $N = I + J_2(N)$ because N/I is of prime order. Hence $N = I \oplus J_2(N)$.

The following theorem shows that, given a zero-symmetric near-ring with an invariant series whose factors are in S_2, it is possible to construct another invariant series whose factors are in S_2 such that the A-simple and strongly monogenic factors precede the zero-ring factors.

Theorem 5. Let N be a $2J$-near-ring and $N = N_1 \supset N_2 \supset \ldots \supset N_n = \{0\}$ an invariant series whose principal factors are in S_2. If N'_i is a zero-ring and N'_i is an A-simple and strongly monogenic near-ring then there is an ideal M_i of N such that $N_i \supset M_i \supset N_i+2$, N_i/M_i is isomorphic to N'_i and M_i+2/N_i is isomorphic to N'_i.

Proof. Considering the near-ring N''_i, we set $I = f''_i (N_i)$ Given that N''_i/N_i is isomorphic to N'_i we have N''_i/I isomorphic to N'_i. Therefore N''_i/I is a zero-ring of prime order and I is A-simple and strongly monogenic because it is isomorphic to N''_i. Hence, by Th.4, $N''_i = I \oplus J$ where $J \cong N'_i$ and therefore $N'_i \cong N''_i/J$. We set $M_{i+1} = (f''_i)^0 (J)$, that is M_{i+1}/N_i is isomorphic to N'_i. Obviously M_{i+1} is an ideal of N_i and $N_i/M_{i+1} \cong (N_i/N_i)/M_{i+1}/N_i \cong \cong N''_i/J \cong I \cong N_i+1/N_i+2 = N'_i$. Hence M_{i+1} is a maximal ideal of N_i.

Now we can show that M_{i+1} is an ideal of N: the near-ring N_i+1 is an ideal of N, M_{i+1} is an ideal of N_i, hence $N_i+1 M_{i+1} \subseteq \subseteq N_i+1 \cap M_{i+1}$. Moreover $N_i+1 \cap M_{i+1} = N_i+2$. In fact if $x \in N_i+1 \cap M_{i+1}$, then $x + N_i+2 \in N_i+1 \cap J = \{0\}$ and this implies that $x \in N_i+2$. Thus $N_i+1 \cap M_{i+1} \subseteq N_i+2$. Obviously $N_i+2 \subseteq N_i+1 \cap M_{i+1}$, therefore $N_i+1 \cap M_{i+1} = N_i+2$. We now set $(N_i+2 : N_i+1) = \{m \in N/N_i+1 m \subseteq \subseteq N_i+2\} = H$ which is an ideal of N (see [11]). We obtain $M_{i+1} \subseteq$
w-Jordan near-rings I

\(\subseteq H \cap N_i \) and \(H \cap N_i \) is strictly enclosed in \(N_i \); otherwise it would be \(N_i+1 \cap N_i \subseteq N_i+2 \) and hence \(N_i+1 \cap N_{i+1} \subseteq N_i+2 \), but \(N_i+1 \) is \(A \)-simple and this is excluded. Hence \(M_i+1 = H \cap N_i \). Thus \(M_i+1 \), as intersection of two ideals of \(N \), is an ideal of \(N \). ◊

Theorem 6. A non nilpotent 2J-near-ring \(N \), has the radical \(J_2(N) \) nilpotent and the factor \(N/J_2(N) \) is a direct sum of \(A \)-simple and strongly monogenic near-rings.

Proof. By Th.5, if \(N \) is a zero-symmetric 2J-near-ring, we can construct a new invariant series \(N = N_1 \supset N_2 \supset \ldots \supset N_n = \{0\} \) whose factors are in \(S_2 \), such that, if \(N'_j \) is \(A \)-simple and strongly monogenic and \(N'_j \) is a zero-ring, then \(i < j \). We set \(h \in I_n \), the smallest index such that \(N'_h \) is a zero-ring. Obviously \(N'_h \) is nilpotent. Therefore \(N_h \subseteq J_2(N) \). Moreover, if \(N_h \neq N \), the near-ring \(N/N_h \) contains an invariant series whose factors are \(N \)-simple and hence 2-semisimple. By Ex. f) of [1], \(N/N_h \) is 2-semisimple and therefore \(J_2(N) \subseteq N_h \). Hence \(J_2(N) = N_h \) and the radical \(J_2(N) \) is nilpotent. In this way \(N/J_2(N) \) has an invariant series satisfying the hypotheses of Th.4 of [1], thus \(N/J_2(N) \) is the direct sum of \(A \)-simple and strongly monogenic near-rings. ◊

The analogous, in ring-theory, brings us to the famous theorem of Artin-Noether. In fact, rings with an invariant series whose factors are in \(S_2 \), are rings with an invariant series whose factors are without right ideals\(^{(3)}\) and hence are either fields or zero-rings. Thus in a ring \(A \) satisfying the hypotheses of Th.6 the Jacobson radical \(J(A) \) is nilpotent and the factor \(A/J(A) \) is a direct sum of fields.

Corollary 2. Let \(N \) be a 2J-near-ring. Then \(\mathcal{P}(N) = \eta(N) = J_0(N) = J_1(N) = J_2(N) \).\(^{(4)}\)

Proof. It can be easily demonstrated, since \(N \) has the d.c.c. on the \(N \)-subgroups and \(J_2(N) \) is nilpotent (see 5.61 p. 162 of [12]). ◊

If \(N \) is a finite near-ring, we obtain:

Corollary 3. Let \(N \) be a finite near-ring such that \(N \neq J_2(N) \). Then:
1. If \(N \) is a 2J-near-ring and the \(A \)-simple factors present in a principal series are planar, then the additive group \((N/J_2(N))^+ \) is nilpotent;
2. If \(N \) is a 3J-near-ring, the additive group \((N/J_2(N))^+ \) is abelian.

Proof. The group \((N/J_2(N))^+ \) is a direct sum of finite groups sup-

\(^{(3)}\) A ring having an invariant series whose factors are in \(S_2 \), is right artinian.

\(^{(4)}\) For the definitions of \(\mathcal{P}(N) \), \(\eta(N) \) and \(J_v(N) (v \in \{0,1,2\}) \) see [9], [11], [12].
porting planar near-rings. Therefore, as shown in [3], \((N/J_2(N))^+\) is nilpotent.

If \(N\) is a 3J-near-ring, the factors of the invariant series are without proper subnear-rings. Therefore, as proved in [6], (see also [7]) they are \(p\)-singular\(^{(5)}\) and therefore their additive group is elementary abelian, because they are simple. Thus \((N/J_2(N))^+\), being a direct sum of elementary abelian groups, is abelian. \(\diamondsuit\)

4-Jordan near-rings

In this section we will study the 4J-near-rings with particular reference to the nilpotent case. We recall that a near-ring \(N\) is nilpotent if there is an index \(n \in \mathbb{N}\) such that \(N^n = \{0\}\). We will call \(g(N)\) the least \(n \in \mathbb{N}\) such that \(N^n = \{0\}\) and \(\dim(N)\) the length of an invariant series whose factors are in \(S_4\).

Theorem 7. A near-ring \(N\) with an invariant series \(N = N_1 \supset N_2 \supset \cdots \supset N_n = \{0\}\) and whose factors are in \(S_4\) is nilpotent iff \(N^s \subseteq N_s\), for every \(s \in I_n\).

Proof. Let \(N\) be a nilpotent 4J-near-ring. We will show that, for every \(i \in I_n\), \(NN_i \subseteq N_{i+1}\). If \(NN_i \not\subseteq N_{i+1}\), there is an element \(a \in N\) such that \(aN_i \not\subseteq N_{i+1}\). Since \(aN_i\) is a subnear-ring of \(N_i\) and \(N_i/N_{i+1}\) is of prime order, \((aN_i + N_{i+1})/N_{i+1}\) is not a proper subnear-ring of \(N_i/N_{i+1}\). Therefore, either \(aN_i + N_{i+1} = N_{i+1}\) or \(aN_i + N_{i+1} = N_i\). Given that \(aN_i \not\subseteq N_{i+1}\), we have:

\[(\alpha)\quad aN_i + N_{i+1} = N_i\]

and \(a^hN_i = a^{h+1}N_i + a^hN_{i+1}\). Let \(h'\) be the smallest integer such that \(a^{h'}N_i \subseteq N_{i+1}\). This \(h'\) exists and it is \(h' > 1\) because otherwise, for every \(t \in N\), it would be \(a^tN_i + N_{i+1} = N_i\) and since \(N\) is nilpotent, it would be \(N_{i+1} = N_i\) and this is excluded. Therefore, by \((\alpha)\), we obtain \(a^{h'}N_i + a^{h'-1}N_{i+1} = a^{h'-1}N_i\), hence \(a^{h'-1}N_i \subseteq N_{i+1}\) in contrast to the hypothesis stating that \(h'\) is the smallest integer so that \(a^{h'}N_i \subseteq N_{i+1}\). Thus \(NN_i \subseteq N_{i+1}\) and consequently \(N^s \subseteq N_s\) for every \(s \in I_n\). The converse is trivial. \(\diamondsuit\)

\(^{(5)}\) For the definition of \(p\)-singular near-ring see [6].
Corollary 4. If N is a nilpotent 4J-near-ring, $g(N) \leq \dim(N)$.

Proof. It is a consequence of Th.7. \hfill \checkmark

We can characterize the case in which $g(N) = \dim(N)$.

Theorem 8. Let N be a nilpotent 4J-near-ring and let $N = N_1 \supset N_2 \supset \ldots \supset N_n = \{0\}$ a series whose factors are in S_4. The length of the chain and the nilpotence index of N coincide iff $N_i = (N_{i+1} : N)_N$ for every $i \in I_{n-1}$.

Proof. We set $M_i = (N_{i+1} : N)_N = \{n \in N/Nn \subseteq N_{i+1}\}$. Let $g(N) = \dim(N) = n$. By Th.7, we have $NN_i \subseteq N_{i+1}$ and hence $N_i \subseteq M_i$. If N_i is strictly contained in M_i, the series $N \supset M_i \supset N_i \supset \{0\}$ will be refinable (by Jordan-Hölder theorem) in a principal series where $M_i = \overline{N}_j$ with $j \leq i$. By Th.7, $N^j \subseteq \overline{N}_j$ and hence $N^j \subseteq M_i$. Therefore $N^{j+1} \subseteq NM_i \subseteq N_{i+1}$. Hence $N^{j+1+(n-i-1)} = N^{n-(i-j)} = \{0\}$. Given that $g(N) = n$, we obtain $i = j$, that is $M_i = \overline{N}_j = N_i$.

Conversely, let us suppose $N_i = M_i$ for every $i \in I_{n-1}$ and $g(N) = h$. Then $N^h = \{0\}$, therefore $N^{h-1} \subseteq (0 : N)_N = N_{n-1}$, in fact N_{n-1} is the right annihilator of N because $N_{n-1} = M_{n-1} = (N_n : N)_N$. Analogously $N^{h-2} \subseteq (N_{n-1} : N)_N = N_{n-2}$ and so on. After a finite number of steps we get $N \subseteq N_{n-h+1}$, thus $N = N_{n-h+1}$ and $n = h$. \hfill \checkmark

Finally:

Theorem 9. If N is a nilpotent 4J-near-ring such that $g(N) = \dim(N)$, then $|N| = p^\alpha$, (p prime).

Proof. We can prove this theorem by induction on $g(N)$. If $g(N) = 1$, $N = N_1 \supset N_2 = \{0\}$ is the principal series required and hence $|N| = p$.

Let us suppose the theorem proved for $g(N) = n - 1$ and let $N = N_1 \supset N_2 \supset \ldots \supset N_n = \{0\}$ be a series of N whose factors are in S_4. Then $|N/N_{n-1}| = p$ and we can suppose $|N_{n-1}| = q$ (q prime).

By Th.7, $N^{n-2} N = N^{n-1} \subseteq N_{n-1}$, therefore, for every $m \in N^{n-2}$, $mN \subseteq N_{n-1}$ and given that N_{n-1} is of prime order, either $mN = \{0\}$ or $mN = N_{n-1}$. If $mN = \{0\}$, for every $m \in N^{n-2}$, then $N^{n-1} = \{0\}$ and this is excluded, thus $mN = N_{n-1}$ for some $m \in N$.

Considering now the left translation $\gamma_m : N \to mN$, we obtain an endomorphism of N^+ whose kernel is $r(m)$, the right annihilator of m and whose image is N_{n-1}. Therefore $|\text{im } \gamma_m| = |N/\ker \gamma_m|$ that is $q = |N/\ker \gamma_m|$. Given that $\ker \gamma_m = r(m) \supseteq r(N) = N_{n-1}$, either $|\ker \gamma_m| = q$ or $|\ker \gamma_m| = q^\beta$. Thus: $q = q^\alpha / q^\beta$ and this implies $q^\beta = p^\alpha$, hence $p = q$. \hfill \checkmark
References

