ON THE AREA SUM OF A CONVEX POLYGON AND ITS POLAR RECIPROCAL

August Florian

Institut für Mathematik, Universität Salzburg, Hellbrunnerstraße 34, A–5020 Salzburg, Österreich

To o. Univ.-Prof. Dr. H. Vogler on his 60th birthday

Received January 1995

MSC 1991: 52 A 40

Keywords: Polar reciprocal sets, area sum.

Abstract: Let P be a plane convex polygon contained in the unit circle K, and let P^* be the polar reciprocal of P with respect to K. In this paper it is proved that the area sum of P and P^* is greater than or equal to 6 with equality if and only if P is a square inscribed in K.

1. Introduction

Let K be the unit circle centred at the origin O, and let P be a convex polygon inscribed in K and containing O in its interior. We denote by P^* the circumscribed polygon whose points of contact with K are the vertices of P. J. Aczél and L. Fuchs [1] proved that

\[a(P) + a(P^*) \geq 6, \]

where $a(X)$ denotes the area of the set X. Equality holds if and only if P is a square. An alternative proof was given by E. Trost [5]. Complementary remarks to (1) were made by J. Rätz [4]. More generically, L. Kuipers and B. Meulenbeld [3] found the infimum of the weighted area sum $wa(P) + (1 - w)a(P^*)$ for any weight w between 0 and 1, the infimum depending on w. They also obtained a similar result for the weighted perimeter sum of P and P^*.
In the present paper we shall extend inequality (1) to more general domains.

Theorem. Let P be a convex polygon contained in the unit circle K. If P^* is the polar reciprocal domain of P with respect to K, then inequality (1) holds and equality occurs only if P is a square inscribed in K.

2. **Proof of the Theorem**

We begin with a further proof of the theorem by Aczél and Fuchs. Let P be a convex polygon inscribed in K, and let P^* be the polar reciprocal domain of P. We may assume that P contains the centre O of K in its interior, since otherwise $a(P^*) = \infty$. Let us denote the central angles spanned by the sides of P by $2x_1, \ldots, 2x_n$, where

\[
0 < x_1 \leq x_2 \leq \ldots \leq x_n < \pi/2, \\
x_1 + \ldots + x_n = \pi.
\]

(2)

If the function f is defined by

\[
f(x) = \sin x \cos x + \tan x,
\]

we have to show that

\[
S = \sum_{i=1}^{n} f(x_i) \geq 6
\]

(3)

with equality only for $n = 4$ and $x_1 = x_2 = x_3 = x_4 = \pi/4$.

From

\[
f'(x) = 2 \cos^2 x - 1 + \frac{1}{\cos^2 x}
\]

and

\[
f''(x) = 2 \frac{\sin x}{\cos^3 x} \left(1 - 2 \cos^4 x\right)
\]

we see that (i) f is strictly increasing in $0 \leq x < \pi/2$; (ii) strictly concave in $0 \leq x \leq x_0$, and convex in $x_0 \leq x < \pi/2$, where

\[x_0 = \arccos 1/\sqrt{4|2} = 32.765 \ldots \circ.
\]

In the proof of (3) we may assume that

\[
x_0 \leq x_2.
\]

(4)

If, on the contrary, $0 < x_1 \leq x_2 < x_0$, we can replace x_1 and x_2 by x'_1 and x'_2 such that

\[0 \leq x'_1 < x_1 \leq x_2 < x'_2 \leq x_0,
\]
\[x'_1 + x'_2 = x_1 + x_2 \]

and \(x'_1 = 0 \) or \(x'_2 = x_0 \) or both. Since \(f \) is strictly concave in \([0, x_0]\), this process reduces the sum \(S \). Moreover, the number of the \(x_i \)'s contained in \((0, x_0)\) would decrease. After a finite number of steps we obtain a finite set of points, again denoted by \(\{x_1, \ldots, x_n\} \), which satisfies (2) and (4) and yields a smaller \(S \).

We now show that \(S \) can be diminished by displacing \(x_1 \) if

\[0 < x_1 < x_0 \leq x_2 \leq \ldots \leq x_n < \pi/2. \tag{5} \]

Since \(f \) is strictly convex in \([x_0, \pi/2]\), we have

\[S \geq f(x_1) + (n - 1)f\left(\frac{\pi - x_1}{n - 1}\right) \equiv S(x_1) \tag{6} \]

with equality only if \(x_2 = \ldots = x_n = (\pi - x_1)/(n - 1) \). By (5), we note that \((n - 1)x_0 < \pi \), whence

\[n \leq 6. \]

From (6) it follows that

\[S'(x_1) = \left(\cos^2 x_1 - \cos^2 \frac{\pi - x_1}{n - 1}\right) \left(2 - \cos^{-2} x_1 \cos^{-2} \frac{\pi - x_1}{n - 1}\right). \tag{7} \]

We now distinguish the following cases:

\(n = 3 \) or \(4 \). For \(0 < x_1 < x_0 \) we have

\[\frac{\pi}{2} > \frac{\pi - x_1}{n - 1} > \frac{\pi - x_0}{3} > x_0, \]

which shows that

\[\cos^2 x_1 - \cos^2 \frac{\pi - x_1}{n - 1} > 0, \]

and

\[\cos \frac{\pi - x_1}{n - 1} < \cos \frac{\pi - x_0}{3} = 0.655 \ldots < \frac{1}{\sqrt{2}}, \]

whence

\[2 - \cos^{-2} x_1 \cos^{-2} \frac{\pi - x_1}{n - 1} < 0. \]

Thus

\[S'(x_1) < 0 \]

and

\[S(x_1) > S(x_0) \tag{8} \]

if \(x_1 < x_0 \).
\(n = 5 \) or \(6 \). The function \(g \) defined by
\[
g(x_1) \equiv 2 \cos x_1 \cos \frac{\pi - x_1}{n - 1} = \cos \left(\frac{\pi - x_1}{n - 1} + x_1 \right) + \cos \left(\frac{\pi - x_1}{n - 1} - x_1 \right)
\]
has the derivatives
\[
g'(x_1) = \left(1 - \frac{1}{n - 1}\right) \sin \left(\frac{\pi - x_1}{n - 1} + x_1 \right) + \left(1 + \frac{1}{n - 1}\right) \sin \left(\frac{\pi - x_1}{n - 1} - x_1 \right),
\]
\[
g''(x_1) = \left(1 - \frac{1}{n - 1}\right)^2 \cos \left(\frac{\pi - x_1}{n - 1} + x_1 \right) - \left(1 + \frac{1}{n - 1}\right)^2 \cos \left(\frac{\pi - x_1}{n - 1} - x_1 \right).
\]
In view of \(\frac{\pi - x_1}{n - 1} < \frac{\pi}{4} \) and \(x_1 < x_0 < \frac{\pi}{4} \) we have \(g''(x_1) < 0 \) so that \(g \) is positive and strictly concave on \([0, x_0]\). This implies that \(\cos^2 x_1 \cos^2 \frac{\pi - x_1}{n - 1} \) is strictly convex and
\[
h(x_1) = 2 - \cos^2 x_1 \cos^2 \frac{\pi - x_1}{n - 1}
\]
is strictly concave in \([0, x_0]\).

\(n = 5 \). Since \(h(x_1) > 0 \) for \(x_1 \) close to \(0 \), and \(\cos^2 \frac{\pi - x_0}{4} < \cos^2 x_0 = \frac{1}{\sqrt{2}} \), the function \(h \) passes from positive to negative values on \((0, x_0]\). By (7), \(S' \) and \(h \) have the same sign, since \(x_1 < \frac{\pi - x_1}{4} \) on \([0, x_0]\). Hence \(S \) attains its minimum only at one of the end points of the interval \([0, x_0]\). The fact that \(S(0) = 4f(\frac{\pi}{4}) = 6 \) and \(S(x_0) = 6.010\ldots \) shows that
\[
S(x_1) > S(0)
\]
for \(x_1 > 0 \).

\(n = 6 \). The supposition (5) restricts the variable \(x_1 \) to
\[
0 < x_1 \leq \pi - 5x_0,
\]
where \(\pi - 5x_0 < x_0 \). Since \(h \) is strictly concave on \([0, \pi - 5x_0]\), \(h(0) = 1 - \tan^2(\pi/5) > 0 \) and \(h(\pi - 5x_0) = 2 - \cos^2 x_0 \cos^2(\pi - 5x_0) > 2 - \cos^4 x_0 = 0 \) we conclude that \(h(x_1) > 0 \) for \(x_1 > 0 \). Because \((\pi - x_1)/5 \geq x_0 > x_1 \), we have
\[
\cos^2 x_1 - \cos^2 \frac{\pi - x_1}{5} > 0.
\]
By (7), this shows that \(S'(x_1) > 0 \) and (9) is satisfied once more.
In conclusion, we state that

\[(10) \quad S \geq \inf m f \left(\frac{\pi}{m} \right) \]

for \(m = 3, 4, \ldots \), where \(\pi/m \geq \pi_0 \). But \(m \leq \pi/x_0 \) implies that \(m = 3, 4 \) or \(5 \). The required inequality (3) follows from \(3f(\pi/3) = 15\sqrt{3}/4 = 6.495 \ldots \), \(4f(\pi/4) = 6 \) and \(5f(\pi/5) = 6.010 \ldots \).

Let \(P \) be a convex polygon contained in the unit circle \(K \) with centre \(O \). To prove inequality (1) we may assume that \(O \) is an interior point of \(P \), since otherwise \(a(P^*) = \infty \). Let \(n \geq 3 \) be given. By a convex \(n \)-gon we mean a convex polygon with at most \(n \) sides. There exists a convex \(n \)-gon \(P \) contained in \(K \) and containing \(O \) in its interior and having the property that \(a(P) + a(P^*) \) attains its minimum. The proof of our theorem is completed by the following lemma.

Lemma. All the vertices of \(P \) are on the boundary of \(K \).

Proof. Let \(P = A_1A_2 \ldots A_n \) and \(P^* = B_1B_2 \ldots B_n \) be such that \([4] B_i \vee B_{i+1} \) is the polar of \(A_i \), for \(i = 1, \ldots, n \). Suppose that \(A_1 \) is an inner point of \(K \). Then \(B_1 \vee B_2 \) does not intersect \(K \). We denote the interior angles of \(P^* \) at \(B_1 \) and \(B_2 \) by \(\beta_1 \) and \(\beta_2 \) respectively and distinguish the following two cases.

\(\beta_1 + \beta_2 > \pi \). The lines \(B_n \vee B_1 \) and \(B_3 \vee B_2 \) intersect outside \(P^* \) at a point \(U \) which is the pole of \(A_2 \vee A_n \). The segment joining \(O \) and \(U \) intersects \(B_1B_2 \) at an inner point \(T \). The polar \(t \) of \(T \) is parallel to \(A_2 \vee A_n \) and contains the vertex \(A_1 \). Since \(\overline{OT} < \overline{OU} \), the line \(A_2 \vee A_n \) separates \(O \) and \(A_1 \). Without loss of generality, we may assume that \(B_1T \leq \overline{TB_2} \). We displace \(A_1 \) on \(t \) through a small distance and obtain a new convex \(n \)-gon \(P' = A_1'A_2 \ldots A_n \) contained in \(K \). The polar \(n \)-gon \(P'^* = B_1'B_2'B_3 \ldots B_n \) arises from \(P^* \) by rotating \(B_1 \vee B_2 \) about \(T \). We choose the direction of the displacement of \(A_1 \) so that \(B'_2 \) lies on \(B_2B_3 \) and \(B'_1 \) on the elongated segment \(B_2B_1 \). Let \(p \) be the ray radiating from \(B_2 \), parallel to \(B_n \vee B_1 \) and intersecting the interior of \(P^* \) (this is possible because \(\beta_1 + \beta_2 > \pi \)). The segment \(B'_1B'_2 \) intersects \(p \) at a point \(B'_2' \). Then

\[\overline{B'_1T} \leq \overline{TB'_2} < \overline{TB_2} \],

whence

\[a(TB_1B'_1) < a(TB_2B'_2) \]

and

\[a(P'^*) < a(P^*) \].
Since \(a(P') = a(P) \), we have a contradiction to the assumption that
\(a(P) + a(P^*) \) is minimal.

\(\beta_1 + \beta_2 \leq \pi \). By displacing \(A_1 \) on the ray \(OA_1 \) towards the boundary of \(K \) through a small distance \(x \) we obtain a new convex \(n \)-gon \(P' = A'_1 A_2 \ldots A_n \). Let \(b \) be length of the orthogonal projection of \(A_2 A_n \) onto the perpendicular to \(O \vee A_1 \). Then

\[
a(P') - a(P) = a(A_1 A'_1 A_n) + a(A_1 A'_1 A_2),
\]

whence

\[
\frac{1}{x}(a(P') - a(P)) = \frac{1}{2} b.
\]

In view of \(b \leq \overline{A_2 A_n} \leq 2 \) this implies

\[(11) \quad \frac{1}{x}(a(P') - a(P)) \leq 1.\]

If \(\overline{OA_1} = d \), the polar of \(A'_1 \) has the distance \(1/(d+x) \) from \(O \). Thus the polar \(n \)-gon of \(P' \), \(P'^* = B'_1 B'_2 B_3 \ldots B_n \), arises from \(P^* \) by displacing the side \(B_1 B_2 \) parallel to itself towards \(O \) through the distance

\[
\frac{1}{d} - \frac{1}{d+x} = \frac{x}{d(d+x)}.
\]

Hence

\[
a(P^*) - a(P'^*) = a(B_1 B_2 B'_2 B'_1)
= (\overline{B_1 B_2} + \overline{B'_1 B'_2}) \cdot x/2d(d+x).
\]

But clearly

\[
\overline{B_1 B_2} \geq \cot \frac{\beta_1}{2} + \cot \frac{\beta_2}{2} \geq \cot \frac{\beta_1}{2} + \tan \frac{\beta_1}{2} \geq 2
\]

and also \(\overline{B'_1 B'_2} \geq 2 \). Since \(d < 1 \) and \(d + x \leq 1 \), we finally have

\[
\frac{1}{x}(a(P^*) - a(P'^*)) > 2.
\]

The combination with (11) yields

\[a(P') + a(P'^*) < a(P) + a(P^*)\]

which is impossible. Thus the lemma and the theorem are proved. ◊

Corollary. Let \(C \) be a closed convex set contained in the unit circle \(K \) and let \(C^* \) be its polar reciprocal. Then

\[(12) \quad a(C) + a(C^*) \geq 6.\]

If \(C \) is contained in the interior of \(K \), then strict inequality holds.
Proof. It suffices to consider a closed convex subset C of K having the centre O of K as an inner point. The sets C and C^* can be approximated by pairs of polar reciprocal convex polygons. Therefore, (12) is a consequence of the theorem. For any $r \in (0, 1)$, the set rC is in the interior of K, and $(rC)^* = \frac{1}{r} C^*$. The function

$$f(r) = a(rC) + a(\frac{1}{r} C^*) = r^2 a(C) + \frac{1}{r^2} a(C^*)$$

has a negative derivative

$$f'(r) = \frac{2}{r^3} (r^4 a(C) - a(C^*)) < 0.$$

Hence

$$f(r) > f(1) = a(C) + a(C^*) \geq 6,$$

as required. ◊

3. Remarks

(i) It may be that in (12) equality holds only if C is a square inscribed in K.

(ii) In the corollary, the assumption of convexity of C is essential. If C is the boundary of K, then $a(C) + a(C^*) = \pi$.

(iii) In Euclidean 3-space let K be a solid unit sphere, P a convex polyhedron inscribed in K and P^* the polar reciprocal of P with respect to K. In the following list the values of $V(P) + V(P^*)$ are collected, where P is a regular polyhedron (characterized by its number n of vertices), and V the volume

<table>
<thead>
<tr>
<th>n</th>
<th>$V(P) + V(P^*)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>14.36960...</td>
</tr>
<tr>
<td>6</td>
<td>9.33333...</td>
</tr>
<tr>
<td>8</td>
<td>8.46780...</td>
</tr>
<tr>
<td>12</td>
<td>8.08644...</td>
</tr>
<tr>
<td>20</td>
<td>7.83921...</td>
</tr>
</tbody>
</table>

and $V(K) + V(K^*) = 8.37758...$. The infimum of $V(P) + V(P^*)$, extended over all convex polyhedra P inscribed in K, remains unknown and is not attained by the cube or the regular octahedron. In place of the volume, various other functionals may be considered. A simple example is given by the mean width $M(C)$ of a convex body C in
$E^d(d \geq 2)$, i.e. the mean value of the widths of C, taken over all possible directions in E^d. Let the origin O be an interior point of a body C which need not necessarily be a subset of K. W. Firey observed that $\frac{(C+C^*)}{2} \supset K$ (formula (1) in [2]). This implies that

$$M(C) + M(C^*) \geq 4$$

with equality only if $C = K$. However, if O is not an interior point of C, than C^* is unbounded.

References

