ON SOME JORDAN–HÖLDER–DEDEKIND TYPE THEOREMS IN LATTICES

Alexandru Horváth

Department of Mathematics, University of Tg-Mureș, str. N. Iorga 1, 4300 Tg-Mureș, Romania

Received: September 1995

MSC 1991: 06 B 05, 08 B 10, 20 B 05

Keywords: Lattice, Jordan-Hölder-Dedekind type theorems.

Abstract: In this paper we will prove some Jordan–Hölder–Dedekind type theorems in general lattices. All of these theorems work in lattices more general than the modular one. We will give a significant example, too.

Applying results established in [4], Gh. Fărcăș proved in [2] a nice Schreier type theorem for general lattices, using chains of standard elements. There were also deduced two Jordan–Hölder–Dedekind type theorems, like its consequences.

Let us recall the definition of standard element. Suppose \((L, \lor, \land)\) denotes a lattice having \(0\) and \(1\). An element \(s \in L\) is called standard, if for any \(x, y \in L\), \(x \land (s \lor y) = (x \land s) \lor (x \land y)\). The theorem proved in [4] says, if
\[
0 = a_0 < a_1 < \ldots < a_{k-1} < a_k = 1
\]
and
\[
0 = b_0 < b_1 < \ldots < b_{l-1} < b_l = 1
\]
are to chains of \(L\), where the second chain is built up from standard elements, then they admit refinements of the same length.

In the following we will find weaker conditions than the standardness of the chain’s elements, and we will obtain even some stronger
consequences. The only price paid for them is, the conditions have to be claimed on both chains.

Definition 1. Let L be a lattice, and (a) a principal ideal of it. We will say an element $b \in (a)$ is a-standard if for every $c \in L$, $b \lor (a \land c) = a \land (b \lor c)$. We also call $[b, a]$ standard interval.

Let us notice that for every $a \in L$, the intervals $[0, a]$ and $[a, 1]$ are standard. Therefore in N_γ, the nonmodular lattice of 5 elements, $(0 < b < a < 1, 0 < c < 1)$ only $[b, a]$ is not a standard interval. It is easy to see that if b is standard, then b is a-standard for every $a, b \geq a$, but not conversely. Indeed, in M_γ, the nondistributive lattice of 5 elements $(0 < a, b, c < 1)$, the element $a \in L$ is x-standard for every $x \geq a$, but a is not standard, as $b \land (a \lor c) \neq (b \land a) \lor (b \land c)$.

Definition 2. A chain in L, $0 = a_0 < a_1 < \cdots < a_{k-1} < a_k = 1$ is called standard chain, if all the intervals $[a_i, a_{i+1}]$ are standard, $i = 0, 1, \ldots, k-1$.

Theorem 1. Let
\begin{align}
(1) & \quad 0 = a_0 < a_1 < \cdots < a_{k-1} < a_k = 1 \quad \text{and} \\
(2) & \quad 0 = b_0 < b_1 < \cdots < b_{l-1} < b_l = 1
\end{align}

two chains in which $[a_i, a_{i+1}]$, $i = 0, 1, \ldots, k-1$ and $[b_j, b_{j+1}]$, $j = 0, 1, \ldots, l-1$ are standard intervals. Then they admit refinements of the same length.

Proof. Let us define
\begin{align}
(3) & \quad a_{ij} = a_i \lor (a_{i+1} \land b_j), \quad i = 0, 1, \ldots, k-1, \quad j = 0, 1, \ldots, l \\
(4) & \quad b_{ji} = b_j \lor (b_{j+1} \land a_i), \quad j = 0, 1, \ldots, l-1, \quad i = 0, 1, \ldots, k.
\end{align}

We have by this definitions $a_{00} = a_0$ and $a_{00} = a_{i+1}$, $i = 0, 1, \ldots, k-1$ and $b_{00} = b_j$, $b_{j1} = b_{j+1}$, $j = 0, 1, \ldots, l-1$, and also
\begin{align}
& \quad a_{ij} \leq a_{i,j+1}, \quad j = 0, 1, \ldots, l-1, \quad i = 0, 1, \ldots, k \\
& \quad b_{ji} \leq b_{j+1,i+1}, \quad i = 0, 1, \ldots, k-1, \quad j = 0, 1, \ldots, l.
\end{align}

Consequently, the chain consisting from a_{ij} is a refinement of (1) while that of b_{ji} is a refinement of (2). Their formal length are kl, so we have to prove there is a one-to-one correspondence between their repetitions. Let therefore suppose $a_{ij} = a_{i,j+1}$ for some i and j. Then we have
On some theorems in lattices

\[a_{i+1} \land b_{j+1} = a_{i+1} \land b_{j+1} \land a_i, j+1 = a_{i+1} \land b_{j+1} \land a_j =
\]
\[= a_{i+1} \land b_{j+1} \land (a_i \lor (a_{i+1} \land b_j)) =
\]
\[= a_{i+1} \land b_{j+1} \land (a_i \lor (a_i \land b_j)) =
\]
\[= b_{j+1} \land (a_i \lor (a_i \land b_j)) =
\]
\[= b_{j+1} \land (a_i \lor (b_j \land a_i)) = b_{j+1} \land (b_j \lor a_i) =
\]
\[= b_j \lor (b_{j+1} \land a_i) = b_{j,i}.\]

It means that \(a_j = a_i,j+1 \) force \(b_{j,i} = b_{j,j+1} \). Owing to the symmetry between (1) and (2), as well as between (3) and (4), we have also \(a_j = a_i,j+1 \) if \(b_{j,i} = b_{j,j+1} \).

We can now prove two corollaries, analogous to which were proved in [2], actually Jordan–Hölder–Dedekind type theorems.

Corollary 1. If (1) and (2) are standard chains, and they are maximal like chains, then they have the same length.

Corollary 2. If \(L \) contains a maximal chain with length \(n \), which is standard, then the length of any other standard chain is less than \(n \), and moreover this last one can be refined to a chain of length \(n \).

It is natural to ask now if a standard chain still remain standard by applying a proper refinement. We will show in the following that a simple compatibility condition of the standard intervals with the lattice operations assures an affirmative answer. Before the next definitions, let us notice a failure of duality which occurs shifting a standard interval through an element \(c \in L \) using the first or the second lattice operation. More precisely, a standard interval \([b, a]\) shifted by \(c \in L \) using \(\land \) still remain in the principal ideal \(\langle a \rangle \), i.e., \([b \land c, a \land c] \subseteq \langle a \rangle \), for every \(c \in L \), while trough the \(\lor \)-shift by \(c \in L \) this is not true: the interval \([b \lor c, a \lor c]\) may not be included in \(\langle a \rangle \). According to this, we give the next definitions.

Definition 3. We will say a standard interval \([b, a]\) is \(\land \)-shift compatible if \([b \land c, a \land c]\) is standard for every \(c \in L \).

Definition 4. Suppose \([b, a]\) is standard interval. We will say \([b, a]\) is \(\lor \)-shift compatible if for every \(d \in L \) satisfying \([b, a] \subseteq \langle d \rangle \) for every \(c \in \langle d \rangle \), where \(c \) is \(\delta \)-standard, the interval \([b \lor c, a \lor c]\) is standard.

Definition 5. A standard interval is normal if it is both \(\land \)-shift and \(\lor \)-shift compatible. Also a chain is normal if any interval of it is normal.
Theorem 2. Let (1) and (2) normal chains in \(L \). Then they admit standard refinements of the same length.

Proof. It is sufficient to show that for \(a_j \) defined like in (3), the interval \([a_j, a_{i,j+1}] \) is standard. But as \([b_j, b_{j+1}] \) is standard and \(\land \)-shift compatible, we conclude \([a_{i+1} \land b_j, a_{i+1} \land b_{j+1}] \) remain standard and moreover, it is included in \((a_{i+1}) \). As \(a_i \in (a_{i+1}) \) too, and \(a_i \) is \(a_{i+1} \)-standard, it follows

\[
[a_i \lor (a_{i+1} \land b_j), a_i \lor (a_{i+1} \land b_{j+1})] = [a_j, a_{i,j+1}]
\]
is standard. \(\Box \)

Let us examine Th. 1 and 2 from the perspective of the modular lattices, in which a stronger version hold. We are forced to begin again with a new definition.

Definition 6. Two standard chains like (1) and (2) will be called equivalent chains if \(k = l \), and there exists a permutation \(\sigma \) of \(\{0, 1, \ldots, k\} \), so that \([a_i, a_{i+1}] \) and \([b_{\sigma(i)}, b_{\sigma(j)+1}] \) are projective intervals (see [6] for the definition of projective intervals).

Theorem 3. Let \(L \) be a lattice in which for every \(x, y \in L \), \([y, z \lor y]\) and \([x \land y, z]\) are isomorphic (we will denote by \(\sim \)). Then every two standard (normal) chains admit equivalent (standard) refinement.

Proof. Let us use the same notation as in (1), (2), (3) and (4) and denote

\[
x = a_{i+1} \land b_{j+1}, \quad y = a_j,
\]

\[
x' = b_{j+1} \lor a_{i+1}, \quad y' = b_j.
\]

Then we have

\[
x \lor y = (a_{i+1} \land b_{j+1}) \lor a_j = (a_{i+1} \land b_{j+1}) \lor (a_{i+1} \land b_{j}) \lor a_i =
\]

\[
= a_i \lor (a_{i+1} \land b_{j+1}) = a_{i,j+1}
\]

\[
x \land y = a_{i+1} \land b_{j+1} \land a_j = a_{i+1} \land b_{j+1} \land a_{i+1} \land (a_i \lor b_j) =
\]

\[
= a_{i+1} \land b_{j+1} \land (a_i \lor b_j).
\]

It follows therefore \([a_j, a_{i,j+1}] = [y, x \lor y] \sim [x \land y, z] \). By an analogous way, we have \([b_j, b_{j+1}] = [y', x' \lor y'] \sim [x' \land y', z'] \). Now we just have to notice that \(x = x' \), and \(x' \land y' = x \land y \), so \([x \land y, z] = [x' \land y', z'] \), and we can conclude \([a_j, a_{i,j+1}] \) and \([b_{ji}, b_{j+1}] \) are projective intervals. \(\Box \)

Remark 1. The assumption of Th. 3 is still weaker than the modularity condition. It becomes, however, equivalent with the modularity in algebraic lattices. Therefore, Theorem 5 still remains a proper extension of the Jordan–Hölder–Dedekind type theorem for the nonalgebraic lattices.
On some theorems in lattices

Remark 2. Let \(L(G) \) be the subgroup lattice of a finite group \(G \). If \(H, N \in L(G) \), and \(N \) is normal in \(G \), then \([N, H]\) is a normal interval, according to our definition 5. This is of course a known result, stated now using the new language of our present paper. Also \(L(G) \) is not a modular lattice. It is easy to see that a standard interval \([N, H]\) is an accurate correspondent of the factor group \(H/N \), according to the second group isomorphism theorem, too. Actually, Theorem 3 could be viewed as a proper correspondent of the finite group Jordan–Hölder theorem.

Let us mention, that a different approach to this topic, leading to similar results is to be found in [3].

Finally, let enable us just to point out a related problem, which is actually on open question. Given a finite lattice having 0 and 1, the question is if there exists or not a group, admitting this lattice as its (normal) subgroup lattice. Moreover, it is unsolved even the following: is every finite lattice isomorphic to an interval in \(L(G) \), for an appropriate finite group \(G \), (see [6])?

References