PSEUDO-ELLIPTIC INTEGRALS
AND THE VALUES OF THE
WEIERSTRASS ζ-FUNCTION
AT TORSION POINTS

Daniel Mall

Mathematik Departement der ETH Zürich, ETH Zentrum, CH-8092 Zürich, Switzerland

Received: October 1996
MSC 1991: 12 H 05, 14 H 52
Keywords: Pseudo-elliptic integrals, Weierstrass ζ-function.

Abstract: A connection is established between early results of Abel and Tchebycheff on pseudo-elliptic integrals and a result of Baker concerning the values of the Weierstrass ζ-function at torsion points.

1. Introduction

Let E be an elliptic curve defined over a number field $K \subset \mathbb{C}$ and $\wp(z)$, $\wp'(z)$ the corresponding Weierstrass functions. We assume that E is given through the usual parameterization

$\text{ParaE} : \quad \mathbb{C} \longrightarrow E$

$z \longmapsto (\wp(z), \wp'(z))$

such that

(1) $\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$

where $g_2, g_3 \in K$. We denote the periods of E with ω_1, ω_2 and the lattice generated by the periods with Λ.

Assume that there is a point $z_0 \in \mathbb{C}$ such that $\wp(z_0) \in E(K)$. Then it follows easily from the relation (1) that the values of all derivatives of $\wp(z)$ at z_0 lie in the field K. This is not correct for $\zeta(z_0)$, the
value of the Weierstrass ζ-function, the primitive of $-\wp(z)$, at z_0. The value $\zeta(z_0)$ is transcendental by the theorem of Schneider (cf. [9]). However A. Baker proved the following fact (cf. [2], lemma 5): let E be an elliptic curve defined over the number field $K \subset \mathbb{C}$ and let $z_0 = r_1 \omega_1 + + r_2 \omega_2$, $r_1, r_2 \in \mathbb{Q}$ be a torsion point of this curve, then the value $\zeta(z_0) = (r_1 \eta_1 + r_2 \eta_2)$ where $\eta_i = 2\zeta(\omega_i/2)$, $i = 1, 2$, denote the quasi-periods of E, is an element of K. In particular, there is a canonical splitting $\zeta(z_0) = T(z_0) + A(z_0)$ into a transcendental and an algebraic part.

The purpose of this note is to show how this splitting can be expressed in terms of a pseudo-elliptic integral and to derive an algorithm which allows the computation of $A(z_0)$ by the means of a continued fraction expansion of an appropriate algebraic function. Our exposition is structured as follows. Section 2 assembles some known results and describes the pseudo-elliptic integrals involved. Section 3 states the precise connection to Weierstrass' ζ-function. In Section 4 the connection proved by Baker is re-established in the context of pseudo-elliptic integrals using an early result by Abel. In Section 5 we present a computed example.

2. The integrals

Let $\wp(z)$, $\zeta(z)$, $\sigma(z)$ be the Weierstrass elliptic functions belonging to the lattice Λ generated by $\omega_1, \omega_2 \in \mathbb{C}$. Let us recall the following relations (cf. [6], p. 239):

\begin{equation}
2 \zeta(u + v) - \zeta(u) - \zeta(v) = \frac{1}{2} \frac{\wp'(u) - \wp'(v)}{\wp(u) - \wp(v)},
\end{equation}

\begin{equation}
(\log \sigma(u))' = \frac{\sigma'(u)}{\sigma(u)} = \zeta(u).
\end{equation}

Let an elliptic curve be given by the equation

\begin{equation}
y^2 = 4x^3 - g_2x - g_3,
\end{equation}

together with a point $z_0 \in \mathbb{C}$ such that $(x_0, y_0) = (\wp(z_0), \wp'(z_0)) \in E(K)$, i.e., is a K-rational point.

By means of the rational transformation
\[\xi = \frac{1}{2} \frac{y - y_0}{x - x_0}, \quad \eta = 2x + x_0 - \frac{1}{4} \left(\frac{y - y_0}{x - x_0} \right)^2 \]

one obtains a singular model \(S_K \) defined over the field \(K \). We say this model is generated by the point \(z_0 \) and write sometimes \(S_K(z_0) \). This model is parameterized by the function

\[
\text{Para} S : \quad \mathbb{C} \rightarrow S_K(z_0) \\
z \mapsto (P(z), P'(z))
\]

where

\[
P(z) = \frac{1}{2} \frac{\varphi'(z) - \varphi'(z_0)}{\varphi(z) - \varphi(z_0)}.
\]

\(S_K(z_0) \) is the zero set of the equation

\[
\eta^2 = R_{z_0}(\xi) = \xi^4 + c_2 \xi^2 + c_3 \xi + c_4
\]

where

\[c_2 = -6x_0, \quad c_3 = 4y_0, \quad c_4 = g_2 - 3x_0^2. \]

The singular locus of \(S_K \) is the image of the points \(0, z_0 \in \mathbb{C} \) by \(\text{Para} S \), the points at infinity.

Elliptic integrals of the form

\[
\text{Int} = \int \frac{\xi + A}{\sqrt{R_{z_0}(\xi)}} \, d\xi
\]

which are defined on \(S_K \) were extensively studied in the last century (cf. [10], [11]): Tchebycheff was able to reduce the problem of integration in finite terms (cf. [4], [7]) for elliptic integrals to the question of pseudo-ellipticity of integrals of the form (6): \(\text{Int} \) is pseudo-elliptic if there exist \(p(\xi), q(\xi) \in \mathbb{C}[\xi] \) such that

\[
\text{Int} = \frac{1}{\lambda} \log \frac{p(\xi) - q(\xi) \sqrt{R_{z_0}(\xi)}}{p(\xi) + q(\xi) \sqrt{R_{z_0}(\xi)}}
\]

for some \(\lambda \in \mathbb{Z} \) (cf. [3]).

It is easy to see that for a given \(R_{z_0}(\xi) \) at most one value \(A \) exists such that (7) holds (cf. [10], p. 2).

We recall some facts about continued fraction expansion (cf. [5], p.84). Let \(\alpha_0 = \sum_{m \geq m_0} \gamma_m t^{-m} \) be the Laurent expansion of \(\sqrt{R_{z_0}} \) at a point \(p \) at infinity. One puts \(a_1 := [\alpha_0] := \sum_{0 \geq m \geq m_0} \gamma_m t^{-m} \) and \(a_i := [\alpha_{i-1}] \) with \(\alpha_i \) the Laurent expansion of \(\frac{1}{\alpha_{i-1} - a_{i-1}} \) for \(i \geq 1 \). The sequence \(\{a_i\}_{i=1}^{\infty} \) is called the continued fraction expansion of \(\alpha_0 \) at the point \(p \). One puts as usual
\[P_0 = 1, \quad P_1 = a_1, \quad P_i = a_i P_{i-1} + P_{i-2} \]
\[Q_0 = 0, \quad Q_1 = 1, \quad Q_i = a_i Q_{i-1} + Q_{i-2}. \]

The continued fraction expansion \(\{a_i\}_{i=1}^{\infty} \) is called pseudo-periodic if there exists a \(k \in \mathbb{N}^* \) such that
\[P_k^2 - Q_k^2 R_{z_0} = c \in K. \]
The smallest \(k \in \mathbb{N}^* \) with this property is called the pseudo-period.

The following proposition summarizes various known results (cf. [8], p.296; [11], p.105; [5], p.90).

Proposition 2.1. The following conditions for \(\text{Int} = \int \frac{\xi+A}{\sqrt{R_{z_0}(\xi)}} d\xi \)
are equivalent

a) the continued fraction expansion of \(\sqrt{R_{z_0}} \) at one of the points at infinity (hence on both) is pseudo-periodic with pseudo-period \(l - 1 \);

b) there exists a value \(A \) such that (7) holds for appropriate \(p(\xi), q(\xi) \in K[\xi] \) of \(\deg p = l \) and \(\deg q = l - 2 \), with \(\lambda = 2l \);

c) \(z_0 \) is a torsion point of order \(l \).

Remark 2.2. If \(\text{Int} \) is pseudo-elliptic and \(z_0 \) is a torsion point of order \(l \) then \(p(\xi) = P_{l-1}(\xi) \) and \(q(\xi) = Q_{l-1}(\xi) \).

3. The splitting

Proposition 3.1. Let \(S_K \) be generated by the torsion point \(z_0 \) of order \(l \). If \(l z_0 = n_1 \omega_1 + n_2 \omega_2 \in \Lambda \), then \(\zeta(z_0) = T(z_0) + A(z_0) \) where \(l T(z_0) = n_1 \eta_1 + n_2 \eta_2 \), and \(A(z_0) = A \) where \(A \) is the unique value such that \(\int \frac{\xi+A}{\sqrt{R_{z_0}(\xi)}} d\xi \) is pseudo-elliptic.

Proof. Applying (2) we obtain by elementary calculations:
\[
\text{Int} = \int \left(\frac{1}{2} \frac{\varphi'(z)}{\varphi(z)} - \frac{\varphi'(z_0)}{\varphi(z_0)} + A \right) dz =
\]
\[
= \int \left(\zeta(z + z_0) - \zeta(z) - \zeta(z_0) + A \right) dz =
\]
\[
= \int \left(\zeta(z + z_0) - \zeta(z) \right) dz + (A - \zeta(z_0)) z.
\]
Hence putting
\(\Sigma(z) = \exp(2l \cdot \text{Int}) \),

(3) implies that

\[
\Sigma(z) = \exp(2l \cdot \int (\zeta(z + z_0) - \zeta(z))dz) \cdot \exp(2l \cdot (A - \zeta(z_0))z) = \\
= \frac{\sigma(z + z_0)^{2l}}{\sigma(z)^{2l}} \cdot \exp(2l \cdot (A - \zeta(z_0))z).
\]

Since \(z_0 \) is a torsion point, \(\Sigma(z) \) must be a doubly periodic function of \(z \) by Prop. 2.1: \(\Sigma(z + \omega) = \Sigma(z) \). This imposes a condition on the expression \(A - \zeta(z_0) \):

We have \(\sigma(z + \omega) = \sigma(z)e^{\pi z + c} \), where \(c \in \mathbb{C} \) (cf. [6]). Now

\[
\Sigma(z+\omega) = \frac{\sigma(z + \omega + z_0)^{2l}}{\sigma(z + \omega)^{2l}} \cdot \exp(2l \cdot (A - \zeta(z_0))(z + \omega)) = \\
= \frac{\sigma(z + z_0)^{2l} \exp(2l\eta(z + z_0) + 2l\omega)}{\sigma(z)^{2l} \exp(2l\eta z + 2l\omega)} \cdot \exp(2l \cdot (A - \zeta(z_0))(z + \omega)) = \\
= \Sigma(z) \cdot N
\]

where

\[N = \exp(2l \cdot \eta \cdot z_0 + 2l \cdot (A - \zeta(z_0)) \cdot \omega). \]

This implies that \(N = 1 \). Hence there is a value \(m(\omega) \in \mathbb{Z} \) such that

(8) \[\zeta(z_0) - A = \frac{l \cdot z_0 \cdot \eta - \pi \eta \cdot m(\omega)}{l \omega}. \]

We determine the number \(m(\omega) \): the expression \(\zeta(z_0) - A \) is independent of \(\omega \) and \(\eta \). We substitute \(\omega_1, \eta_1 \) and then \(\omega_2, \eta_2 \) in equation (8):

\[\frac{l\omega_0 \eta_1 - \pi \eta \cdot m(\omega_1)}{l \omega_1} = \frac{l\omega_0 \eta_2 - \pi \eta \cdot m(\omega_2)}{l \omega_2}. \]

Applying the Legendre relation \(\eta_1 \omega_2 - \eta_2 \omega_1 = 2\pi i \) (cf. [6], p.241) we obtain

\[2l\omega_0 = m(\omega_1)\omega_2 - m(\omega_2)\omega_1. \]

This implies that \(n_1 = -m(\omega_2)/2, n_2 = m(\omega_1)/2 \)

and that

\[\zeta(z_0) - A = \frac{(n_1 \omega_1 + n_2 \omega_2)\eta_1 - 2\pi i n_2}{l \omega_1} = \frac{n_1 \eta_1 + n_2 \eta_2}{l} = T(z_0). \]

\textbf{Example.} Let \(z_0 = \omega_1/2 \). Hence \(l = 2 \), and \(n_1 = 1, n_2 = 0 \). This implies that \(\zeta(\omega_1/2) - A = \eta_1/2 \). By definition \(\eta_1 = 2\zeta(\omega_1/2) \) and hence \(A = 0 \). This implies that the integral \(\int_{R_{\omega_1/2}(\xi)}^{\xi} \frac{d\xi}{\sqrt{R_{\omega_1/2}(\xi)}} \) on \(S_K(\omega_1/2) \) is pseudo-elliptic.
4. The algebraic part

The following proposition reveals the algebraic nature of $A(z_0)$ and re-establishes Baker's result.

Proposition 4.1. Let E/K be an elliptic curve defined over $K \subset \mathbb{C}$ and $p_0 = (\varphi(z_0), \varphi'(z_0))$ a K-rational torsion point of E. Then $A(z_0) \in K$.

Proof. We expand $\sqrt{R_{z_0}(\xi)}$ at one of the places at infinity in a Laurent series. This series is an element of $K((t))$, where t is a uniformizing parameter, since the coefficient of ξ^4 equals 1. We calculate the continued fraction expansion $\{a_i\}_{i=1}^\infty$ of the Laurent series. Assume that z_0 is a torsion point of order l. By Prop. 2.1 the continued fraction expansion is pseudo-periodic with pseudo-period $l - 1$. Hence

$$P_{l-1}^2 - Q_{l-1}^2 R_{z_0}$$

is a constant. Applying the following result of Abel (cf. [1], p. 106) about the connection between P_{l-1}, Q_{l-1} and the nominator of the integrand we obtain finally

$$x + A = 2(P_{l-1}Q_{l-1} - Q_{l-1}P'_{l-1})R_{z_0} + P_{l-1}Q_{l-1}R'_{z_0} \in K[x],$$

and hence $A \in K$. \hfill \Box

Remark 4.2. By the theorem of Schneider mentioned in the introduction it follows now that the expression $T(z_0)$ is transcendental.

5. Examples

Baker's formula (cf. [2] p. 148) expresses A in terms of $\varphi(mz_0)$, $\varphi'(mz_0)$, $m = 2, \ldots l - 1$, which can be computed from $g_2, g_3, \varphi(z_0)$. The proof of Prop. 4.1 yields a more local algorithm to compute the value $A(z_0)$ from the data $g_2, g_3, \varphi(z_0)$. We used this algorithm to calculate in the following example for some torsion points the corresponding pseudo-elliptic integrals, i.e., c_2, c_3, c_4 and $A(z_0)$.

Let the following elliptic curve over \mathbb{Q} be given $E: y^2 = 4x^3 - 172x + 664$. Its rational Mordell-Weil group has a subgroup of order 7. Hence we find 6 torsion points $z_0 = (x, y) \neq \infty$ defined over \mathbb{Q}. The following table gives the coordinates of the torsion points, the coefficient of the corresponding equation of degree 4 for the singular model $S_K(z_0)$ and the algebraic part $A(z_0)$.

\[\begin{array}{|c|c|c|c|c|c|c|} \hline (x, y) & (3, 16) & (-5, -32) & (11, -64) & (11, 64) & (-5, 32) & (3, -16) \\ \hline c_2 & -18 & 30 & -66 & -66 & 30 & -18 \\ \hline c_3 & 64 & -128 & -256 & 256 & 128 & -64 \\ \hline c_4 & 145 & 97 & -191 & -191 & 97 & 145 \\ \hline A(z_0) & 1/7 & -5/7 & 17/7 & -17/7 & 5/7 & -1/7 \\ \hline \end{array} \]

Computations were performed using the symbolic computer algebra systems Mathematica and Maple.

References

[1] ABEL, N. H.: Sur l'intégration de la formule différentielle \(\rho dx/\sqrt{R} \), \(R \) et \(\rho \) étant des fonctions entières, in "Oeuvres complètes", Christiania 1881, p.104-144.

