TOLERANCES ON SEMILATTICES

Zuzana Heleyová

Technical University, College of Business and Management, Technická 2, 616 69 Brno, Czech Republic

Received: Mai 1997

MSC 1991: 06A12; 06D15

Keywords: (Relative)(Ln)-lattice, tolerance relation.

Abstract: The aim of this note is to prove that the tolerance lattice of semilattice is a p-algebra. An example shows that this p-algebra fails to be a relative p-algebra.

1. Preliminaries

A p-algebra (or pseudocomplemented lattice) is a universal algebra (L; V, A, *, 0, 1) of type (2, 2, 1, 0, 0) in which the deletion of the unary operation * yields a bounded lattice and * is the operation of pseudocomplementation that is

x ≤ a* if and only if a ∨ x = 0.

The class Bω of all distributive p-algebras is equational. K. B. Lee [4] has shown that the lattice of all equational subclasses of Bω forms a chain

B-1 ⊂ B0 ⊂ B1 ⊂ ... ⊂ Bn ⊂ ... ⊂ Bω,

of type ω + 1 where B-1 denotes the class of all trivial p-algebras, B0 is the class of all Boolean algebras and for n ≥ 1 the class Bn consists of all distributive p-algebras satisfying identity

(Ln)(x1 ∧ x2 ∧ ... ∧ xn)* ∨ (x1* ∧ x2 ∧ ... ∧ xn)* ∨ ... ∨ (x1 ∧ x2 ∧ ... ∧ xn*)* = 1.

We call the elements of B1 the Stone algebras. For n ≥ 2 the elements of Bn are called (Ln)-lattices. Distributive p-algebra in which for some n ≥ 1 every subinterval is an (Ln)-lattice is called a relative (Ln)-lattice.
Proposition 1.1 ([1]; Th. 1). Let L be a distributive lattice with 1. The following conditions are equivalent:

(i) L is a relative (L_n)-lattice,

(ii) for every $a \in L$, $[a, 1]$ is an (L_n)-lattice.

If we give up the distributivity we can study the following classes of p-algebras

$$\mathcal{P}_0 \subset \mathcal{P}_1 \subset \ldots \subset \mathcal{P}_n \subset \ldots \subset \mathcal{P}_\omega,$$

where \mathcal{P}_ω denotes the class of all p-algebras, $L \in \mathcal{P}_n$ if and only if L is a p-algebra satisfying the identity (L_n) for $1 \leq n < \omega$ and the elements of the class \mathcal{P}_0 are uniquely determined by the identity

$$(L_0) \quad (x \land y)^* = x^* \lor y^*.$$

(For distributive p-algebras the identities (L_0) and (L_1) are equivalent.)

Let S be a \land-semilattice. A tolerance on a semilattice S is a reflexive and symmetric binary relation T on S which has the substitution property with respect to \land, i.e.

$$(a, b) \in T, \quad (c, d) \in T \quad \text{implies} \quad (a \land c, b \land d) \in T.$$

The set of all tolerances on S forms an algebraic lattice $\text{Tol}(S)$ with respect to the set inclusion and with Δ, ∇ the least and greatest elements, respectively (see [2]). The meet in this lattice corresponds with the intersection, i.e.

$$A \land B = A \cap B$$

and

$$A \lor B = T(A \cup B),$$

for any tolerances A, B on S, where $T(M)$ denotes the least tolerance containing the set $M \subseteq S \times S$. It is called the tolerance generated by M. If $M = \{(a, b)\}$ then we denote $T(M) = T(a, b)$ and we call it a principal tolerance.

The following properties are easy to verify:

1. Let $M \subseteq S \times S$ be arbitrary set. Then $(x, y) \in T(M)$ if and only if $x = x_1 \land x_2 \land \ldots \land x_r, \ y = y_1 \land y_2 \land \ldots \land y_r$ and $(x_i, y_i) \in M$ or $(y_i, x_i) \in M$ or $x_i = y_i$, for $i = 1, 2, \ldots, r$.

2. $(x, y) \in T(a, b)$ if and only if $x = y$ or $x = a \land r$, $y = b \land r$ or $x = b \land r$, $y = a \land r$ for some $r \in S$.

3. $A \lor B = A \cup B \cup \{(x_1, x_2, y_1, y_2) : (x_1, y_1) \in A, (x_2, y_2) \in B\}$, for any $A, B \in \text{Tol}(S)$.

From these properties we immediately obtain next simple statement.
Lemma 1.2. Let S be a \land-semilattice, $a, b \in S$, $a \neq b$ and $T \in \text{Tol} = (S)$. Then $T \land T(a, b) = \Delta$ if and only if $a \land r = c$, $b \land r = d$ implies $a \land r = b \land r$, for any $r \in S$ and $(c, d) \in T$.

In particular if $a \neq b$, $c \neq d$ then $T(a, b) \land T(c, d) = \Delta$ if and only if $a \land r = c \land s$, $b \land r = d \land s$ or $b \land r = c \land s$, $a \land r = d \land s$ implies $a \land r = b \land r$, for any $r, s \in S$.

2. Tolerance distributive semilattices

The following theorem is a connection of [6; Cor. 1.1] and [3; Th. 7].

Theorem 2.1. Let S be a \land-semilattice. The following conditions are equivalent:

(a) $\text{Tol}(S)$ is modular,

(b) $\text{Tol}(S)$ is distributive,

(c) S is a chain or S contains a maximal chain S_0 and an element $z \in S_0$ such that each element of $S \setminus S_0$ covers z.

Since $\text{Tol}(S)$ is an algebraic lattice the condition (c) characterizes all \land-semilattics whose tolerance lattices are distributive relative p-algebras. From [7] follows that $\text{Tol}(S) \in B_0$ if and only if S is a trivial semilattice or a two-element chain. In this section we will prove that for tolerance-distributive semilattice S the tolerance lattice $\text{Tol}(S)$ is a relative (L_2)-lattice.

Let S be a tolerance distributive semilattice and $T, U \in \text{Tol}(S)$, $T \leq U$. We denote $U \ast T$ the relative pseudocomplement of U in $[T, \lor]$.

It is easy computation to verify that

$$U \ast T = T \lor \bigvee \{T(a, b) \colon (T(a, b) \lor T) \land U = T\}.$$

Lemma 2.2. Let S be a \land-semilattice. If S is a chain then $\text{Tol}(S)$ is a relative Stone algebra.

Proof. Take arbitrary $T, U \in \text{Tol}(S)$, $T \leq U$. We will prove that $U \ast T \cup (U \ast T) \ast T = \lor$. On the contrary suppose that $(a, b) \notin U \ast T \cup (U \ast T) \ast T$ for some $a, b \in S$, $a < b$. It follows that $(a, c) \notin T$ and $(a, d) \in U \ast T$, $(a, d) \notin T$ for some $c, d \in S$, $a < c, d \leq b$. Hence $(a, c \land d) \in U \land U \ast T = T$ which is a contradiction with $(a, c), (a, d) \notin T$. Therefore $U \ast T \lor (U \ast T) \ast T \supseteq U \ast T \cup (U \ast T) \ast T = S \times S = \lor$ and $[T, \lor] \in B_1$. From Prop. 1.1 we obtain that $\text{Tol}(S)$ is a relative Stone algebra. ◊
Lemma 2.3. Let S be a tolerance-distributive \wedge-semilattice and S is not a chain. Then $\text{Tol}(S)$ is a relative (L_2)-lattice but it is not a Stone algebra.

Proof. Let us denote S_0 the maximal chain in S and $z \in S_0$ the element which is covered with every element from $S \setminus S_0$. Firstly we will show that $\text{Tol}(S)$ is not a Stone algebra.

Let $x, y \in S$ and $x||y$. Then $x \wedge y = z$ and we can assume that $y \in S \setminus S_0$. Let $T = T(x, z)$. Clearly $T(y, z) = \{(y, z), (z, y)\} \cup \Delta$ and $T \wedge T(y, z) = \Delta$. Obviously $(y, z) \in T(y, z) \subseteq T^*$ and $(x, z) \in T^{**}$. Hence $(x, y) \notin T^* \cup T^{**}$. Since x, y are both \wedge-irreducible elements $(x, y) \notin T^* \vee T^{**}$ and $\text{Tol}(S) \notin B_1$. It remains to prove that $[T, \nabla] \in B_2$ for arbitrary $T \in \text{Tol}(S)$.

Let $U, V \in [T, \nabla]$. We denote $T_1 = U \wedge V, T_2 = U \ast T \wedge V, T_3 = U \wedge V \ast T$. Clearly $T_i \wedge T_j = T$ for $i, j \in \{1, 2, 3\}, i \neq j$.

Let $(x, y) \in S \times S$, $(x, y) \notin T$. Three possibilities can occur.

(a) $x, y \in S_0$, $x < y$. Then $T(x, y) = \{(x, t), (t, x) : x < t \leq y\} \cup \Delta$. Since $T_i \wedge T_j = T$ for $i \neq j$ there exists $j \in \{1, 2, 3\}$ such that T_j contains no element (x, u) such that $x < u$ and $(x, u) \notin T$. Therefore $(T \vee T(x, y)) \wedge T_j = (T \wedge T_j) \vee (T(x, y) \wedge T_j) = T$ and $(x, y) \in T_j \ast T$.

(b) $x, y \in S \setminus S_0$. Then $T(x, y) = \{(x, y), (y, x), (x, z), (z, x), (y, z), (z, y)\} \cup \Delta$. Since $T_i \wedge T_j = T$ for $i \neq j$ we can find again $j \in \{1, 2, 3\}$ such that T_j does not contain neither (x, z) neither (y, z) if $(x, z), (y, z) \notin T$. Again $(T \vee T(x, y)) \wedge T_j = T$ and $(x, y) \in T_j \ast T$.

(c) $x \in S_0$, $y \in S \setminus S_0$. In this case $T(x, y) = \{(x, y), (y, x), (x \wedge y, y), (y, x \wedge y), (x \wedge y = y, t), (t, x \wedge y) : x \wedge y < t \leq x\}$. Repeating similar considerations as in (a) and (b) one can easily verify that there exists $j \in \{1, 2, 3\}$ for which the tolerance T_j does not contain neither any element $(x \wedge y, s)$ such that $x \wedge y < s$ and $(x \wedge y, s) \notin T$ neither element $(x \wedge y, y)$ if $(x \wedge y, y) \notin T$. So again $(T \vee T(x, y)) \wedge T_j = (T \wedge T_j) \vee (T(x, y) \wedge T_j) = T$ and $(x, y) \in T_j \ast T$.

We can conclude that $T_1 \ast T \vee T_2 \ast T \vee T_3 \ast T \supseteq T_1 \ast T \cup T_2 \ast T \cup T_3 \ast T = S \times S = \nabla$. It means that $[T, \nabla] \in B_2$ and $\text{Tol}(S)$ is a relative (L_2)-lattice. \Diamond
3. Non-distributive case

Our aim in this section is to prove that Tol(S) is a p-algebra even for tolerance non-distributive semilattices. The following lemma plays the key role in our next considerations.

Lemma 3.1. Let \(S \) be a \(\land \)-semilattice, \(a, b, c_1, d_i \in S \), \(a \neq b, c_i \neq d_i \), \(i = 1, 2 \). If \(T(c_i, d_i) \land T(a, b) = \Delta \), \(i = 1, 2 \) then \((T(c_1, d_1) \lor T(c_2, d_2)) \land T(a, b) = \Delta \).

Proof. Let \(T = T(c_1, d_1) \lor T(c_2, d_2) \). From (3) we obtain
\[
T = (T(c_1, d_1) \cup T(c_2, d_2) \cup \{ (c_1 \land c_2 \land r, d_1 \land d_2 \land r), (d_1 \land d_2 \land r, c_1 \land c_2 \land r), (c_1 \land c_2 \land r, d_1 \land d_2 \land r) : r \in S \}).
\]
Assume that \(T \land T(a, b) \neq \Delta \), i.e. \(c_1 \land c_2 \land r = a \land s \) and \(d_1 \land d_2 \land r = b \land s \) for some \(r, s \in S \) and \(a \land s \neq b \land s \). (Next three possibilities can be solved the same way only interchanging the letters \(c_i, d_j \).) Then \((a \land s, b \land s) \land (c_1 \land c_2 \land d_2) = (c_1 \land c_2 \land r, d_1 \land d_2 \land r) \land (c_1 \land c_2 \land c_2 \land d_2) = (c_1 \land c_2 \land d_2 \land r, c_1 \land c_2 \land d_1 \land d_2 \land r) \in T(a, b) \). But since \((c_1 \land r, d_1 \land r) \land (c_1 \land c_2 \land d_2) = (c_1 \land c_2 \land d_2 \land r, c_1 \land c_2 \land d_1 \land r = d_2 \land r) \in T(c_1, d_1) \), and \(T(a, b) \land T(c_1, d_1) = \Delta \), we obtain that \(c_1 \land c_2 \land d_2 \land r = c_1 \land c_2 \land d_1 \land r = d_2 \land r \). Clearly \((c_2 \land r, d_2 \land r) \land (c_1 \land c_2) = (c_1 \land c_2 \land r, c_1 \land c_2 \land d_2 \land r) \in T(c_2, d_2) \). But again \((a \land s, b \land s) \land (c_1 \land c_2) = (c_1 \land c_2 \land r, d_1 \land d_2 \land r) \land (c_1 \land c_2) = (c_1 \land c_2 \land c_2 \land r, c_1 \land c_2 \land d_1 \land d_2 \land r) \in T(a, b) \). Since \(T(a, b) \land T(c_2, d_2) = \Delta \), we obtain \(c_1 \land c_2 \land r = c_1 \land c_2 \land d_1 \land d_2 \land r \). The same way can be proved that also \(d_1 \land d_2 \land r = c_1 \land c_2 \land d_1 \land d_2 \land r \). But this is a contradiction with the assumption \(a \land s = c_1 \land c_2 \land r \neq d_1 \land d_2 \land r = b \land s \). Therefore \((T(c_1, d_1) \lor T(c_2, d_2)) \land T(a, b) = \Delta \). \(\square \)

The property (1) enables us to generalize the previous statement for arbitrary set of principal tolerances disjoint with \(T(a, b) \).

Lemma 3.2. Let \(S \) be a \(\land \)-semilattice, \(a, b, c_i, d_i \in S \) for \(i \in I \) and \(a \neq b \). Let \(T(c_i, d_i) \land T(a, b) = \Delta \) for \(i \in I \). Then
\[
\bigvee_{i \in I} (T(c_i, d_i)) \land T(a, b) = \Delta.
\]

Proof. Let \((e, f) \in \bigvee_{i \in I} (T(c_i, d_i)) \land T(a, b) \). From (1) follows that \((e, f) \in \bigvee_{i \in J} (T(c_i, d_i)) \land T(a, b) \), for some finite \(J \subseteq I \). So it is enough to prove our statement only for finite index set \(I \).

Let \(T(c_i, d_i) \land T(a, b) = \Delta \) for \(i = 1, 2, \ldots, n \) and \((e, f) \in \bigvee_{i = 1}^{n} (T(c_i, d_i)) \land T(a, b) \).
\(\wedge T(a, b) \). The previous lemma implies that \(e = f \) for \(n = 2 \). Assume that our statement is true for arbitrary \(n \leq k \) and that \((e, f) \in \bigvee_{i=1}^{k+1} (T(c_i, d_i)) \wedge T(a, b) \). From (1) we obtain that
\[
eq x_1 \wedge x_2 \wedge \ldots \wedge x_m \wedge r, \quad f = y_1 \wedge y_2 \wedge \ldots \wedge y_m \wedge r,
\]
for \(r \in S \) and \(x_i = c_{j_i}, y_i = d_{j_i} \) or \(x_i = d_{j_i}, y_i = c_{j_i} \) for \(i = 1, 2, \ldots, m \). If \(j_i \leq k \) for all \(i = 1, 2 \ldots m \) then \((e, f) \in \bigvee_{i=1}^{k} (T(c_i, d_i)) \wedge T(a, b) \) and \(e = f \). Assume that
\[
eq x_1 \wedge x_2 \wedge \ldots \wedge x_{m-1} \wedge c_{k+1} \wedge r
\]
and
\[
f = y_1 \wedge y_2 \wedge \ldots \wedge y_{m-1} \wedge d_{k+1} \wedge r.
\]
Then \((e, f) \in T(x_1 \wedge x_2 \wedge \ldots \wedge x_{m-1}, y_1 \wedge y_2 \wedge \ldots \wedge y_{m-1}) \wedge \bigvee_{i=1}^{k} (T(c_i, d_i)) \) and \((e, f) \in T(a, b) \). But \(T(x_1 \wedge x_2 \wedge \ldots \wedge x_{m-1}, y_1 \wedge y_2 \wedge \ldots \wedge y_{m-1}) \subseteq \bigvee_{i=1}^{k} (T(c_i, d_i)) \) and \(\bigvee_{i=1}^{k} (T(c_i, d_i)) \wedge T(a, b) = T(c_{k+1}, d_{k+1}) \wedge T(a, b) = \Delta \). Using Lemma 2.1 we obtain that \(\bigvee_{i=1}^{n} (T(c_i, d_i)) \wedge T(a, b) = \Delta \). \(\diamond \)

Lemma 3.3. Let \(S \) be a \(\wedge \)-semilattice. Let \(a, b \in S \) and \(a \neq b \). Then
\[
T^*(a, b) = \bigvee (T(c, d) : T(c, d) \wedge T(a, b) = \Delta).
\]

Proof. Let us denote the righ-hand tolerance \(T \), i.e. \(T = \bigvee (T(c, d) : T(c, d) \wedge T(a, b) = \Delta) \). We have already proved that \(T \wedge T(a, b) = \Delta \).

Let \(U \in \text{Tol}(S) \) and \(U \wedge T(a, b) = \Delta \). Clearly \(T(e, f) \subseteq U \) and \(T(e, f) \wedge T(a, b) = \Delta \) for every \((e, f) \in U \). Therefore \(U = \bigvee (T(e, f) : (e, f) \in U) \subseteq \bigvee (T(c, d) : T(c, d) \wedge T(a, b) = \Delta) = T \) and \(T^*(a, b) = T \). \(\diamond \)

Theorem 3.4. Let \(S \) be a \(\wedge \)-semilattice. The lattice \(\text{Tol}(S) \) of tolerances on \(S \) is a \(p \)-algebra. More precisely
\[
T^* = \bigwedge (T^*(c, d) : (c, d) \in T)
\]
for arbitrary tolerance \(T \in \text{Tol}(S) \).

Proof. First we will prove that \(T \wedge \bigwedge (T^*(c, d) : (c, d) \in T) = \Delta \). Let \((e, f) \in T \wedge \bigwedge (T^*(c, d) : (c, d) \in T) \). Then \(T(e, f) \subseteq T \) and \((e, f) \in T(e, f) \wedge \bigwedge (T^*(c, d) : (c, d) \in T) \subseteq T(e, f) \wedge T^*(e, f) = \Delta \). Suppose that \(U \in \text{Tol}(S) \) and \(T \wedge U = \Delta \). Let \((c, d) \in T \). Then \(U \wedge T(c, d) \subseteq U \wedge T = \Delta \), i.e. \(U \subseteq T^*(c, d) \) for any \((c, d) \in T \). Since \(\text{Tol}(S) \) is an algebraic lattice \(U \subseteq \bigwedge (T^*(c, d) : (c, d) \in T) \) and \(\bigwedge (T^*(c, d) : (c, d) \in T) = T^* \). \(\diamond \)
The previous result reminds of results of Dona Papert. She proved [5] that congruences on semilattice form a p-algebra. Moreover she showed that for any two comparable congruences θ, φ on S such that $\theta \leq \varphi$ we can define a congruence $\varphi \ast \theta$ for which $\varphi \land (\varphi \ast \theta) = \theta$ and which is the greatest congruence satisfying this equation.

Since toleration is a generalization of congruence a natural question arises whether we can analogously define a tolerance $U \ast T$ for any two comparable tolerances $T \leq U$. The following example shows that this is not possible in general.

Example 1. Let S be a semilattice shown in Fig. 1.

Fig. 1

Let $T = T(a, b)$ and $U = T\{(a, b), (c, d)\}$. Clearly $T \subseteq U$. We will show that tolerance $U \ast T$ does not exist in $\text{Tol}(S)$. On the contrary suppose that $U \ast T$ exists. Then undoubtly $U \ast T \supseteq \bigvee (T(c, d)) : (T(c, d) \lor T) \land U = T) \lor T$. It does not take a long time to verify that $T(c_i, d_i) = \{c_i, d_i\}$, $(c_i \land a, 0), (c_i \land b, 0), (d_i \land b, 0), (d_i \land c_1 \land c_2, 0), (c_i \land c_1 \land c_2, 0), (c_i \land d_1 \land d_2, 0), (c_i \land d_1 \land d_2, 0), (c_i \land d_1 \land d_2, 0)$ and $T \lor T(c_i, d_i) = T \lor T(c_i, d_i) \lor \{a \land c_i, b \land d_i\}$, $(b \land d_i, 0), (0, d_1 \land d_2, 0)$ for $i = 1, 2$.

Therefore $(T \lor T(c_i, d_i)) \land U = T$, for $i = 1, 2$. But $(T \lor T(c_1, d_1) \lor T(c_2, d_2) \supseteq T \lor T(c_1, d_1) \lor T(c_2, d_2) \lor \{(a \land c_1 \land c_2, 0, \lor d_1 \land d_2, 0, a \land c_1 \land c_2, 0) = T \lor T(c_1, d_1) \lor T(c_2, d_2) \lor \{(c, d), (d, c)\}$ and so $(T \lor T(c_1, d_1) \lor T(c_2, d_2)) \land U = U \supseteq T$ which is a contradiction. So we can conclude that $U \ast T$ does not exist.

In Section 2, we proved that the identity (L_2) is satisfied in $\text{Tol}(S)$ for every tolerance distributive semilattice. Asking which is the smallest n for which the identity (L_n) is satisfied in a tolerance non-distributive semilattice we obtain a much more motley answer.
Lemma 3.5. For arbitrary $n = 1, 2, 3, \ldots$ there exists a finite \land-semilattice S_n such that $\text{Tol}(S_n) \in \mathcal{P}_{n+1} \setminus \mathcal{P}_n$.

Proof. Let S_1 denotes the \land-semilattice from Fig. 2.

\[\begin{array}{c}
 a_1 \\
 \downarrow \\
 0 \\
 \uparrow \\
 a_2 \\
 \end{array} \]

Fig. 2.

Then $\text{Tol}(S_1)$ is a five-element lattice depicted in Fig. 3. and obviously $\text{Tol}(S_1) \in \mathcal{P}_2 \setminus \mathcal{P}_1$.

\[\begin{array}{c}
 \nabla \\
 \downarrow \\
 T(a_1, 0) \\
 \downarrow \\
 \Delta \\
 \uparrow \\
 T(a_2, 0) \\
 \end{array} \]

Fig. 3.

For $n \geq 2$ we denote S_n the \land-semilattice from Fig. 4.

\[\begin{array}{c}
 b \\
 \downarrow \\
 a_1 \quad a_2 \\
 \downarrow \\
 a_3 \quad a_4 \\
 \downarrow \\
 \ldots \\
 \downarrow \\
 a_{n+1} \\
 \downarrow \\
 0 \\
 \end{array} \]

Fig. 4

Let T_j be a tolerance generated by the set $\{(a_i, 0) : i \neq j\}$, i.e. $T_j = \{(a_i, 0), (0, a_i) : i \neq j\} \cup \Delta, j = 1, 2, \ldots, n$. Hence $T_j^* \supseteq T(a_j, 0), j = 1, 2, \ldots, n$ and
T_1 \wedge T_2 \wedge \ldots \wedge T_n = T(a_{n+1}, 0),
T_1^* \wedge T_2 \wedge \ldots \wedge T_n = T(a_1, 0),
\ldots
T_1 \wedge T_2 \wedge \ldots \wedge T_n^* = T(a_n, 0).

It yields that \((b, c) \notin T^*(a_i, 0)\) for \(i = 1, 2, \ldots, n + 1\) and since \(b, c\) are both maximal elements, \((b, c) \notin T^*(a_1, 0) \lor T^*(a_2, 0) \lor \ldots \lor T^*(a_{n+1}, 0)\).

Therefore
\((T_1 \wedge T_2 \wedge \ldots \wedge T_n)^* \lor (T_1^* \wedge T_2 \wedge \ldots \wedge T_n)^* \lor \ldots \lor (T_1 \wedge T_2 \wedge \ldots \wedge T_n^*)^* \neq \nabla\)
and \(\text{Tol}(S_n) \notin \mathcal{P}_n\).

Now we wish to prove that \(\text{Tol}(S_n) \in \mathcal{P}_{n+1}\). Let \(T_1, T_2 \ldots T_{n+1}\) be arbitrary tolerances on \(S_n\) and \(U_1 = T_1 \wedge T_2 \wedge \ldots \wedge T_{n+1}, U_2 = T_1^* \wedge T_2 \wedge \ldots \wedge T_{n+1}, \ldots, U_{n+2} = T_1 \wedge T_2 \wedge \ldots \wedge T_{n+1}\). Since \(U_1, U_2 \ldots U_{n+2}\) are \(n + 2\) pairwise disjoint tolerances there exists \(j \in \{1, 2 \ldots n + 2\}\) such that \((a_i, 0) \notin U_j\) for \(i = 1, 2 \ldots n + 1\). Two possibilities can occur:

(i) If \(n > 2\) then \(U_j = \Delta\) and trivially \(U_1^* \lor U_2^* \lor \ldots \lor U_{n+2}^* = \nabla\).

(ii) If \(n = 2\) then \(U_j = \Delta\) or \(U_j = T(a_3, c)\).

In the second case \(U_j^* = (S \times S) \setminus \{(a_3, c), (c, a_3)\}\). Since for any tolerance \(U\) such that \((a_3, c) \notin U\) is \((a_3, c) \in U^*\) we obtain \(U_1^* \lor U_2^* \lor \ldots \lor U_{n+2}^* \supseteq U_1^* \cup U_2^* \cup U_{n+2}^* = S \times S = \nabla\). ∎

References

