RECTANGULAR MODULUS AND GEOMETRIC PROPERTIES OF NORMED SPACES

Ioan Șerb

Department of Mathematics, "Babeș-Bolyai" University, 3400 Cluj-Napoca, România

Received: August 1997

MSC 1991: 46 B 20; 46 C 15

Keywords: Moduli for normed spaces, orthogonality, geometry of normed spaces.

Abstract: Recently, [18] we have introduced the rectangular (*-rectangular) modulus of a normed space X. It is a convex function strongly related to some known constants of X. The aim of this paper is to characterize some geometric properties of normed spaces in terms of the rectangular modulus. We prove that a normed space of dimension ≥ 3 is an inner product space if and only if the right derivative in 0 of the rectangular modulus is zero. The case of two-dimensional spaces is also treated. A characterization of the uniform convexity of X is given in terms of the *-rectangular modulus.

1. Introduction and notation

The geometry of a real linear normed space X with dim $X \geq 2$ may be described, among others, using some moduli attached to X and their properties. For instance, the moduli of convexity [5], and of smoothness [11] are well known and often used in various applications.

Let us denote by $B(x, r)$ the closed ball of X, (dim $X \geq 2$) with center x and radius $r > 0$ and by $B = B(0, 1)$ the closed unit ball of X. Let $S(x, r)$, respectively $S = S(0, 1)$ be the corresponding spheres of X. The symbol \perp will be used for Birkhoff orthogonality in the normed space $(X, \| \cdot \|)$, namely $x \perp y$ iff $\|x\| \leq \|x + \mu y\|$ holds for all $\mu \in \mathbb{R}$.
For \(x, y \in X, x \neq y\) denote \(L(x, y)\) the straight line passing through \(x\) and \(y\). Similarly, \([x; y]\) will be the suitable closed segment. Recall that the \textit{modulus of convexity} of \(X\) is the function \(\delta_X : [0, 2] \rightarrow \mathbb{R}\) defined by:

\[
\delta_X(\varepsilon) = \inf \left\{ 1 - \frac{\|x + y\|}{\|x - y\|} : x, y \in S, \|x - y\| = \varepsilon \right\}, \quad \varepsilon \in [0, 2],
\]

while the \textit{modulus of smoothness} of \(X\) is the function \(\rho_X : [0, \infty) \rightarrow \mathbb{R}\) defined by:

\[
\rho_X(\tau) = \sup \left\{ \frac{1}{2}(\|x + \tau y\| + \|x - \tau y\| - 2) : x, y \in S \right\}, \quad \tau \geq 0.
\]

The following modulus of smoothness, modified with a condition of orthogonality, was defined in [9] as being the function \(\overline{\rho}_X : [0, \infty) \rightarrow \mathbb{R}\)

\[
\overline{\rho}_X(\tau) = \sup \left\{ \frac{1}{2}(\|x + \tau y\| + \|x - \tau y\| - 2) : x, y \in S, x \perp y \right\}, \quad \tau \geq 0.
\]

T. Figiel [9] has proved that \(\rho_X\) and \(\overline{\rho}_X\) are equivalent, more precisely we have:

(1) \[\frac{1}{8} \rho_X(\tau) \leq \overline{\rho}_X(\tau) \leq \rho_X(\tau), \forall \tau \geq 0.\]

Now, a normed space is said to be \textit{uniformly convex} if \(\delta_X(\varepsilon) > 0, \forall \varepsilon \in (0, 2]\) and \textit{uniformly smooth} if \(\lim_{\tau \searrow 0} \rho_X(\tau)/\tau = 0\), (or equivalently if \(\lim_{\tau \searrow 0} \overline{\rho}_X(\tau)/\tau = 0\).

The normed space \(X\) is said to be \textit{smooth} at \(x_0 \in S\) whenever there exists a unique \(f \in X^*, \|f\| = 1\) such that \(f(x_0) = 1\). If \(X\) is smooth at each point of \(S\) then we say that \(X\) is \textit{smooth}, [8, p.21]. A normed space \(X\) is said to be \textit{strictly convex} whenever \(S\) contains no non-trivial line segments, [8, p.23]. A uniformly smooth space is said to have \textit{modulus of smoothness of power type} \(p\), with \(p > 1\) if there exists a number \(C > 0\) such that \(\rho_X(\tau) \leq C\tau^p, \forall \tau \geq 0\), [12, p.63].

K. Przeslawski and D. Yost [13], [14] have introduced the modulus of squareness. It appears, in a natural way, in some estimates for the Lipschitz constants of multivalued mappings in Banach spaces. They considered a pair \((x, y)\) of points in \(X\) with \(\|y\| < 1 < \|x\|\). Then there is a unique \(z = z(x, y)\) in the line segment \([x; y]\) with \(\|z\| = 1\). As in [14] we put

\[
\omega(x, y) = \frac{\|x - z(x, y)\|}{\|x\| - 1}
\]

and define the \textit{modulus of squareness} \(\xi_X : [0, 1) \rightarrow \mathbb{R}\) by

\[
\xi_X(\beta) = \sup \{ \omega(x, y) : \|y\| \leq \beta < 1 < \|x\| \}, \quad \beta \in [0, 1).
\]

In [15] we have obtained the following alternative formula for \(\xi_X\):
\[(2) \quad \xi_X(\beta) = \sup \{\|x - y\| : x \in S, y \in X, x \perp y, \min_{\lambda \geq 0} \|(1 - \lambda)x + \lambda y\| = \beta \}, \]

\(\beta \in [0, 1) \). Surprisingly, from the behaviour of \(\xi_X \) in the neighbourhood of 1 and of 0 respectively, it is possible to characterize uniformly convex and uniformly smooth normed spaces. The relation

\[(3) \quad \lim_{\beta \searrow 1}(1 - \beta)\xi_X(\beta) = 0, \]

characterizes the uniform convexity of \(X \), [3, 13], while the relation

\[(4) \quad \lim_{\beta \searrow 0}\frac{\xi_X(\beta) - 1}{\beta} = 0, \]

characterizes the uniform smoothness of \(X \), [4, 16]. On the other hand \(\xi_X \) is an increasing function, convex in the neighbourhood of 1, it verifies a Day-Nordlander type inequality and characterizes inner product spaces (i.p.s for short) [4, 17]. Recently, we have introduced the rectangular modulus of \(X \) [18], as the function \(\mu_X : (0, \infty) \to \mathbb{R} \)

\[\mu_X(\lambda) = \sup \{\max\{\varphi_{\lambda,x,y}(t), \lambda\varphi_{\lambda,x,y}(t)\} : t > 0, x, y \in S, x \perp y\}, \lambda > 0, \]

where

\[\varphi_{\lambda,x,y}(t) = \frac{\lambda + t}{\|x + ty\|}, \lambda, t > 0, x, y \in S, x \perp y. \]

The function \(\varphi_{\lambda,x,y} \) is a useful ingredient in some characterizations of i.p.s in terms of Birkhoff orthogonality. In the same paper it was also proved that

a) \(\mu_X \) is a convex function; if \(H \) is an i.p.s then \(\mu_H(\lambda) = \sqrt{1 + \lambda^2} \);

b) \(\mu_X \) verifies a Day-Nordlander inequality i.e.: \(\mu_X(\lambda) \geq \mu_H(\lambda) = \sqrt{1 + \lambda^2} \), \(\forall \lambda > 0 \);

c) \(\mu_X(\lambda) = \sqrt{1 + \lambda^2} \) for a fixed \(\lambda > 0 \), then \(X \) is an i.p.s.

The rectangular modulus [18] defined by the simpler formula

\[\mu_X^*(\lambda) = \sup \{\varphi_{\lambda,x,y}(t) : t > 0, x, y \in S, x \perp y\}, \lambda > 0, \]

verifies also the properties a), b) and c). Moreover \(\mu_X^*(\lambda) \leq \lambda + 2, \forall \lambda > 0 \).

On the other hand \(\mu_X(1) = \mu_X^*(1) = \mu(X) \), where \(\mu(X) \) is the rectangular constant of \(X \) defined by J.L. Joly [10]. Let \(\mu_X(0+) \) be given by \(\mu_X(0+) = \lim_{\lambda \searrow 0}\mu_X(\lambda) \). Then \(\mu_X(0+) = \mu_X^*(0+) \in [1, 2] \) and \(\mu_X(0+) \) is the known radial constant of \(X \), denoted by \(k(X) \), [20], which in turn is equal to other four constants of \(X \), denoted by \(MPB(X), MPB'(X), \overline{MPB}(X), \beta(X) \), respectively. For more information on this subject see [2], [3], [6], [7], [19], [20].
2. Main results

In this paper we obtain some relations between the properties of \(\mu_X, (\mu_X^*) \) and the geometry of the normed space \(X \). A characterization of i.p.s of dimension \(\geq 3 \) is deduced from the knowledge of the right derivative of \(\mu_X^* \) in the origin. The two-dimensional case is partially treated. A characterization of uniformly convex spaces is obtained from the behaviour of \(\mu_X^* \) at infinity.

For \(x, y \in X \) let \(\tau(x, y) \) be defined by:

\[
\tau(x, y) = \lim_{t \to 0^+} \frac{\|x + ty\| - \|x\|}{t} = \inf_{t > 0} \frac{\|x + ty\| - \|x\|}{t}.
\]

It is clear that \(X \) is smooth if and only if \(\tau(x, y) = -\tau(x, -y) \), for any pair \((x, y) \in X \times X \) with \(x \neq 0 \).

Lemma A [3]. A normed space \(X \) is smooth if and only if the following condition holds:

\[
\{(x, y) \in S \times S : x \perp y \} = \{(x, y) \in S \times S : \tau(x, y) = 0 \}.
\]

A uniformly smooth variant of Lemma A is given by

Lemma 2.1. A normed space \(X \) is uniformly smooth if and only if the following condition holds:

\[
\alpha) \quad x, y \in S, x \perp y \Rightarrow \|x + ty\| = 1 + o(x, y, t),
\]

where \(\lim_{t \to 0} o(x, y, t)/t = 0 \), uniformly with respect to \(x, y \in S, x \perp y \).

Proof. i) If \(X \) is uniformly smooth and \(x, y \in S, x \perp y \) then by Lemma A

\[
\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t} = \lim_{t \to 0} \frac{o(x, y, t)}{t} = \tau(x, y) = 0.
\]

By uniform smoothness this limit is uniform with respect to \(x, y \in S, x \perp y \), and \(\alpha \) follows.

ii) Suppose that \(\alpha \) holds and that \(X \) is not uniformly smooth. Then \(\lim_{t \to 0} \rho_X(t)/t = \inf_{t > 0} \rho_X(t)/t = a > 0 \). Using (1) it follows that \(\lim_{t \to 0} \bar{\rho}_X(t)/t = \inf_{t > 0} \bar{\rho}_X(t)/t \geq a/8 \). There exists then a sufficiently small \(\varepsilon > 0 \) such that \(\bar{\rho}_X(t)/t > a/16 \), for all \(t \in (0, \varepsilon) \). For any \(t \in (0, \varepsilon) \) choose a pair \((x_t, y_t) \in S \times S, x_t \perp y_t \) such that

\[
\frac{1}{2t}(\|x_t + ty_t\| + \|x_t - ty_t\| - 2) > a/32.
\]

Let \(\bar{y}_t \in \{y_t, -y_t\} \) be such that \(\|x_t + t\bar{y}_t\| = \max \{\|x_t + ty_t\|, \|x_t - ty_t\|\} \).

One obtains \((\|x_t + t\bar{y}_t\| - 1)/t > a/32 \), for all \(t \in (0, \varepsilon) \). It follows that

\[
\frac{o(x_t, \bar{y}_t, t)}{t} \geq a/32, \quad \forall t \in (0, \varepsilon),
\]

contradicting \(\alpha \). ◊
The relation (4) characterizes the uniform smoothness in terms of the squareness modulus. In the sequel we will see that similar formula for \(\ast\)-rectangular modulus of \(X\) has a different interpretation.

Lemma 2.2. If the \(\ast\)-rectangular modulus of \(X\) verifies the relation

\[
\lim_{\lambda \searrow 0} \frac{\mu_X^\ast(\lambda) - \mu_X^\ast(0+)}{\lambda} = 0,
\]

then the Birkhoff orthogonality in \(X\) is symmetric.

Proof. Let \(\lambda \in (0, 1)\) and \(x, y \in S, x \perp y\) be given. It follows that

\[
\varphi_{\lambda, x, y}(t) = \frac{\lambda + t}{\|x + ty\|} = \lambda \cdot \left(\frac{\lambda x + t\lambda y}{\lambda + t}\right)^{-1}, \quad \forall t > 0,
\]

and

\[
\psi(x, y, \lambda) \overset{\text{def}}{=} \sup_{t > 0} \varphi_{\lambda, x, y}(t) = \lambda \cdot \left(\min_{\mu \in [0, 1]} \|\mu x + (1 - \mu)\lambda y\|\right)^{-1} = \\
\lambda \cdot \|\mu_0 x + (1 - \mu_0)\lambda y\|^{-1},
\]

where \(\mu_0 = \mu_0(x, y, \lambda) \in [0, 1]\) and \(\mu_0\) is not necessarily unique. If any \(\mu_0(x, y, \lambda)\) is \(\neq 0\), then the straight line \(L(x, \lambda y)\) is a support line for the sphere \(S(0, \|\mu_0 x + (1 - \mu_0)\lambda y\|)\) and \(\psi(x, y, \lambda) > 1\). In the opposite case \(\psi(x, y, \lambda) = 1\). Supposing that \(\psi(x, y, \lambda) = 1\), for all \(x, y \in S, x \perp y\) one obtains that \(\mu_X^\ast(\lambda) = 1 < \sqrt{1 + \lambda^2}\), in contradiction with the property b) of \(\mu_X^\ast\). This means that in order to obtain \(\sup_{x, y \in S, x \perp y} \psi(x, y, \lambda) = \mu_X^\ast(\lambda)\), we can consider only the pairs \(x, y \in S, x \perp y\) with any \(\mu_0(x, y, \lambda) \in (0, 1)\).

A parallel to the straight line \(L(x, \lambda y)\) from the origin intersects the parallel to the straight line \(L(0, \mu_0 x + (1 - \mu_0)\lambda y)\) from \(y\) in \(y_0 = y_0(x, y, \lambda)\). The triangle with vertices 0, \(\mu_0 x + (1 - \mu_0)\lambda y, \lambda y\) is similar to the triangle with vertices \(y, y_0, 0\). From this we obtain:

\[
\lambda \cdot \|\mu_0 x + (1 - \mu_0)\lambda y\|^{-1} = \|y\| \cdot \|y - y_0\|^{-1},
\]

and

\[
\mu_X^\ast(\lambda) = \sup_{x, y \in S, x \perp y} \psi(x, y, \lambda y) = \left(\inf\{|y - y_0| : x, y \in S, x \perp y}\right)^{-1}.
\]

On the other hand we have

\[
\mu_X^\ast(0+) = \sup\{|tx + y|^{-1} : t > 0, x, y \in S, x \perp y\} = \\
= \left(\inf\{|y - x_0| : x, y \in S, x \perp y}\right)^{-1},
\]

where \(x_0 = x_0(x, y) \in L(0, x), y - x_0 \perp x\). By changing \(x\) in \(-x\) we can suppose that \(0 \in [x_0, x]\) (see Fig. 1).

In general, \(x_0(x, y)\) is not uniquely determined. Let \(z_0 = z_0(x, y, \lambda)\) be defined by \(\{z_0\} = L(y, x_0) \cap L(0, y_0)\). Since \(y - y_0 \perp y_0\) we have \(\|y - y_0\| \leq \|y - z_0\|\). One obtains
\(\mu_x^*(\lambda) \geq \frac{1}{\inf\{|y - z_0(x, y, \lambda)| : x, y \in S, x \perp y\}}. \)

Let \(z_1 = z_1(x, y, \lambda) \) be given by \(\{z_1\} = L(y, x_0) \cap L(x, \lambda y) \). Since for two nonzero collinear vectors \(u \) and \(v, \|u\|/\|v\| \) is independent of the norm, we can apply the Menelaus Theorem in a two-dimensional normed space. Consider the triangle with vertices \(0, x_0, y \) and the transversal \(L(x, \lambda y) \). The relation

\[
\frac{\lambda}{1 - \lambda} \cdot \frac{\|y - z_1\|}{\|z_1 - x_0\|} \cdot \frac{1 + \|x_0\|}{1} = 1,
\]

implies

\[
\|y - z_1\| = \frac{1 - \lambda}{1 + \lambda \|x_0\|} \cdot \|y - x_0\|,
\]

and

\[
\|y - z_0\| = \frac{1}{1 + \lambda \|x_0\|} \cdot \|y - x_0\|.
\]

Finally, suppose that (5) holds and that Birkhoff orthogonality in \(X \) is not symmetric. Then from [17] \(\mu_x^*(0+) > 1 \). Let again \(\lambda \in (0, 1) \) be fixed. By (6) there exists a pair \(x', y' \in S, x' \perp y' \) such that

\[
\mu_x^*(0+) \geq \frac{1}{\|y' - x_0(x', y')\|} > \mu_x^*(0+) - \lambda^2,
\]

and such that \(0 \in [x_0(x', y'), x'] \). It follows that

\[
\frac{1}{\|y' - z_0(x', y', \lambda)\|} = \frac{1 + \lambda \|x_0(x', y')\|}{\|y' - x_0(x', y')\|}.
\]

From (7), (8) and (9) we obtain:

\[
\frac{\mu_x^*(\lambda) - \mu_x^*(0+)}{\lambda} > \frac{1}{\|y' - z_0(x', y', \lambda)\|} - \frac{1}{\|y' - x_0(x', y')\|} - \lambda^2
\]
\[
\frac{\lambda \| x_0(x', y') \|}{\| y' - x_0(x', y') \|} - \lambda^2 \geq \frac{\| x_0(x', y') \|}{\| y' - x_0(x', y') \|} - \lambda \geq \frac{\| y' \| - \| y' - x_0(x', y') \|}{\| y' - x_0(x', y') \|} - \lambda \geq \mu_X^*(0+) - \lambda^2 - \lambda - 1.
\]

We have
\[
\lim_{\lambda \searrow 0} \frac{\mu_X^*(\lambda) - \mu_X^*(0+)}{\lambda} \geq \mu_X^*(0+) - 1 > 0,
\]
in contradiction with (5). \(\diamondsuit\)

Theorem 2.3. Let \(X \) be a real normed space, \(\dim X \geq 3 \). The following are equivalent:

1) \(\lim_{\lambda \searrow 0} \frac{\mu_X(\lambda) - \mu_X(0+)}{\lambda} = 0. \)

2) \(\lim_{\lambda \searrow 0} \frac{\mu_X^*(\lambda) - \mu_X^*(0+)}{\lambda} = 0. \)

3) \(X \) is an inner product space.

Proof. 1) \(\Rightarrow \) 2). Suppose that 1) is valid. This implies that
\[
0 \leq \lim_{\lambda \searrow 0} \frac{\mu_X^*(\lambda) - \mu_X^*(0+)}{\lambda} \leq \lim_{\lambda \searrow 0} \frac{\mu_X(\lambda) - \mu_X(0+)}{\lambda} = 0,
\]
and 2) follows.

2) \(\Rightarrow \) 3). By Lemma 2 and 2) we have that the Birkhoff orthogonality is symmetric. Since \(\dim X \geq 3 \), it follows (see [1, p. 143]) that \(X \) is an i.p.s.

3) \(\Rightarrow \) 1). \(X \) being an i.p.s we have \(\mu_X(\lambda) = \sqrt{1 + \lambda^2}, \forall \lambda > 0 \), and 1) is obvious. \(\diamondsuit \)

Theorem 2.4. Let \(X \) be a two-dimensional real Banach space. If
\[
\lim_{\lambda \searrow 0} \frac{\mu_X^*(\lambda) - \mu_X^*(0+)}{\lambda} = 0,
\]
then \(X \) is strictly convex.

Proof. Suppose that \(X \) is not strictly convex. Then, using the notation from Lemma 2, there exists a pair \(x'', y'' \in S, x'' \perp y'' \) such that \(\| x_0(x'', y'') \| > 0 \), and \(0 \in [x_0(x'', y''), x''] \). The symmetry of orthogonality implies that \(\| y'' - x_0(x'', y'') \| = 1 \). As in Lemma 2 we have:
\[
\frac{\mu_X^*(\lambda) - \mu_X(0+)}{\lambda} \geq \frac{\| x_0(x'', y'') \|}{\| y'' - x_0(x'', y'') \|} - \lambda = \| x_0(x'', y'') \| - \lambda.
\]
One obtains that
\[
\lim_{\lambda \to 0} \frac{\mu_X^*(\lambda) - \mu_X^*(0+)}{\lambda} \geq \|x_0(x'', y'')\| > 0,
\]
a contradiction. Now, it is well-known that a two-dimensional space with symmetric orthogonality is strictly convex, iff it is smooth (see [1, p.78]). So, \(X\) is uniformly smooth, uniformly convex and the Birkhoff orthogonality in \(X\) is symmetric.\(\diamondsuit\)

Theorem 2.5. Let \(X\) be a two-dimensional real Banach space. We suppose that the Birkhoff orthogonality in \(X\) is symmetric and that \(X\) is smooth with the modulus of smoothness of power type \(p, p > (\sqrt{5} + 1)/2,\) then

\[
\lim_{\lambda \to 0} \frac{\mu_X^*(\lambda) - \mu_X^*(0+)}{\lambda} = 0.
\]

Proof. Let \(x, y \in S, x \perp y\) and \(\lambda > 0\) be fixed. We have

\[
\frac{\|x - \lambda y\| - 1}{2} \leq \frac{\|x + \lambda y\| - 1 + \|x - \lambda y\| - 1}{2} \leq \bar{\rho}_X(\lambda) \leq \rho_X(\lambda) \leq C\lambda^p.
\]

Then \(\|x - \lambda y\| \leq 1 + C_1 \lambda^p, \forall \lambda > 0, \forall x, y \in S, x \perp y,\) and by Lemma 1, \(o(x, -y, \lambda) \leq C_1 \lambda^p, \forall x, y \in S, x \perp y, \forall \lambda > 0.\) Moreover the function \(o(x, -y, \cdot)\) is increasing in \((0, \infty).\) Using again the notation in Lemma 2, we observe that \(h = h(x, y, \lambda) = \mu_0 x + (1 - \mu_0)\lambda y \perp x - \lambda y, (h\) is unique) and by the symmetry of orthogonality \(h - x \perp h.\) We have \(\|h - x\| \leq \|x\| = 1\) and \(\|h - \lambda y\| \leq \lambda.\) Let \(h_1\) be the unique vector in the line segment \([x; \lambda y]\) verifying \(\|h_1 - x\| = 1.\) A parallel from \(h_1\) to the straight line \(L(0, h)\) intersects \(L(0, x)\) in \(h_2.\) We have

\[
\frac{\|x - h\|}{1} = \frac{\|h\|}{\|h_2 - h_1\|},
\]

and \(h_2 - h_1 \perp x - \lambda y.\) Now, by Lemma 1

\[
\|h_2 - h_1\| = \frac{\|h\|}{1 + o(x, -y, \lambda) - \|h - \lambda y\|} \leq \frac{\|h\|}{1 + o(x, -y, \lambda) - \lambda}.
\]

By orthogonality and Lemma 1 it follows that:

\[
\|h - h_1\| \leq \|x - h_2\| - \|x\| = \|x - h_2\| - \|x - h_1\| = 1 + o \left(\frac{x - \lambda h}{\|x - \lambda h\|}, h \right) = 1 \leq C_1 \|h_2 - h_1\|^p \leq C_1 (1 + o(x, -y, \lambda) - \lambda)^p.
\]

But from \(y - y_0 \perp x - \lambda y\) we obtain
\[1 = \|y\| = \|y - y_0 + y_0\| = \|y - y_0\| \cdot \left(\frac{y - y_0}{\|y - y_0\|} + \frac{y_0}{\|y - y_0\|} \right) = \|y - y_0\| \cdot \left(1 + o \left(\frac{y - y_0}{\|y - y_0\|}, \frac{x - \lambda y}{\|x - \lambda y\|}, \frac{y_0}{\|y - y_0\|} \right) \right) \leq \|y - y_0\| \cdot \left(1 + C_1 \frac{\|y_0\|^p}{\|y - y_0\|^p} \right). \]

The triangle with vertices 0, h, \lambda y is similar to the triangle with vertices y, y_0, 0 and this means that
\[\frac{\|y_0\|}{\|y - y_0\|} = \frac{\|h - \lambda y\|}{\|h\|} = \frac{\|h - h_1\| + \|h_1 - \lambda y\|}{\|h\|} \leq \frac{\|h - h_1\|}{\|h\|} + \frac{\|x - \lambda y\| - 1}{\|h\|} \leq C_1 \frac{\|h\|^{p-1} \lambda^p}{(1 + o(x, -y, \lambda) - \lambda)^p} + \frac{\|x - \lambda y\| - 1}{\|h\|}. \]

Since \(\lambda/\|h\| \leq \mu_X^*(\lambda) \leq \lambda + 2 \), for \(\lambda > 0 \) small enough
\[\frac{\|y_0\|}{\|y - y_0\|} \leq 2C_1 \|h\|^{p-1} + C_1 \frac{\lambda^p}{\|h\|} \leq 2C_1 \lambda^{p-1} + 3C_1 \lambda^{p-1} = 5C_1 \lambda^{p-1}, \]
which implies that
\[1 - \|y - y_0\| \leq \|y - y_0\| \frac{\|y_0\|^p}{\|y - y_0\|^p} \leq \|y - y_0\| \cdot C_1 \cdot 5^p \cdot C_1^p \lambda^{p-1} = \|y - y_0\| \cdot 5^p \cdot C_1^{p+1} \lambda^{p-1}. \]

The symmetry of orthogonality yields \(\mu_X^*(0+) = 1 \) and:
\[0 \leq \frac{\mu_X^*(\lambda) - \mu_X^*(0+)}{\lambda} = \sup \left\{ \frac{1}{\|y - y_0(x, y, \lambda)\|} : x, y \in S, x \perp y \right\} - 1 \leq \frac{5^p C_1^{p+1} \lambda^{p-1}}{\lambda} = 5^p \cdot C_1^{p+1} \cdot \lambda^{p-1}, \]
with \(\lambda \) close to 0. If \(p > (\sqrt{5} + 1)/2 \) then \(\lim_{\lambda \downarrow 0} (\mu_X^*(\lambda) - \mu_X^*(0+))/\lambda = 0 \).

Remark. Denoting by \(H \) an inner product space it is well-known [11] that
\[\rho_X(\tau) \geq \rho_H(\tau) = \sqrt{1 + \tau^2} - 1 = \frac{\tau^2}{2} + o(\tau^2). \]

This implies that \(\rho_X \) is of power type at most 2.

Example. Let \(p \in ((\sqrt{5} + 1)/2, 2) \) be a given number and let \(q \) be its conjugate \(1/p + 1/q = 1 \). In \(\mathbb{R}^2 \) define the norm:
\[
\|(\alpha, \beta)\| = \begin{cases}
(|\alpha|^p + |\beta|^p)^{1/p} = \|(\alpha, \beta)\|_p, & \text{for } \alpha \beta \geq 0 \\
(|\alpha|^q + |\beta|^q)^{1/q} = \|(\alpha, \beta)\|_q, & \text{for } \alpha \beta < 0.
\end{cases}
\]

Then \((\mathbb{R}^2, \| \cdot \|)\) is a Banach space and the Birkhoff orthogonality is symmetric, (see [1, p.77]). Let \(x_1 = (\alpha_1, \beta_1), x_2 = (\alpha_2, \beta_2)\) be two unit vectors with \(x_1 \perp x_2\). We have

\[
\|x_1 + \lambda x_2\| - 1 \leq \max\{\|x_1 + \lambda x_2\|_p - 1, \|x_1 + \lambda x_2\|_q - 1\} \leq \max\{C_1 \lambda^p, C_2 \lambda^2\} \leq (C_1 + C_2) \lambda^p, \forall \lambda \in [0, 1).
\]

The space \((\mathbb{R}^2, \| \cdot \|)\) is two-dimensional, uniformly convex and uniformly smooth with modulus of smoothness of power type > \((\sqrt{5} + 1)/2\). From Th. 2.5 it follows that \(\lim_{\lambda \to 0}(\mu_X^*(\lambda) - \mu_X^*(0+))/\lambda = 0\). However \((\mathbb{R}^2, \| \cdot \|)\) is not a Hilbert space.

Theorem 2.6. The real normed space \(X\) is uniformly convex if and only if

\[
\lim_{\lambda \to \infty}(\mu_X^*(\lambda) - \lambda) = 0.
\]

Proof. Let \(x, y \in S, x \perp y\) and \(\lambda > 1\) be fixed. Denote by \(h_0(\lambda) = \inf\{\|h(x, y, \lambda)\| : x, y \in S, x \perp y\}\) where \(h(x, y, \lambda)\) is as in Th. 2.5. In the two-dimensional subspace \(X\) of \(X\), generated by \(x\) and \(y\) we consider the ball \(B(0, h_0(\lambda))\) and a support line \(l_x\) to \(B(0, h_0(\lambda))\) passing through \(x\). Suppose that \(\{\lambda_1 y\} = L(0, y) \cap l_x\) is chosen such that \(\lambda_1 > 0\). Then \(0 < \lambda_1 \leq \lambda\) and from \(x \perp y\) it follows:

\[
\|x - \lambda_1 y\| \leq \|x - \lambda y\| \leq 1 + \lambda.
\]

Using formula (2) for the definition of the squareness modulus we obtain:

\[
\xi_X(h_0(\lambda)) \leq 1 + \lambda, \forall \lambda > 0.
\]

From \(\mu_X^*(\lambda) = \lambda/h_0(\lambda) \geq \sqrt{1 + \lambda^2} = \mu_H^*(\lambda), \lambda > 0\), we have that \(h_0(\lambda) + 1/(4\lambda^2) < 1\), for all \(\lambda > 1\). Pick now \(x, y \in S, x \perp y\) such that \(\|h(x, y, \lambda)\| \leq h_0(\lambda) + 1/(4\lambda^2)\). For large \(\lambda\) one obtains

\[
\xi_X\left(h_0(\lambda) + \frac{1}{4\lambda^2}\right) \geq \xi_X(\|h(x, y, \lambda)\|) \geq \|x - \lambda y\| \geq \lambda - 1,
\]

implying \(h_0(\lambda) \geq \xi_X^{-1}(\lambda - 1) - 1/(4\lambda^2)\). On the other hand \(h_0(\lambda) \leq \xi_X^{-1}(\lambda + 1)\), and

\[
\lambda(1 - \xi_X^{-1}(\lambda + 1)) \leq \lambda(1 - h_0(\lambda)) \leq \lambda(1 - \xi_X^{-1}(\lambda - 1)) + \frac{1}{4\lambda}.
\]

Letting \(\beta(\lambda) = \xi_X^{-1}(\lambda + 1), \gamma(\lambda) = \xi_X^{-1}(\lambda - 1)\), it follows \(\beta(\lambda), \gamma(\lambda) \to 1\) for \(\lambda \to \infty\) and
(1 - \beta(\lambda))\xi_X(\beta(\lambda)) - 1 + \beta(\lambda) \leq \frac{\lambda}{\mu_X^*(\lambda)}(\mu_X^*(\lambda) - \lambda) \leq (1 - \gamma(\lambda))\xi_X(\gamma(\lambda)) + 1 - \gamma(\lambda) + \frac{1}{4\lambda}.

Suppose that X is uniformly convex. Using formula (4) we get

$$\lim_{\lambda \to \infty} \frac{\lambda}{\mu_X^*(\lambda)} \cdot (\mu_X^*(\lambda) - \lambda) = 0.$$

Now, from [18] we have

$$\frac{\lambda}{\lambda + 2} \leq \frac{\lambda}{\mu_X^*(\lambda)} \leq \frac{\lambda}{\sqrt{1 + \lambda^2}}; \lim_{\lambda \to \infty} \frac{\lambda}{\mu_X^*(\lambda)} = 1.$$

and \(\lim_{\lambda \to \infty} (\mu_X^*(\lambda) - \lambda) = 0\). Finally, if (10) holds then

$$0 \leq \lim_{\lambda \to \infty} [(1 - \beta(\lambda))(\xi_X(\beta(\lambda)) - 1)] \leq \lim_{\lambda \to \infty} \frac{\lambda}{\mu_X^*(\lambda)}(\mu_X^*(\lambda) - \lambda) = 0,$$

implying \(\lim_{\lambda \to \infty} (1 - \beta)\xi_X(\beta) = 0\), i.e. X is uniformly convex. \(\diamond\)

Corollary 2.7. The real normed space X is uniformly smooth if and only if

$$\lim_{\lambda \to \infty} (\mu_X^*(\lambda) - \lambda) = 0.$$

References

