THE RADICALNESS OF POLYNOMIAL RINGS OVER NIL RINGS

S. Tumurbat

University of Mongolia, P.O. Box 75, Ulaanbaatar 20 Mongolia, Currently at A. Rényi Institute of Mathematics, Hungarian Academy of Sciences, P.O.Box 127 H-1364 Budapest, Hungary

Dedicated to my teacher Professor R. Wiegandt on his 70-th birthday

Received: November 2001

MSC 2000: 16 N 80

Keywords: Nil ring, polynomial ring, radicals of a ring, normal radical.

Abstract: The main purpose of this note is to give the exact upper bound of approximating Köthe’s Problem by radicals. We construct and characterize the smallest radical ℓ such that $A[x] \in \ell$ for every nil ring A and show that this improves the approximation given in [1].

1. In this note associative rings and Kurosh–Amitsur radicals will be considered. As usual, $I \triangleleft A$ and $L \triangleleft_{\ell} A$ denote that I is an ideal and L is a left ideal in A, respectively.

A class \mathcal{M} of rings is said to be regular, if every nonzero ideal of a ring in \mathcal{M} has a nonzero homomorphic image in \mathcal{M}. Starting from a regular (in particular, hereditary) class \mathcal{M} of rings the upper radical operator \mathcal{U} yields a radical class:

E-mail address: tumur@www.com and tumurbat@renyi.hu

Research carried out within the framework of the Hungarian-Mongolian cultural exchange program at the A. Rényi Institute of Mathematics HAS, Budapest. The author gratefully acknowledges the kind hospitality and also the support of OTKA Grant # T29525.
\[\mathcal{U} \mathcal{M} = \{ A \mid A \text{ has no nonzero homomorphic image in } \mathcal{M} \} \].

For a radical class \(\gamma \) the semisimple operator \(S \) gives its semisimple class:

\[S\gamma = \{ A \mid A \text{ has no nonzero ideal in } \gamma \} \).

Köthe's Problem: Is the sum of two nil left ideals nil?

It has been posed in 1930 at the genesis of radical theory [6]. This problem has many equivalent formulations. One of the most interesting one, which stimulated many further studies, is the following due to Krempa [7].

Does \(A \in \mathcal{N} \) imply that the polynomial ring \(A[x] \) in indeterminate \(x \) over \(A \) is in \(\mathcal{J} \), where \(\mathcal{N} \) and \(\mathcal{J} \) denote the classes of nil rings and Jacobson radical rings, respectively?

In [9] it has been proved that \(A \in \mathcal{N} \) implies \(A[x] \in \mathcal{G} \), where \(\mathcal{G} \) stands for the Brown–McCoy radical.

We consider two natural radicals:

- **The antiregular radical** \(\mathcal{U}\nu \). This is the upper radical determined by the class \(\nu \) of all von Neumann regular rings.

- **The uniformly strongly prime radical** \(\mathcal{U} \). A ring \(A \) is said to be uniformly strongly prime, if there exists a finite subset \(F \) of \(A \), called a uniform insulator, such that \(xFy \neq 0 \) whenever \(0 \neq x, y \in A \). The uniformly strongly prime radical is the upper radical determined by the class of uniformly strongly prime rings [8].

In [2] it has been proved that \(A \in \mathcal{N} \) implies \(A[x] \in \mathcal{U}\nu \cap \mathcal{G} \cap \mathcal{U} \) (see [2, Cor. 3.5]).

We recall also some statements we shall need in the sequel.

The **upper radical** \(\mathcal{N}_s \) determined by the class of rings which contain no nonzero nil left ideals or, equivalently, no nonzero nil right ideals is called the lower strong radical determined by \(\mathcal{N} \) (see [1] and [2]).

The **Behrens radical** \(\mathcal{B} \) is the upper radical determined by the class of all subdirectly irreducible rings having a nonzero idempotent in their heart.

Recently, in [1] the following has been proved.

Proposition 1.1. \(A \in \mathcal{N}_s \) implies \(A[x] \in \mathcal{B} \).

Proposition 1.2 [2, Th. 3.4]. \(\mathcal{N}_s \subseteq \mathcal{U} \).

We say that a ring \(A \) has **bounded index of nilpotency** if there is a positive integer \(m \) such that \(a^m = 0 \) for each nilpotent element \(a \) of \(A \) [4].
Proposition 1.3 [5, Th. 10.8.2]. Let A be PI algebra of degree d. Let $A(1)$ be the sum of the nilpotent ideals of A, and B any nil subalgebra of A. Then $B^m \subseteq A(1)$ where $m = [d/2]$.

Proposition 1.4 [3, Th. 6.53]. If in a ring A there exists a fixed positive integer n such that $x^n = 0$ for every $x \in A$, then A is locally nilpotent.

The Baer radical β is the upper radical determined by the class of prime rings. A prime ring A is said to be \ast-ring if its every proper homomorphic image A' is in β. We denote by $M(A)$ the infinite matrix ring which has only finitely many nonzero entries from A.

Proposition 1.5 [12, Lemma 7]. If A is a \ast-ring, then $M(A)$ is a \ast-ring with trivial center.

A class M of rings is said to be principally left hereditary if $a \in A \in M$, then $Aa \in M$.

Proposition 1.6 [13, Th. 5.1]. The Behrens radical B is the largest principally left hereditary subclass of the Brown–McCoy radical class G in fact, $MG = B$ where

$$
MG = \{ A \mid Aa \in G \text{ for every } a \in A \}.
$$

2. We set

$$
M = \left\{ A \mid \begin{array}{l}
A \text{ has no nonzero locally nilpotent ideals and } \\
\text{every nil subring } S \text{ of } A \text{ is locally nilpotent}
\end{array} \right\},
$$

$$
M_0 = \left\{ A \mid \begin{array}{l}
A \text{ has no nonzero nil ideals and } \\
\text{all nilpotent elements form a subring in } A
\end{array} \right\}.
$$

Lemma 2.1. M and M_0 are

a) hereditary classes of rings;

b) both consist of semiprime rings;

c) both contain no nonzero nilrings.

Proof. Trivial. \Diamond

Recall that a radical σ is said to be left strong if $\sigma(L) = L \triangleleft_l A$ implies $L \subseteq \sigma(A)$. Right strong radical is defined correspondingly.

Proposition 2.2. $\gamma = UM$ and $\delta = UM_0$ are left and right strong and so is $\gamma \cap \delta$.

Proof. Let $\gamma(L) = L \triangleleft_l A$, and $L \not\subseteq \gamma(A)$. Then we have
0 \neq \gamma \left(\frac{L + \gamma(A)}{\gamma(A)} \right) = \frac{L + \gamma(A)}{\gamma(A)} \cdot \frac{A}{\gamma(A)} \in S\gamma.

Hence, we can choose \(\gamma(A) = 0 \) and so \(B = L + LA \in S\gamma \). Therefore \(B \) has a nonzero homomorphic image \(B/I \) in \(\mathcal{M} \). Let \(\langle I \rangle \) be the ideal of \(A \), generated by \(I \). By Andrunakievich Lemma \(\langle I \rangle^3 \subseteq I \subseteq \langle I \rangle \) and so by Lemma 2.1 a) and b) \(\langle I \rangle = I \). Thus it follows that \(I \triangleleft A \). Hence \(L \not\subseteq I \). Again we can choose \(B \in \mathcal{M} \). By Lemma 2.1 c) \(\mathcal{N} \subseteq \gamma \) and so also the locally nilpotent radical \(\mathcal{L} \) is contained in \(\gamma \). Since \(\mathcal{L} \) is left strong, we have \(\mathcal{L}(L) \neq L \) and so \(0 \neq L/\mathcal{L}(L) \in \gamma \). Hence \(L/\mathcal{L}(L) \) has a non-locally nilpotent and nil subring \(\overline{S} \). Let \(S/\mathcal{L}(L) = \overline{S} \), then \(S \) is a nil subring of \(B \) which is not locally nilpotent, contradicting \(B \in \mathcal{M} \). For \(\delta \) the proof is similar. \(\Diamond \)

Corollary 2.3. \(\mathcal{N}_s \subseteq \gamma \cap \delta \cap B \cap u \).

Proof. \(\mathcal{N}_s \subseteq B \cap u \) follows from Props. 1.1 and 1.2. Since \(N \subseteq \gamma \cap \delta \), by Prop. 2.2 we get \(\mathcal{N}_s \subseteq \gamma \cap \delta \). \(\Diamond \)

Lemma 2.4. If for a ring \(A \) the factor ring \(A[x]/I \) is a prime (semiprime) ring, then there exist a prime (semiprime) ring \(B \) and an ideal \(J \) of \(B[x] \) such that \(A[x]/I \cong B[x]/J \) and \(B \cap J = 0 \).

Proof. Let \(H = A \cap I \triangleleft A \). Since \(H^2[x] = (A \cap I)^2[x] \subseteq I \) and \((H[x])^2 \subseteq H^2[x] \subseteq I \). We claim that \(H[x] \subseteq I \). Suppose that \(H[x] \not\subseteq I \). Then \(I \subset H[x] + I \) and \(H^2[x] \subseteq (H[x] + I)^2 \subseteq I \) by \(H^2[x] \subseteq I \). Since \(I \) is a semiprime ideal, we conclude \(H[x] \subseteq I \). So

\[
\frac{I}{H[x]} \triangleleft \frac{A[x]}{H[x]} \cong (A/H)[x],
\]

where \(f \) is an isomorphism of \((A[x])/(H[x]) \) onto \((A/H)[x] \) such that

\[
f \left(\sum_{i=0}^{n} a_i x^i + H[x] \right) = \sum_{i=0}^{n} (a_i + H)x^i, \quad \text{for } a_i \in A.
\]

Choose \(B = A/H \) and \(J = f(I/H[x]) \). Then we have

\[
\frac{B[x]}{J} \cong \frac{A[x]/H[x]}{I/H[x]} \cong \frac{A[x]}{I},
\]

and we claim that \(B \cap J = 0 \). If \(B \cap J \neq 0 \) then \(0 \neq B \cap J = H_1/H \), and \(H \subset H_1 \triangleleft A \). Let \(0 \neq h \in H \setminus H_1 \). Since \(H[x] \subseteq I \) and \(h + H[x] = f^{-1}(h + H) \in f^{-1}(J) = I + H[x] = I \). We get \(h \in I \) and so \(H_1 + H[x] \subseteq I \). Thus \(H_1 \subseteq I \), contradicting \(A \cap I = H \).

Now, we shall show that \(B \) is semiprime. If \(B \) is not semiprime then there exists an ideal \(H_1 \) of \(B \) such that \(H \subset H_1 \) and \(H_1^2 \subseteq H \).
Hence $H_1^2[x] \subseteq H[x]$. So $H_1^2[x] \subseteq I$, and as above we have $H_1[x] \subseteq I$. Hence it follows $I_1 \subseteq I$, and so $H_1 \subseteq I \cap A = H$ implying $H_1 = H$, a contradiction.

Let $A[x]/I$ be a prime ring. If $H \subseteq H_1 \triangleleft A$ and $H \subseteq H_2 \triangleleft A$ and $H_1H_2 \subseteq H$, then $(H_1 \cap H_2)^2 \subseteq H_1H_2 \subseteq H$. It follows again that $H_1 \cap H_2 \subseteq I$, and so $H_1 \cap H_2 \subseteq H$.

Put $\overline{H}_1 = H_1/H$ and $\overline{H}_2 = H_2/H$, then $\overline{H}_1 \cap \overline{H}_2 = 0$. We have

$$\frac{H_1[x]}{H[x]} \cong \frac{(H_1/H)[x]}{\overline{H}_1[x]} = \overline{H}_1[x] \triangleleft B[x]$$

and

$$\frac{H_2[x]}{H[x]} \cong \frac{H_2[x]}{H[x]} = \overline{H}_2[x] \triangleleft B[x].$$

and also $\overline{H}_1[x] \cap \overline{H}_2[x] = 0$.

Since I is a prime ideal of $A[x]$ and

$$H_1[x]H_2[x] \subseteq H_1[x] \cap H_2[x] \subseteq I,$$

we conclude that either $H_1[x] \subseteq I$ or $H_2[x] \subseteq I$, and so either $H_1[x] \subseteq H[x]$ or $H_2[x] \subseteq H[x]$. Hence either $H_1 \subseteq H$ or $H_2 \subseteq H$, a contradiction. \hfill \Box

Corollary 2.5. Let A and B be rings as in Lemma 2.4. If A is nil ring, then B is nil ring. \hfill \Box

A ring A is said to be an n-ring if A is not a homomorphic image of the polynomial ring $B[x]$ for any nil subring B of A.

Put $n(x) = \{ A \mid A$ has no nonzero accessible subring B which is n-ring$\}$. Denote by ℓ the lower radical generated by the class $\{ A[x] \mid A$ is a nil ring$\}$.

Theorem 2.6. $Un(x) = \ell$.

Proof. $Un(x) \subseteq \ell$: Let $A \in Un(x)$. then every homomorphic image A' has a nil subring $B \subseteq A'$, such that $B[x]/I \cong I_n \triangleleft \cdots \triangleleft A'$. Therefore $I_n \in \ell$. Hence $\ell(A') \neq 0$. If $Un(x) \not\subseteq \ell$, then there exists a nonzero ring $A \in Un(x) \cap St$. As above $\ell(A) \neq 0$, a contradiction.

$\ell \subseteq Un(x)$: Let $A \in \ell \setminus Un(x)$. Then A has a nonzero homomorphic image A' in $n(x)$. Since $A' \in \ell$, there exists an accessible subring $I_n \triangleleft \cdots \triangleleft A'$, which is a homomorphic image of $B[x]$, where B is a nil ring. Suppose $I_n \cong B[x]/I$. By Lemma 2.1 $I_n \cong B[x]/I$ is semiprime ring.

By Cor. 2.5, there exists a nil ring B' such that
\[B[x]/I \cong B'[x]/J \quad \text{and} \quad B' \cap J = 0. \]

Since \(B' \cap J = 0 \), we have
\[
B' \cong \frac{B'}{B' \cap J} \cong \frac{B' + J}{J} \cong \frac{B'[x]}{J} \cong \frac{B[x]}{I} \cong I_n.
\]

So \(I_n \) contains a nil subring \(S \) which is isomorphic to \(B' \) and so \(S[x] \cong \cong B'[x] \). Hence \(I_n \) is a homomorphic image of \(S[x] \). Therefore \(I_n \notin n(x) \) and so \(A' \notin n(x) \), a contradiction. \(\diamond \)

Corollary 2.7. Let \(\sigma \) be a radical. If \(A \in \mathcal{N} \) imply \(A[x] \in \sigma \) then \(\ell \subseteq \sigma \).

Lemma 2.8. Let \(A \) be a semiprime commutative ring. Then every nil subring \(S \) of \(M(A) \) is locally nilpotent.

Proof. Since \(A \) is commutative, for any natural number \(n \) the standard polynomial \(S_{2n} \) actually is an identity of matrix ring \(M_n(A) \) (see [10,6.1.17]). By Prop. 1.3, \(M_n(A) \) has bounded index. Let \(m \) be the smallest among these indices.

Put
\[nM(A) = \{(a_{ij}) \mid a_{ij} \in A \text{ and } a_{ij} = 0 \text{ for } j > n \}\]
and
\[V = \{B \in nM(A) \mid a_{ij} = 0 \text{ for } i, j \leq n \}. \]

Clearly \(V \triangleleft nM(A) \) and \(nM(A)/V \cong M_n(A) \). Let \(B \in nM(A) \) be a nilpotent element, then \(B^m \subseteq V \). Since \(V^2 = 0 \), also \(B^{2m} = 0 \). Hence \(nM(A) \) is of bounded index. For any \(s \in S \), there exists natural number \(n \), such that \(s \in nM(A) \). Since \(nM(A) \) is a left ideal of \(M(A) \), also \(nM(A) \cap S \triangleleft S \). Therefore \(nM(A) \cap I_\ell \) is of bounded index nil ring. By Prop. 1.4, \(nM(A) \cap S \) is locally nilpotent. Since the locally nilpotent radical is left strong, \(S \) has a locally nilpotent ideal \(I_s \) of \(S \)which is \(s \in I_s \), and so \(S \) is locally nilpotent. \(\diamond \)

Theorem 2.9. \(\ell = Un(x) \subseteq B \cap u \cap \gamma \cap \delta \subset B \cap u \cap \delta \).

Proof. By Prop. 1.1 and Cor. 2.7, we get \(Un(x) \subseteq B \cap u \). Let \(A \in Un(x) \setminus \gamma \). Then there exists a nonzero homomorphic image \(A' \) of \(A \) in \(\mathcal{M} \). Since \(A' \in Un(x) \), \(A' \) has a nonzero accessible subring \(I \) such that \(I \cong B[x]/J \) and for a nil subring \(B \) of \(I \) by Lemma 2.4. Since \(\mathcal{M} \) is hereditary, \(I \in \mathcal{M} \). Hence \(B \) is locally nilpotent and so \(B[x]/J \). Therefore \(I \) is locally nilpotent, a contradiction. It follows \(Un(x) \subseteq \gamma \).

Let \(A \in Un(x) \setminus \delta \). As above, we get an accessible subring \(I \) of \(A' \in M_0 \) and so \(I \in M_0 \) and \(I \cong B[x]/J \). Since \(B \) is nil, for the semigroup \(\{ax^n \mid a \in B, 0 \leq n \in \mathbb{Z} \} \) every element is nilpotent. The subring \(B' \) of \(B[x]/J \) generated by the set \(\{ax^n + J \} \) is isomorphic to \(I \),
because \(\{ax^n + J\} \) are generators of \(B[x]/J \). Hence \(I \) is nil ring. Again a contradiction. Thus, it follows \(\mathcal{U}n(x) \subseteq \gamma \cap \delta \). Let us consider the ring

\[
A = \left\{ \frac{2x}{2y + 1} \mid x, y \in \mathbb{Z}, (2x, 2y + 1) = 1 \right\}.
\]

We know that \(A \) is a commutative *-ring (see [12]). We consider the ring \(M(A) \). Since \(M_\infty(A) \) is a Jacobson radical ring, one can easily check that also \(M(A) \) is a quasi-regular ring. Hence \(M(A) \in \mathcal{B} \). Let \(a_1, \ldots, a_s \in M(A) \). Then there exists \(n \in \mathbb{N} \), such that \(a_1, \ldots, a_s \in M_n(A) \). Let \(V \) be as in the proof of Lemma 2.8, then \(M_n(A) \cdot V = 0 \) and \(V \neq 0 \). Hence \(M(A) \) has no finite subset \(F \), such that \(xFy \neq 0 \forall x, y \neq 0, x, y \in M(A) \). By Prop. 1.4 \(M(A) \) is a *-ring. Hence \(M(A) \in \mathcal{U} \). Since \(M(A) \) is not nil, \(M(A) \) has no nonzero nil ideal.

Put \((x)_{ij} = (x_{k\ell}) = \begin{cases} x & \text{if } i = k \text{ and } j = \ell \\ 0 & \text{otherwise} \end{cases} \).

Clearly \((x)_{21} \) and \((y)_{12} \) are nilpotent for any \(x, y \in A \). If \(x \neq 0 \neq y \), then \((x)_{21}(y)_{12} \) is not nilpotent. Therefore, since \(M(A) \) is a *-ring, \(M(A) \in \mathcal{U} \). It follows \(M(A) \in \mathcal{B} \cap \mathcal{U} \). By Lemma 2.8 any nil subring \(S \) of \(M(A) \) is locally nilpotent and so \(M(A) \notin \gamma \). ◊

Corollary 2.10. The radical \(\ell \) gives the best approximation of Köthe’s Problem from above:

\[
A \in \mathcal{N} \Rightarrow A[x] \in \ell
\]

and this improves the approximation

\[
A \in \mathcal{N} \Rightarrow A[x] \in \mathcal{B} \cap \mathcal{U}.
\]

Proof. The first statement follows from Th. 2.6, the second one follows from Th. 2.9. ◊

Remark. Obviously \(\mathcal{N} \subseteq \mathcal{N}_s \) and \(\mathcal{N} \subseteq \ell \). If Köthe’s Problem has a positive solution, then \(\mathcal{N} = \mathcal{N}_s \) and \(\mathcal{N}_s \subseteq \ell \). However, \(\mathcal{N}_s \notin \ell \) would mean that there exists a nil semisimple ring having a nonzero one-sided nil ideal, that is, Köthe’s Problem has a negative solution.

We denote by \(\sigma \), the upper radical generated by the class

\[
\left\{ A \mid \begin{array}{l}
A \text{ has no nonzero locally nilpotent ideals and } \\
\text{all nilpotent elements have bounded nilpotency index.}
\end{array} \right\}
\]
Proposition 2.11. 1) $\mathcal{L} \subset \mathcal{N} \subset \mathcal{J} \cap \ell \subseteq \ell \subset \sigma$.

2) If $R \in \sigma$ is a PI ring, then R is locally nilpotent.

Proof. 1) Since $M(A)$ is not of bounded nilpotency index $M(A) \in \sigma$ and $M(A) \notin \ell$ by Th. 2.9, and $\mathcal{N} \subset J \cap \ell$ follows from [11, Th. 8].

2) If R is not locally nilpotent, then $R/\mathcal{L}(R) \neq 0$, where $\mathcal{L}(R)$ is locally nilpotent radical of R. Since R is a PI-ring, we get that $R/\mathcal{L}(R)$ is a PI-ring and semiprime. By Prop. 1.3 $R/\mathcal{L}(R)$ is of bounded nilpotency index. Hence $R/\mathcal{L}(R) \in \sigma \cap S\sigma = 0$, a contradiction. \hfill \checkmark

A normal radical r may be defined as left strong and principally left hereditary radical. In [13] it has been proved that here left strongness can be replaced by the weaker condition of principally left strongness (that is $r(L) = L \triangleleft L A$ and for any $a \in L$, $La \in \gamma \Rightarrow L \subseteq r(A)$).

An N-radical r may be defined as a normal radical containing the Baer radical β.

Set \[\ell^o = \{ A \in \ell \mid Aa \in \ell, \text{ for any } a \in A \} . \]

Proposition 2.12. $\mathcal{N} \subseteq \ell^o \subseteq B \cap U \cap \gamma \cap \delta$, where $\gamma \cap \delta$ is largest N-radical in $\gamma \cap \delta$.

Proof. Clearly $\mathcal{N} \subseteq \ell^o$, since \mathcal{N} is left hereditary. Let $A \in \ell^o$, then $Aa \in \ell$, for any $a \in A$. By Prop. 1.6 $A \in B$. Since $\gamma \cap \delta$ is left-strong, $L \triangleleft L A$ implies $L \subseteq \ell$ and so $L \in \gamma \cap \delta$. By [14, Th. 15], $A \in \gamma \cap \delta$. \hfill \checkmark

Finally we give the position of the radicals considered in this note. If Köthe's Problem has a positive solution, then
\[N = N_s \subset \ell \subset J. \]
Moreover, \(J \not\subset B \cap u \cap \gamma \cap \delta \), but if \(B \cap u \cap \gamma \cap \delta \subset J \) then \(N = N_s \) and Köthe's Problem has a positive solution. Köthe's Problem has a positive solution if and only if \(\ell(\mathcal{A}[x]) = J(\mathcal{A}[x]) \), for any ring \(A \).

Acknowledgement The author wishes to express his indebtedness and gratitude to Prof. R. Wiegandt for his invaluable advice.

References

