ON QUASI-CONTINUOUS ITERATION GROUPS ON THE UNIT CIRCLE

Anna Piekarska

Pedagogical University, Institute of Mathematics, Podchorzązych 2, PL-30-084 Kraków, Poland

Received: April 2002

MSC 2000: 39 B 12; 20 F 38, 30 D 05, 39 B 32

Keywords: Iteration group, quasi-continuous iteration group.

Abstract: The aim of this paper is to give a characterization of iteration groups defined on the unit circle S^1, continuous with respect to the iterative parameter. Such groups are named quasi-continuous. The problem of the embeddability of a given function $T : S^1 \rightarrow S^1$ into quasi-continuous iteration groups is also considered.

Let $S^1 = \{x \in \mathbb{C} : |x| = 1\}$ be the unit circle. A set $L \subset S^1$ is said to be an open arc if

$$\overrightarrow{L} = (x_1, x_2) := \{e^{2\pi it} : t \in (t_1, t_2)\},$$

where $t_1, t_2 \in \mathbb{R}$ are such that $t_1 < t_2 \leq t_1 + 1$ and $x_1 = e^{2\pi it_1}$, $x_2 = e^{2\pi it_2}$. Similarly we define (x_1, x_2), $[x_1, x_2)$, $[x_1, x_2]$, but with one different detail: $t_1 < t_2 < t_1 + 1$. Each of these four will be called an arc in this paper.

Let L be an arc or $L = S^1$ or L be a singleton. Let us introduce the following:

Definitions (see [3], also [6]). A family $\{T^t, t \in \mathbb{R}\}$ of functions $T^t : L \rightarrow L$ is said to be an iteration group on L if

E-mail address: apiekar@wsp.krakow.pl
$T^t \circ T^s = T^{t+s}$ for $t, s \in \mathbb{R}$.

If for every $x \in L$ the mapping $h_x : \mathbb{R} \rightarrow L$ given by $h_x(t) := T_t(x), t \in \mathbb{R}$ is continuous then the iteration group is said to be quasi-continuous.

If, moreover, all functions T^t are continuous then the quasi-continuous iteration group will be called a continuous iteration group.

The general construction of quasi-continuous iteration groups of real functions is given in [6]. On the base of these results we give a construction of quasi-continuous iteration groups on the unit circle.

Given an iteration group $\{T^t, t \in \mathbb{R}\}$ on S^1 and $x \in S^1$ put

$$C(x) := \{T^t(x), t \in \mathbb{R}\},$$

$$B(x) := \{t \in \mathbb{R} : T^t(x) = x\},$$

and

$$p(x) := \inf\{t > 0 : T^t(x) = x\}, \quad (\inf \emptyset := \infty).$$

$p(x)$ is called the period of the point x.

For any mapping $T : S^1 \rightarrow S^1$ we also put

$$A_T := \{x \in S^1 : T(x) = x\}.$$

We begin with some elementary properties of iteration groups on the circle.

Proposition 1 (see also [2]). Let $\{T^t, t \in \mathbb{R}\}$ be an iteration group on S^1, then

(i) for $x, y \in S^1$ we have $C(x) = C(y)$ or $C(x) \cap C(y) = \emptyset$,

(ii) $T_0^0[S^1] = T^t[S^1]$ for $t \in \mathbb{R}$,

(iii) $T_0^0[T_0^0[S^1]] = Id[T_0^0[S^1]]$.

Proof. To prove (i) fix $t \in \mathbb{R}$, $x, y \in S^1$ such that $x \neq y$. Suppose that $C(x) \cap C(y) \neq \emptyset$, i.e. there exist $t_1, t_2 \in \mathbb{R}$ such that $T^{t_1}(x) = T^{t_2}(y)$. Then

$$T^t(x) = T^{t-t_1+t_1}(x) = T^{t-t_1}(T^{t_1}(x)) = T^{t-t_1}(T^{t_2}(y)) = T^{t-t_1+t_2}(y) \in C(y).$$

Thus, $C(x) \subseteq C(y)$. In the same way we can show that $C(y) \subseteq C(x)$.

In order to prove (ii), fix a $t \in \mathbb{R}$. First, take an $x \in T_0^0[S^1]$ and let $y \in S^1$ be such that $x = T_0^0(y)$. Then

$$x = T_0^0(y) = T^{t-t_1}(y) = T^t(T^{t-t_1}(y)) \in T^t[S^1].$$

If $x \in T^t[S^1]$, then there exists a $y \in S^1$ such that $x = T^t(y)$, and consequently
\[x = T^t(y) = T^{0+t}(y) = T^0(T^t(y)) \in T^0[S^1]. \]

The proof of (iii) is trivial. \(\diamondsuit\)

Remark 1. Let \(\{T^t, t \in \mathbb{R}\} \) be a quasi-continuous iteration group on \(S^1 \). Then for every \(x \in S^1 \), \(C(x) \) is either a singleton or the circle or an arc.

Proof. Since for every \(x \in S^1 \), \(C(x) = h_x[\mathbb{R}] \) and the function \(h_x : \mathbb{R} \rightarrow S^1 \) is continuous, the set \(C(x) \) is connected, and our assertion follows. \(\diamondsuit\)

The following lemmas are similar to Th. 1.13 in [2] but these ones give more facts and work with another assumptions.

Lemma 1. Let \(\{T^t, t \in \mathbb{R}\} \) be a quasi-continuous iteration group on \(S^1 \) and \(x \in S^1 \). Then

(i) the following three conditions are equivalent

(a) \(p(x) = 0 \),
(b) \(C(x) = \{x\} \),
(c) \(B(x) = \mathbb{R} \);

(ii) the following three conditions are equivalent

(a) \(0 < p(x) < \infty \),
(b) \(C(x) = S^1 \),
(c) \(B(x) \) is a nontrivial cyclic subgroup of \(\mathbb{R} \).

Proof. First, note that if \(B(x) \neq \emptyset \) then \(B(x) \) is a closed additive subgroup of \(\mathbb{R} \), so it is either \(\mathbb{R} \) or a cyclic subgroup of \(\mathbb{R} \). This together with the definitions of \(C(x) \) and \(p(x) \) gives (i).

Next, we prove (ii). To do this, let us first assume that \(B(x) = \{nt_0, n \in \mathbb{Z}\} \) for a positive \(t_0 \). Then \(h_x|_{\langle 0, t_0 \rangle} \) is one-to-one. Indeed, assuming \(h_x(s) = h_x(p) \) for some \(p, s \in \langle 0, t_0 \rangle \) we get

\[x = T^0(x) = T^{s-s}(x) = T^{-s}(T^s(x)) = T^{-s}(T^p(x)) = T^{p-s}(x), \]

since \(0 \in B(x) \). Then \(p - s \in B(x) \), so \(p = s \). Next, note that \(h_x(0) = h_x(t_0) = x \). From this, Remark 1 and the fact that \(h_x|_{\langle 0, t_0 \rangle} \) is a continuous injection we have

\[C(x) = h_x[\mathbb{R}] = h_x[\langle 0, t_0 \rangle] = S^1. \]

Conversely, assume that \(C(x) = S^1 \). Then \(B(x) \neq \mathbb{R} \), and there exists a \(t \in \mathbb{R} \) such that \(x = T^t(x) \). Therefore \(B(x) \neq \emptyset \). If \(B(x) = \{0\} \), then \(h_x \) is easily seen to be one-to-one, which contradicts the known fact that there does not exist a continuous injection from \(\mathbb{R} \) onto \(S^1 \) (see for instance [2]). Consequently, \(B(x) \) is a nontrivial cyclic subgroup of \(\mathbb{R} \). The rest of the proof is immediate. \(\diamondsuit\)
Lemma 2. Let \(\{T^t, t \in \mathbb{R}\} \) be a quasi-continuous iteration group on \(S^1 \). If \(x \in S^1 \) and \(p(x) = \infty \) then one of the following conditions occurs:

1. \(B(T^0(x)) = \mathbb{R} \),
2. \(B(T^0(x)) = \{0\} \),
3. \(x = T^0(x) \) and \(B(x) = \{0\} \).

Proof. Let us assume that \(x \in S^1 \) and \(p(x) = \infty \). Then \(B(x) \cap \mathbb{R}^+ = \emptyset \).

Thus, \(B(x) = \emptyset \) or \(B(x) = \{0\} \). Assuming \(B(x) = \emptyset \) we have \(T^t(x) \neq x \) for every \(t \in \mathbb{R} \), so \(x \notin C(x) \). Note that for \(y = T^0(x) \), \(C(x) = C(y) \).

Obviously, \(T^0(y) = y \), so \(0 \in B(y) \). If \(B(y) \) is a cyclic nontrivial subgroup of \(\mathbb{R} \), then by Lemma 1, \(S^1 = C(y) = C(x) \), contrary to \(x \notin C(x) \). Hence \(B(y) = \mathbb{R} \) or \(B(y) = \{0\} \). If \(B(x) = \{0\} \), then \(x = T^0(x) \).

Lemma 3. Let \(\{T^t, t \in \mathbb{R}\} \) be a quasi-continuous iteration group on \(S^1 \). Let \(x \in S^1 \), then

(i) if (H1) then \(C(x) = \{T^0(x)\} \), \(p(x) = \infty \) and the function \(h_x \) is constant,

(ii) if (H2) then \(C(x) \) is an arc such that \(x \notin C(x) \) and \(p(x) = \infty \),

(iii) if (H3) then \(C(x) \) is an arc such that \(x \in C(x) \) and \(p(x) = \infty \).

Moreover, the following three conditions are equivalent

(a) (H2) or (H3) occurs,
(b) \(h_x \) is a homeomorphism,
(c) \(C(x) \) is an arc.

Proof. Fix an \(x \in S^1 \) and put \(y := T^0(x) \). Let us first assume that \(x \neq T^0(x) \). Then \(B(x) = \emptyset \) and, by Lemma 1, \(p(x) = \infty \). If \(B(y) = \mathbb{R} \)
then, by Lemma 1, \(\{T^0(x)\} = C(y) = C(x) \), and consequently \(h_x \) is also constant. If \(B(y) = \{0\} \), then \(h_x(s) = h_x(p) \) implies \(h_y(s) = h_y(p) \), and consequently \(s = p \). Therefore \(h_x \) is one-to-one, and Remark 1 now shows that \(C(x) \) is an arc with \(x \notin C(x) \). Next, assume that (H3) holds true. Then \(h_x \) is an injection, and consequently \(C(x) \) is an arc with \(x \in C(x) \). Moreover, Lemma 1 now shows that \(p(x) = \infty \).

From Lemmas 1, 2 and the proved part of Lemma 3 it follows that conditions (a) i (c) are equivalent. Moreover, it is obvious that (b) implies (c). To complete the proof let us assume that (c) holds true. Then there is an open arc \(L \) such that \(C(x) \subset L \). Let \(g \) be a homeomorphism from \(L \) onto \(\mathbb{R} \). Since \(h_x \) is one-to-one, the mapping \(f : \mathbb{R} \rightarrow \mathbb{R} \) given by \(f := g \circ h_x \) is a continuous injection, and consequently \(f \) is a homeomorphism. Therefore so is \(h_x \).

Corollary 1. Let \(\{T^t, t \in \mathbb{R}\} \) be a quasi-continuous iteration group on \(S^1 \) and \(x \in S^1 \). If \(C(x) \) is an arc, then it is an open arc.
From Lemma 1, Prop. 1 and Remark 1 we have

Remark 2. Let \(\{ T^t, t \in \mathbb{R} \} \) be a quasi-continuous iteration group on \(S^1 \). If there exists an \(x_0 \in S^1 \) such that \(0 < p(x_0) < \infty \), then \(0 < p(x) < \infty \) for every \(x \in S^1 \).

We can now prove the following

Theorem 1 (see also [2]). If \(\{ T^t, t \in \mathbb{R} \} \) is a quasi-continuous iteration group on \(S^1 \), then for every \(x \in S^1 \), \(\{ T^t |_{C(x)}, t \in \mathbb{R} \} \) is a continuous iteration group on \(C(x) \).

Proof. Fix \(x \in S^1 \) and \(t \in \mathbb{R} \). First, suppose that \(0 < p(x) < \infty \). By Lemma 1 we see that \(C(x) = S^1 \). Moreover, from Prop. 1(iii) we conclude that \(T^0 = Id_{S^1} \). Therefore, by Th. 1.19 in [2], we deduce that \(\{ T^t, t \in \mathbb{R} \} \) is a continuous iteration group on \(S^1 \).

Now, assume that \(p(x) = 0 \) or \(p(x) = \infty \). The proof is completed by showing that \(T^t |_{C(x)} \) is continuous. If the orbit contains only one point our assertion follows. By Lemma 1 we only need to show the continuity of \(T^t |_{C(x)} \) in the case when the orbit is an arc.

Since \(C(x) \) is a metric space, it is sufficient to show that for every sequence \((y_n)_{n \in \mathbb{N}} \) of elements of \(C(x) \) such that \(y_n \to y \in C(x) \), we have \(T^t(y_n) \to T^t(y) \). Fix such a sequence and an \(n \in \mathbb{N} \). Since \(C(x) = C(y) \), we can find \(s, s_n \in \mathbb{R} \) such that \(y_n = T^{s_n}(y) \) and \(y = T^s(x) \). Thus

\[
y_n = T^{s_n}(y) = T^{s_n}(T^s(x)) = T^{s_n+s}(x).
\]

Since \(y_n \to y \), we have \(T^{s_n+s}(x) \to T^s(x) \), i.e. \(h_x(s_n + s) \to h_x(s) \). By Lemma 3 we see that \(h_x \) is a homeomorphism, so \(s_n \to 0 \). Hence and from the fact that \(h_y \) is continuous we obtain

\[
T^t(y_n) = T^t(T^{s_n}(y)) = T^{t+s_n}(y) \to T^t(y). \quad \Diamond
\]

The general form of continuous iteration groups on the unit circle is well known (see for instance [5]), but we will remind it. We first need to prove

Theorem 2. Let \(\{ T^t, t \in \mathbb{R} \} \) be a quasi-continuous iteration group on \(S^1 \). If there exists an \(x_0 \in S^1 \) such that \(0 < p(x_0) < \infty \) then

(i) for every \(t \in \mathbb{R} \), either \(T^t \equiv Id_{S^1} \) or \(T^t(x) \neq x \) for \(x \in S^1 \),

(ii) \(T^0 \equiv Id_{S^1} \),

(iii) \(T^t \) is a homeomorphism for \(t \in \mathbb{R} \).

Proof. Assume that \(A_{T^a} \neq \emptyset \) for an \(a \neq 0 \). Fix an \(x' \in A_{T^a} \). Then \(T^a(x') = x' \). We claim that \(C(x') \subset A_{T^a} \). Indeed, let \(y \in C(x') \). Then there exists a \(u \in \mathbb{R} \) such that \(y = T^u(x') \). Thus
$$T^a(y) = T^a(T^u(x')) = T^u(T^a(x')) = T^u(x') = y,$$
and consequently $y \in A_{T^a}$. By Remark 2 we see that $0 < p(x') < \infty$
and Lemma 1(ii) now shows that $S^1 = C(x') \subset A_{T^a}$. Consequently, $A_{T^a} = S^1$.

Next, by Lemma 1(ii), $T^0[S^1] = S^1$, since $S^1 = C(x_0) \subset T^0[S^1]$. By Prop. 1(ii) and (iii), $T^0 \equiv I_{S^1}$ and $T^t[S^1] = S^1$ for every $t \in \mathbb{R}$. Hence $T^{-t} \circ T^t = I_{S^1}$, so T^t is invertible. Consequently, by Th. 1, every T^t is a homeomorphism from S^1 onto S^1. \(\diamondsuit\)

Th. 2 lets us to use Th. 2 in [5]. Thus, the general form of quasi-
continuous iteration groups $\{T^t, t \in \mathbb{R}\}$ on S^1 such that $0 < p(x_0) < \infty$
for an $x_0 \in S^1$ is given by

$$T^t = \Phi^{-1} \circ Q_a \circ \Phi, \quad t \in \mathbb{R},$$
where $\Phi: S^1 \to S^1$ is an orientation preserving homeomorphism, $a \in \mathbb{R}$
and

$$Q_a(x) := e^{2\pi i a} \cdot x, \quad x \in S^1.$$

From now on we assume that

(1) \hspace{1cm} p(x) = 0 \quad \text{or} \quad p(x) = \infty \quad \text{for an} \ x \in S^1.

Lemma 4. Let $\{T^t, t \in \mathbb{R}\}$ be a quasi-continuous iteration group on S^1
satisfying condition (1). If there exists an $s \neq 0$ and an $x_0 \in S^1$ such
that $T^s(x_0) = x_0$, then $T^t(x_0) = x_0$ for every $t \in \mathbb{R}$.

Proof. From Remark 2, Lemmas 1, 2 and 3 it follows that either $C(x_0)$
is an arc or $C(x_0) = \{x_0\}$ or $C(x_0) = \{T^0(x_0)\}$. Clearly,

$$T^s(x_0) = T^{s+0}(x_0) = T^0(T^s(x_0)) = T^0(x_0),$$
since $T^s(x_0) = x_0$, so h_{x_0} is not a homeomorphism. Thus, by Lemma 3,
$C(x_0)$ is not an arc. Finally, $C(x_0) = \{x_0\}$. \(\diamondsuit\)

Put

(2) \hspace{1cm} A := \{x \in S^1 : \forall t \in \mathbb{R} \ T^t(x) = x\}.

By Lemma 4 we have

Remark 3. Let $\{T^t, t \in \mathbb{R}\}$ be a quasi-continuous iteration group on
S^1 and let condition (1) hold true. Then for every $t \in \mathbb{R} \setminus \{0\}$, $A_{T^t} = A$.
Moreover, $A \subset T^0[S^1]$.

We can now formulate

Theorem 3. Let $\{T^t, t \in \mathbb{R}\}$ be an iteration group on S^1 satisfying
(1) and let A be given by (2). Then $\{T^t, t \in \mathbb{R}\}$ is quasi-continuous if
and only if either $T^0[S^1] = A$ or there exists a family of open pairwise
disjoint arcs \(\{L_n : L_n \cap A = \emptyset, \quad n \in \mathcal{M} \} \), where \(\emptyset \neq \mathcal{M} \subset \mathbb{N} \), such that

\[
T^0[S^1] = \bigcup_{n \in \mathcal{M}} L_n \cup A
\]

and for every \(n \in \mathcal{M} \), \(\{T^t|_{L_n}, t \in \mathbb{R}\} \) is a continuous iteration group on \(L_n \) such that all \(T^t|_{L_n} : L_n \to L_n \) are bijections.

Proof. Suppose that \(\{T^t, t \in \mathbb{R}\} \) is a quasi-continuous iteration group. In view of Lemmas 1, 2, 3, Remark 2 and Cor. 1, condition (1) shows that \(C(x) \) is an open arc or a singleton for every \(x \in S^1 \). Assume that \(T^0[S^1] \neq A \) and fix \(x \in T^0[S^1] \setminus A \), \(t \in \mathbb{R} \). By Lemmas 1, 2, 3 and Prop. 1, \(C(x) \) is an arc with \(x \in C(x) \), and therefore \(h_x \) is a homeomorphism. Thus, for every \(y \in C(x) \) there exists an \(s \in \mathbb{R} \) such that \(s = h_x^{-1}(y) \). Moreover,

\[
T^t(y) = T^t(h_x(s)) = T^t(T^s(x)) = T^{t+s}(x) = h_x(t + s),
\]

and consequently \(T^t(y) = h_x(t + h_x^{-1}(y)) \). Hence we infer that \(T^t|_{C(x)} \) is continuous and one-to-one. Clearly, \(T^t[C(x)] = C(x) \). Consequently, putting

\[
\{L_n, \quad n \in \mathcal{M}\} := \{C(x), \quad x \in T^0[S^1] \setminus A\},
\]

we obtain, in view of Prop. 1(i), a family of open pairwise disjoint arcs such that for every \(n \in \mathcal{M}, A \cap L_n = \emptyset \) and (3) holds true.

Conversely, we show that \(h_x \) is continuous for every \(x \in S^1 \). Indeed, we see at once that this is true for \(x \in T^0[S^1] \). If \(x \in S^1 \setminus T^0[S^1] \) then we have \(h_x = h_y \) with \(y := T^0(x) \in T^0[S^1] \). ∎

Now, on the base of Th. 3 we give the general construction of quasi-continuous iteration groups on \(S^1 \) satisfying condition (1).

Theorem 4. The following construction gives the general form of quasi-continuous iteration groups on \(S^1 \) satisfying condition (1).

1° Let \(\{L_n, n \in \mathcal{M}\} \), where \(\mathcal{M} \subset \mathbb{N} \) (we admit \(\mathcal{M} = \emptyset \)) be a family of open pairwise disjoint arcs.

2° For every \(n \in \mathcal{M} \) let \(\{F^t_n, t \in \mathbb{R}\} \) be a continuous iteration group on \(L_n \) such that all functions \(F^t_n \) are one-to-one and \(F^0_n(x) = x \) for \(x \in L_n \). (Such groups are given by the formula:

\[
F^t_n(x) = h(t + h^{-1}(x)), \quad x \in L_n, \quad t \in \mathbb{R},
\]

where \(h : \mathbb{R} \to L_n \) is a homeomorphism (see [1], p. 248–9).)

3° Let \(A \) be an arbitrary (if \(\mathcal{M} = \emptyset \) then, moreover, non-empty) subset of \(S^1 \setminus \bigcup_{n \in \mathcal{M}} L_n \).
4° Put

\[J := \bigcup_{n \in \mathcal{M}} L_n \cup A \]

and let \(a \) be an arbitrary function defined in \(S^1 \) such that \(a[S^1] = J \) and \(a(x) = x \) for \(x \in J \).

5° Define

\[T^t(x) := \begin{cases}
 a(x) & \text{for } x \in a^{-1}[A], \quad t \in \mathbb{R}, \\
 F^t_n(a(x)) & \text{for } x \in a^{-1}[L_n], \quad t \in \mathbb{R}, \quad n \in \mathcal{M}.
\end{cases} \]

Proof. It is easy to check that the family of functions \(T^t \) defined by (4) is a quasi-continuous iteration group on \(S^1 \) for which (1) holds.

Conversely, we will show that every quasi-continuous iteration group satisfying (1) can be obtained in the above manner. Assume that \(\{T^t, t \in \mathbb{R}\} \) is such a group and define \(A \) by (2) and \(a := T^0 \). From Th. 3 it follows that either \(A = T^0[S^1] \neq \emptyset \) or there are a non-empty set \(\mathcal{M} \subset \mathbb{N} \) and a family of open pairwise disjoint arcs \(\{L_n, n \in \mathcal{M}\} \) such that (3) holds true and \(A \subset S^1 \setminus \bigcup_{n \in \mathcal{M}} L_n \). If \(T^0[S^1] = A \), then \(T^t = T^0 \) for \(t \in \mathbb{R} \). Therefore (4) holds true with \(\mathcal{M} := \emptyset \). In the later case, we put \(F^t_n := T^t|_{L_n} \) for \(t \in \mathbb{R}, n \in \mathcal{M} \). Prop. 1(iii) and Th. 3 complete the proof. \(\Diamond \)

We can now consider the problem of the embeddability of a given function into quasi-continuous iteration group. Recall that a function \(T : L \to L \), for \(L \subset S^1 \), is said to be embeddable into a quasi-continuous (continuous) iteration group if there exists a quasi-continuous (continuous) iteration group, defined on \(L \), \(\{T^t, t \in \mathbb{R}\} \) with \(T^1 = T \).

Theorem 5. A function \(T : S^1 \to S^1 \) is embeddable into a quasi-continuous iteration group if and only if one of the following occurs

(i) \(T \) is an orientation – preserving homeomorphism and either \(T^m = \text{Id}_{S^1} \) for a positive integer \(m \) or the set \(\{T^n(x), n \in \mathbb{N}\} \) is dense in \(S^1 \) for every \(x \in S^1 \),

(ii) there exists a non-empty set \(\mathcal{M} \subset \mathbb{N} \) and a family of open pairwise disjoint arcs \(\{L_n : L_n \cap A_T = \emptyset, n \in \mathcal{M}\} \) such that

\[T[S^1] = \bigcup_{n \in \mathcal{M}} L_n \cup A_T \]

and for every \(n \in \mathcal{M}, T|_{L_n} : L_n \to L_n \) is a continuous bijection,

(iii) \(T[S^1] = A_T \).

Proof. Let \(\{T^t, t \in \mathbb{R}\} \) be a quasi-continuous iteration group such that \(T^1 = T \). First, suppose that \(0 < p(x_0) < \infty \) for an \(x_0 \in S^1 \). By Th. 2
we infer that the iteration group \(\{ T^t, t \in \mathbb{R} \} \) is continuous and \(T \) is either without fixed points or the identity mapping. Th. 3 in [5] now shows that (i) holds true. Next, assume that (1) is satisfied. By Prop. 1(ii), Remark 3 and Th. 3 we see that (ii) or (iii) holds true.

Conversely, assume first (i). Then, by Th. 3 in [5], \(T \) is embeddable into a continuous iteration group on \(S^1 \). Assume now that (ii) or (iii) occurs. In the first case fix, moreover, an \(n \in \mathcal{M} \) and note that since \(T|_{L_n} \) is a continuous bijection, \(T|_{L_n} \) is embeddable into a continuous iteration group \(\{ F^t_n, t \in \mathbb{R} \} \) such that all functions \(F^t_n \) are one-to-one (see [1], p. 248–9, and [4]). In the later case, we define \(\mathcal{M} := \emptyset \). Put \(J := T[S^1] \) and \(A := A_T \). Clearly, \(T|_J : J \rightarrow J \) is a bijection and, if (iii) occurs, \(A \) is non-empty. Defining \(a := (T|_J)^{-1} \circ T \) we see that \(a \) maps \(S^1 \) onto \(J \) and \(a(x) = x \) for \(x \in J \). By Th. 4 the family \(\{ T^t, t \in \mathbb{R} \} \) of functions \(T^t \) given by (4) is a quasi-continuous iteration group such that, as one can check, \(T^1 = T \). \(\diamond \)

Acknowledgements. The author wishes to express his thanks to Professor Marek Cezary Zdun for suggesting the problem and for his helpful comments, to the referee for valuable remarks.

References