Mathematica Pannonica
14/2 (2003), 273–281

ON CERTAIN GENERALIZED CIRCULANT MATRICES

Ernesto Dedò*

Dipartimento di Matematica del Politecnico, Piazza Leonardo da Vinci 32, 20133 Milano, Italia

Alberto Marini

IMATI, via Bassini 15, 20133 Milano, Italia

Norma Zagaglia Salvi*

Dipartimento di Matematica del Politecnico, Piazza Leonardo da Vinci 32, 20133 Milano, Italia

Received: July 2003

MSC 2000: 15 A 57; 15 A 18, 15 A 15

Keywords: h-circulant and h-generalized circulant matrices, permanents, eigenvalues, direct sum.

Abstract: Let h, n be positive integers, where $1 \leq h < n$, $k = (n, h)$ and $n = kn'$. We call h-generalized circulant a matrix A of order n which can be partitioned into h-circulant submatrices of type $n' \times n$. We determine a characterization of h-generalized circulant matrices and, using this result, we prove that $A = \sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P_n^{jh}$ is permutation similar to the direct sum of k matrices coinciding with $\sum_{j=0}^{\lfloor \frac{n}{n'} \rfloor} a_j P_{n'}^j$, where P_n denote the $(0,1)$-circulant matrix of order n whose first row is null but the element in position $(1,2)$. This implies new results on the values of the permanent and also on the determination of the eigenvalues of $(0,1)$-circulant matrices. A partial proof of a conjecture on the maximum value of permanents is achieved.

E-mail addresses: ernded@mate.polimi.it, alberto@mi.imati.cnr.it, norzag@mate.polimi.it

*Work partially supported by M.I.U.R. (Ministero dell'Istruzione, dell'Università e della Ricerca).
1. Introduction

Recall that a matrix A of type $m \times n$ ($m \leq n$) is said h-circulant when each row other than the first one is obtained from the preceding row by shifting the elements cyclically h columns to the right. In the case of $h = 1$ A is said circulant.

Let P_n denote the $(0, 1)$-circulant matrix of type $n \times n$ with first row $(010\ldots0)$. If there is not possibility of ambiguity we often drop the subscript n and simply write P_n as P.

If $(a_0, a_1, \ldots, a_{n-1})$ is the first row of a circulant matrix A of order n, then $A = \sum_{i=0}^{n-1} a_i P^i$.

It is easy to see that a matrix A of type $m \times n$ is h-circulant if and only if it satisfies the relation $A P_n^h = P_m A$.

For $i = 1, 2, \ldots, k$, let A_i be a square matrix of order n_i. The block diagonal square matrix

$$A = \begin{bmatrix} A_1 & 0 & \ldots & 0 \\ 0 & A_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & A_k \end{bmatrix}$$

of order $n_1 + n_2 + \ldots n_k$ is called the direct sum of the matrices A_1, \ldots, A_k. It is denoted as $A = \text{diag} \{ A_1, A_2, \ldots, A_k \}$.

Recall that the permanent of a $n \times n$ matrix $A = [a_{i,j}]$, denoted by $\text{per} A$, is defined as

$$\text{per} A = \sum_{\sigma \in S_n} \prod_{i=1}^{n} a_{i,\sigma(i)}$$

where the sum extends over all permutations σ of the symmetric group of all permutations of the first n integers.

For every $1 \leq r \leq n$, we denote by (r) and $[r]$ the r-row and the r-column respectively of a matrix of order n.

Definition 1. Let h, n be positive integers, where $1 \leq h < n$, $k = (n, h)$ and $n = kn'$. A matrix A of order n is said h-generalized circulant when it is partitioned into k submatrices of type $n' \times n'$, which are h-circulant.

In other words a matrix A of order n is h-generalized circulant when it can be partitioned in the form
On certain generalized circulant matrices

\[
A = \begin{bmatrix}
A_1 \\
A_2 \\
\vdots \\
A_k
\end{bmatrix}
\]

where \(A_i, 1 \leq i \leq k\) are \(h\)-circulant \(n' \times n\)-submatrices, i.e. they satisfy \(A_j P^n_h = P^n A_j\).

The main result of this paper is proving a characterization of the \(h\)-generalized circulant matrices (Th. 1). By using this result we are able to prove that the matrix \(A = \sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P^n\) is permutation similar to the matrix \(B = \text{diag} \left\{ \sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P^n, \ldots, \sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P_{n'} \right\}\), the direct sum of \(k\) matrices coinciding with \(\sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} a_j P^n\). As these matrices have the same permanent we obtain new values for the permanent of \((0,1)\) circulant matrices. In particular we obtain \(\text{per} \left(\sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} P^n \right) = \left(\text{per} \left(\sum_{j=0}^{\lfloor \frac{n}{h} \rfloor} P^n \right) \right)^k\); in the particular case of three ones for row

\[
\text{per} (I + P^n + P^{2h}) = \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n'} \left(\frac{1 - \sqrt{5}}{2} \right)^{n'} + 2 \right]^k.
\]

A partial proof of a conjecture by Codenotti, Crespi and Resta [1] on the maximum value for permanents of very sparse matrices is achieved; the computation of the permanent of this class of matrices was extensively studied also in [2], [3] and [4]. Results are also obtained in relation to the characteristic polynomials of \(A\) and \(B\).

2. Characterization

Let us consider a matrix \(A\) of order \(n\); we denote by \(A_j, 1 \leq j \leq k\), the submatrix of \(A\) of type \(n' \times n\) formed by the rows of \(A\)

\((1 + (j - 1)n'), (2 + (j - 1)n'), \ldots, (jn')\).

Theorem 1. A matrix \(A\) of order \(n\) is \(h\)-generalized circulant, where \((n, h) = k\) and \(n = kn'\), if and only if it satisfies the relation
(2) \[AP^h = P' A \]

where \(P' \) is direct sum of \(k \) matrices coinciding with \(P_{n'} \), i.e. \(P' = \text{diag}\{ P_{n'}, \ldots, P_{n'} \} \).

Proof. Let us assume that a matrix \(A = [a_{i,j}] \) of order \(n \), where \(1 \leq i, j \leq n \) satisfies (2). The matrix \(AP^h \) is obtained by shifting cyclically the columns of \(A \) of \(h \) positions to the right. Taking into account the partitioned form of \(A \) we have

\[
AP^h = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_k \end{bmatrix} P^h = \begin{bmatrix} A_1 P^h \\ A_2 P^h \\ \vdots \\ A_k P^h \end{bmatrix}.
\]

Hence \((AP^h)_j = A_j P^h\) for \(1 \leq j \leq k \).

Now consider the product \(P'A \). From the definition of \(P' \) and the partitioned form of \(A \) we have

\[
\begin{bmatrix} P_{n'} \\ P_{n'} \\ \vdots \\ P_{n'} \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_k \end{bmatrix} = \begin{bmatrix} P_{n'} A_1 \\ P_{n'} A_2 \\ \vdots \\ P_{n'} A_k \end{bmatrix},
\]

which shows that \((P'A)_j = P_{n'} A_j\) for \(1 \leq j \leq k \).

The equality (2) implies the equality of the submatrices \((AP^h)_j\) and \((P'A)_j\), where \(1 \leq j \leq k \). But we have seen that \((AP^h)_j = A_j P^h\). Hence from the assumption (2) it follows \(A_j P^h = P_{n'} A_j \) \((1 \leq j \leq k) \), i.e. the submatrices \(A_j \) \((1 \leq j \leq k) \) are \(h \)-circulant \(n' \times n \) matrices and therefore \(A \) is \(h \)-generalized circulant.

Conversely, assume that every \(A_j, 1 \leq j \leq k, \) is \(h \)-circulant, i.e. \(P_{n'} A_j = A_j P^h \) \((1 \leq j \leq k) \). Then \((P'A)_j = P_{n'} A_j \) and \((AP^h)_j = A_j P^h\) for \(1 \leq j \leq k \).

Denote \(Q = [q_{ij}] \) the permutation matrix of order \(n \), that rearranges the columns of an arbitrary \(m \times n \) matrix \(M \) by postmultiplication \(MQ \) according to the permutation \(\alpha \). Using Kronecker symbols \(\delta \) the entries \(q_{ij} \) can be written in the form

\[
q_{ij} = \delta_{\alpha(i),j} = \begin{cases} 1 & \text{if } j = \alpha(i) \\ 0 & \text{otherwise.} \end{cases}
\]

By the assumption that \(A_j \) is \(h \)-circulant it follows that the rows of \((P'A)_j\) and \((AP^h)_j\) coincide. Then \((P'A)_j = (AP^h)_j\) and \(A \) satisfies (2). \(\diamond \)
When $k = 1$ a matrix A which satisfies (2) turns out to be a h-circulant matrix; thus this definition turns out to be a generalization of the notion of h-circulant matrix.

Now we will consider the particular case of h-generalized circulant permutation matrices.

Proposition 1. Let n and h be positive integers, where $1 \leq h \leq n$, $k = (n, h)$ and $n = kn'$. The function $\alpha : i \mapsto 1 + (i - 1)h + t$, where $1 + tn' \leq i \leq (t + 1)n'$, $0 \leq t \leq k - 1$ and the integers are taken mod n is a permutation, whose representing matrix satisfies (2).

Proof. In order to prove that α is a permutation it is sufficient to prove it is injective. Let $i, j \in [1, n]$, $i < j$ and $h = kh'$, where $(h', n') = 1$. Assume that $\alpha(i) = \alpha(j)$, that is

$$1 + (i - 1)h + t = 1 + (j - 1)h + t'$$

where $0 \leq t, t' \leq k - 1$. Let us distinguish the cases of $t = t'$ or $t \neq t'$. The condition of $t = t'$ implies the relation $(j - i)h \equiv 0 \pmod{n}$, which is impossible because $j - i < n'$. In the case of t and t' distinct, without loss of generality we may assume $t' > t$ and represent $t' = t + r$, where $0 < r < k$. Thus we obtain $(i - j)h \equiv r \pmod{n}$. It implies that for a suitable integer m we obtain $k((i - j)h' - mn') = r$, which is impossible by the assumption on r. Then α is a permutation. Denote by Q the matrix which represents such a permutation. Then by the construction we have that the submatrices Q_i formed by the rows $(1 + (t - 1)n'), \ldots, (tn')$, where $1 \leq t \leq k$ are h-circulant. Then Q is h-generalized circulant.

Also the permutation α is said h-generalized circulant.

Corollary 1. Let α an h-generalized circulant permutation; α is uniquely determined when

$$\alpha(1), \alpha(1 + n'), \ldots, \alpha(1 + (k - 1)n')$$

are assigned.

Proof. When we assign $\alpha(1)$ then the first row and therefore the consecutive $k - 1$ rows of the matrix which represents α are assigned. This means that in the decomposition (1) the submatrix A_1 is given. Similar considerations hold for the remaining submatrices.

Proposition 2. The number of h-generalized circulant matrices of order n, where $k = (n, h)$ and $n = kn'$, is

$$n(n - n')(n - 2n') \ldots n'$$
Proof. From the above considerations, α is uniquely determined when we assign $\alpha(1 + jn')$, for all $0 \leq j \leq k - 1$. We see that $\alpha(1)$ may assume n values. When $\alpha(1)$ is assigned, also the following $n' - 1$ rows are assigned; then $\alpha(n' + 1)$ may assume $n - n'$ values. By continuing in this way the result follows.

We call regular an h-generalized circulant permutation matrix $Q = [q_{i,j}]$ of order $n = kn'$, when

$$q_{1,1} = q_{1+n',2} = \cdots = q_{1+(k-1)n',k} = 1.$$

In other words a h-generalized matrix A, representing the permutation α, is regular when α satisfies the conditions

$$\alpha(1) = 1, \alpha(n' + 1) = 2, \ldots, \alpha((k - 1)n' + 1) = k.$$

When we need to remember the parameter h in relation to an h-generalized circulant permutation matrix Q, we write $Q(h)$.

Theorem 2. Let $A = a_0 I + a_1 P^h + \ldots + a_t P^{th}$ be a matrix of order n, where $1 < h < n$, $(n, h) = k$, $n = kn'$, $t = \lfloor \frac{n}{k} \rfloor$ and $a_i, 1 \leq i \leq n' - 1$, real numbers; moreover let Q be the h-generalized regular permutation matrix of order n. Then the matrix $B = QAQ^T$ is direct sum of k matrices coinciding with $\sum_{i=0}^{t} a_i P_{n'}^i$.

Proof. By (2) $QP^hQ^T = P'$; then $B = QAQ^T = a_0 I + a_1 P' + \ldots + a_t (P')^t$.

An immediate consequence is that the circulant matrix $A = I + P^h + \ldots + P^{sh}$ where $s \leq \lfloor \frac{n}{k} \rfloor$, is permutation similar to the circulant matrix $B = I + P + \ldots + P^s$. Another consequence is the following

Corollary 2. Let $A = \sum_{j=0}^{r} P_{n}^{jh}$ be a square matrix of order n, where $1 < h < n$, $(n, h) = k$, $n = kn'$, $t = \lfloor \frac{n}{k} \rfloor$ and $1 \leq r \leq t$. Then we have

$$\text{per} \left(\sum_{j=0}^{t} P_{n}^{jh} \right) = \left(\text{per} \left(\sum_{j=0}^{t} P_{n'}^{j} \right) \right)^k.$$

Proof. As the permanent is invariant with respect to permutation of rows or columns, the result follows from Th. 1.

As example of regular 3-generalized permutation matrix we may consider the following matrix of order 9:
On certain generalized circulant matrices

\[
Q(3) = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

Then in relation to the matrix of order 9 \(A = I + P^3 + P^6 \), we obtain that

\[
Q(3)AQ(3)^T = \begin{bmatrix}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
\end{bmatrix}
\]

(3)

3. Very sparse matrices

In this section we consider the case of \((0, 1)\) circulant matrices with 3 ones in each row. First consider the matrix \(I + P^h + P^{2h} \), where \((n, h) = 1\) and \(P \) denotes the permutation matrix \(P_n \). By using a Minc’s formula for the permanent of \(I + P + P^2 \) [8] we have:

Corollary 3. Let \(P \) be of order \(n \), where \(1 < h < n \), \((n, h) = k\), \(n = kn' \); then

\[
\text{per} (I + P^h + P^{2h}) = \left[\left(\frac{1 + \sqrt{5}}{2}\right)^{n'} + \left(\frac{1 - \sqrt{5}}{2}\right)^{n'} + 2 \right]^k.
\]

Now, consider the matrix \(D = I + P^m + P^{2m} \) of order \(n = 3m \). From Th. 2 we have that \(A \) is permutation similar to the direct sum of \(m \) submatrices coinciding with \(J_3 \), the matrix of all ones of order 3, then \(\text{per} mA = (3!)^m \). It is known that in the class of \(vk \times vk \) \((0, 1)\)-matrices
with row sums and column sums equal to \(k \) the permanent function takes its maximum on the direct sum of \(k \times k \) matrices of 1's. Thus the matrix \(D \) satisfies partially the conjecture by Codenotti, Crespa and Resta [1].

Now consider the case of a matrix \(A = I + P^h + P^j \), where \((n, h) = 1 \) and \(j \neq 2h \) (mod \(n \)).

Proposition 3. Let \(h, n \) be positive integers, such that \(1 < h < n \), \((n, h) = 1 \) and \(Q \) is the regular \(h \)-generalized permutation matrix of order \(n \). Then \(QPQT = P^s \) where \(s \) is the unique solution, modulo \(n \), of the equation

\[
sh \equiv 1.
\]

Proof. Denote by \(\alpha, \pi \) and \(\beta \) the \(h \)-generalized regular circulant permutations represented by \(Q_h, P \) and \(Q_hPQT \), respectively. Then \(\beta(1) = \alpha^{-1}(\pi(\alpha(1))) = \alpha^{-1}(\pi(1)) = \alpha^{-1}(2) \). Denote by \(s \) the integer, \(1 < s \leq n \), such that \(1 + sh \equiv 2 \). Because \((n, h) = 1 \), it easy to see that the equation \(sh \equiv 1 \) has a unique solution. Thus, for every \(1 < i \leq n \), we have

\[
\beta(i) = \alpha^{-1}(\pi(\alpha(i))) = \alpha^{-1}(\pi(1 + (i - 1)h)) = \\
= \alpha^{-1}(2 + (i - 1)h) = \alpha^{-1}(1 + (s + i - 1)h) = s + i.
\]

This implies that \(\beta = \pi^s \). \(\Box \)

Proposition 4. Let \(A = I + P^h + P^j \) be a square matrix of order \(n \), where \(1 < h < j < n \), \(j \neq 2h \) (mod \(n \)), \((h, n) = 1 \) and \(Q \) is the regular \(h \)-generalized permutation matrix of order \(n \). Then \(QAQ^T = I + P + P^v \), where \(v \) is the unique solution of the equation \(vh \equiv j \) (mod \(n \)).

Proof. From Prop. 4 we have that \(Q_hP^jQ_h^T = (Q_hP_h^T)^j = P^{sj} \). Denoted \(v = sj \), from the equation \(sh = 1 \), we obtain \(vh = j \) (mod \(n \)). This implies \(Q_hA^T = I + P + P^v \). \(\Box \)

In the case when \((n, h) \neq 1 \), but \((n, j) = 1 \) or \((n, j - h) = 1 \), we have a similar situation by multiplying \(A \) by a suitable power of \(P \).

4. Eigenvalues

Recall that if \(A \) is a circulant matrix hose first row is \([a_0a_1 \ldots a_{n-1}]\), the polynomial \(p(\lambda) = \sum_{i=0}^{n} a_i \lambda^i \) is said the Hall polynomial of the matrix \(A \). If \(\omega = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} \), then the eigenvalues of \(A \) are \(1, p(\omega), p(\omega^2), \ldots, p(\omega^{n-1}) \).
Let \(p(\lambda) \) and \(q(\lambda) \) the Hall polynomials of the matrices \(A = I + P^h + \cdots + P^{rh} \) and \(B = I + P + \cdots + P^r \) respectively, where \(0 < h < n, k = (n, h), n = kn' \) and \(1 < r \leq \left[\frac{n}{k} \right] \). Moreover let \(r(\lambda) = 1 + \lambda + \cdots + \lambda^{n'-1} \) be the Hall polynomial of the matrix \(C = I + P_{n'} + \cdots + P_{n'}^r \), and \(\alpha = \cos \frac{2\pi}{n'} + i \sin \frac{2\pi}{n'} \). From Th. 2 it follows the following

Proposition 5. The sets of eigenvalues of \(A = I + P^h + \cdots + P^{rh} \) and \(C = I + P_{n'} + \cdots + P_{n'}^r \) coincide, when \(k = 1 \). In the case of \(k > 1 \), the set of eigenvalues of \(A \) is the union of \(k \) sets coinciding with \(\{1, r(\alpha), \ldots, r(\alpha^{n'-1})\} \).

A consequence is that, when \(k > 1 \), every eigenvalue of \(A \) has multiplicity at least \(k \).

References

