ON THE QUASI-CONFORMAL CURVATURE TENSOR OF A KENMOTSU MANIFOLD

Cihan Özgür

Department of Mathematics, Balıkesir University, 10145, Çağış, Balıkesir, Turkey

Uday Chand De

Department of Mathematics, University of Kalyani, Kalyani, Nadia, West Bengal, India

Received: March 2006

MSC 2000: 53 D 15; 53 B 20, 53 B 25

Keywords: Kenmotsu manifold, quasi-conformal curvature tensor.

Abstract: We consider quasi-conformally flat and quasi-conformally semisymmetric Kenmotsu manifolds. We show that the following three statements are equivalent: (a) M is quasi-conformally flat, (b) M is quasi-conformally semisymmetric and (c) M is locally isometric to the hyperbolic space $H^n(-1)$.

1. Introduction

In [3], B. Y. Chen and K. Yano defined the notion of an n-dimensional Riemannian manifold (M^n, g) of quasi-constant curvature as a conformally flat manifold with the curvature tensor R satisfying the condition

\[R(X, Y, Z, W) = (\alpha(X, W) - \alpha(Y, Z)) g(Y, Z) \]

E-mail addresses: cihan ozgur@yahoo.com, uc.de@yahoo.com
\[R(X, Y, Z, W) = p[g(Y, Z)g(X, W) - g(X, Z)g(Y, W)] + \\
+ q[g(X, W)T(Y)T(Z) - g(X, Z)T(Y)T(W) + \\
+ g(Y, Z)T(X)T(W) - g(Y, W)T(X)T(Z)] \]

where \(R(X, Y, Z, W) = g(\mathcal{R}(X, Y)Z, W) \), \(\mathcal{R} \) is the curvature tensor of \(M \), \(p, q \) are scalar functions and \(T \) is a non-zero 1-form defined by

\[g(X, U) = T(X), \]

where \(U \) is the unit vector field.

It can be easily seen that if the curvature tensor \(R \) is of the form (1.1), then the manifold is conformally flat. On the other hand, in [13], G. Vrânceanu defined the notion of almost constant curvature tensor by the same expression (1.1). Later in [8], A. L. Mocanu pointed out that the manifold introduced by Chen and Yano [3] and G. Vrânceanu [13] are the same. The notion of the quasi-conformal curvature tensor was defined by K. Yano and S. Sawaki (see [9]). According to them a quasi-conformal curvature tensor is defined by

\[\tilde{C}(X, Y)Z = aR(X, Y)Z + b[S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX - \\
- g(X, Z)QY] - \frac{r}{n-1} \left[a + 2b \right] [g(Y, Z)X - g(X, Z)Y], \]

where \(a \) and \(b \) are constants, \(S \) is the Ricci tensor, \(Q \) is the Ricci operator and \(r \) is the scalar curvature of the manifold \(M^n \).

A Riemannian manifold \((M^n, g) \) \((n > 3)\), is called quasi-conformally flat if the quasi-conformal curvature tensor \(\tilde{C} = 0 \). If \(a = 1 \) and \(b = \frac{1}{n-2} \), then the quasi-conformal curvature tensor is reduced to the conformal curvature tensor.

A Riemannian manifold is said to be semi-symmetric (see [12]) if

\[R(X, Y) \cdot R = 0, \]

where \(R \) is the Riemannian curvature tensor and \(R(X, Y) \) is considered as a derivation of the tensor algebra at each point of the manifold for tangent vector fields \(X, Y \). If a Riemannian manifold satisfies

\[R(X, Y) \cdot \tilde{C} = 0, \]

where \(\tilde{C} \) is the quasi-conformal curvature tensor, then the manifold is said to be quasi-conformally semi-symmetric manifold.
2. Kenmotsu manifolds

Let M be an almost contact metric manifold (see [1]) equipped with an almost contact metric structure (φ, ξ, η, g) consisting of a $(1, 1)$ tensor field φ, a vector field ξ, a 1-form η and a compatible Riemannian metric g satisfying

\[\varphi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \varphi\xi = 0, \quad \eta \circ \varphi = 0, \]

\[g(X,Y) = g(\varphi X, \varphi Y) + \eta(X)\eta(Y), \]

\[g(X, \varphi Y) = -g(\varphi X, Y), \quad g(X, \xi) = \eta(X) \]

for all $X, Y \in TM$. An almost contact metric manifold is called a Kenmotsu manifold if it satisfies (see [6])

\[(\nabla_X \varphi)Y = g(\varphi X, Y)\xi - \eta(Y)\varphi X, \quad X, Y \in TM, \]

where ∇ is Levi–Civita connection of the Riemannian metric. From the above equation it follows that

\[\nabla_X \xi = X - \eta(X)\xi, \]

\[(\nabla_X \eta)Y = g(X, Y) - \eta(X)\eta(Y). \]

Moreover, the curvature tensor R, the Ricci tensor S, and the Ricci operator Q satisfy (see [6])

\[R(X, Y)\xi = \eta(X)Y - \eta(Y)X, \]

\[S(X, \xi) = (1 - n)\eta(X), \]

\[Q\xi = (1 - n)\xi. \]

The equation (2.7) is equivalent to

\[R(\xi, X)Y = \eta(Y)X - g(X, Y)\xi, \]

which implies that

\[R(\xi, X)\xi = X - \eta(X)\xi. \]

From (2.10) we have

\[\eta(R(\xi, X)Y) = \eta(X)\eta(Y) - g(X, Y). \]

Kenmotsu manifolds have been studied various authors. For example see [2], [4], [5], [7], [11].
A plane section Π in $T_p M$ of an almost contact metric manifold M is called a φ-section if $\Pi \perp \xi$ and $\varphi(\Pi) = \Pi$. If the sectional curvature $K(\Pi)$ does not depend on the choice of the φ-section Π of $T_p M$, then M is of pointwise constant φ-sectional curvature. A Kenmotsu manifold of pointwise constant φ-sectional curvature is called a Kenmotsu space form.

A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of φ equals $-2d\eta \otimes \xi$) but not Sasakian. Moreover, it is also not compact since from the equation (2.5) we get $\text{div} \, \xi = n - 1$. In [6], K. Kenmotsu showed (1) that locally a Kenmotsu manifold is a warped product $I \times_f N$ of an interval I and a Kähler manifold N with warping function $f(t) = se^t$, where s is a nonzero constant; and (2) that a Kenmotsu manifold of constant φ-sectional curvature is a space of constant curvature -1, and so it is locally hyperbolic space. Examples of Kenmotsu manifolds of strictly pointwise constant φ-sectional curvature are not known so far and, according to D. Blair, one doubts that there are any, since the warped product structure of a Kenmotsu manifold involves a Kähler structure. Thus, one has to be careful for further study of Kenmotsu space forms with strictly pointwise constant φ-sectional curvature.

An almost contact metric manifold is said to be an η-Einstein if the Ricci tensor S satisfies the condition

$$S(X, Y) = a g(X, Y) + b \eta(X) \eta(Y)$$

where a, b are certain scalars. If $b = 0$ then the manifold M is an Einstein manifold.

3. Quasi-conformally flat Kenmotsu manifolds

Assume that M^n is a quasi-conformally flat Kenmotsu manifold. Then from (1.1) we have

$$R(X, Y, Z, W) = \frac{b}{a} \left[S(X, Z) g(Y, W) - S(Y, Z) g(X, W) + S(Y, W) g(X, Z) - S(X, W) g(Y, Z) \right] - \frac{r}{na} \left[\frac{a}{n-1} + 2b \right] [g(Y, Z) g(X, W) - g(X, Z) g(Y, W)]$$

Putting $Z = \xi$ in (3.1) and using (2.3), (2.7) and (2.8) we obtain
\[g(Y, W)\eta(X) - g(X, W)\eta(Y) = \frac{b}{a}[(1 - n)g(Y, W)\eta(X) - \]
\[- (1 - n)g(X, W)\eta(Y) + S(Y, W)\eta(X) - S(X, W)\eta(Y)] + \]
\[\frac{r}{na} \left[\frac{a}{n - 1} + 2b \right] [g(X, W)\eta(Y) - g(Y, W)\eta(X)]. \]

Now putting \(Y = \xi \) in (3.2) and using (2.3), (2.7) and (2.8) it follows that

\[\frac{b}{a} S(X, W) = Ag(X, W) + B\eta(X)\eta(W), \]

where

\[A = \left[1 - \frac{b}{a}(1 - n) + \frac{r}{na} \left(\frac{a}{n - 1} + 2b \right) \right] \]

and

\[B = \left[-1 + 2(1 - n) \frac{b}{a} + \frac{r}{na} \left(\frac{a}{n - 1} + 2b \right) \right]. \]

Hence \(M^n \) is an \(\eta \)-Einstein manifold. By a contraction of the equation (3.2) we have

\[r = nA + B. \]

In view of (3.4) and (3.5) we get

\[\frac{b}{a} (2 - n) - 1 \left[\frac{1}{n(n - 1)} r + 1 \right] = 0. \]

Hence either

\[b = \frac{a}{2 - n} \]

or

\[r = n(1 - n). \]

If \(b = \frac{a}{2 - n} \) then putting (3.8) into (3.7) we get

\[\tilde{\mathcal{C}}(X, Y)Z = aC(X, Y)Z, \]

where \(C(X, Y)Z \) denotes the Weyl conformal curvature tensor. So the quasi conformally flatness and conformally flatness are equivalent in this case. But from [5] we know that a Kenmotsu manifold \(M^n \) is conformally flat if and only if it is locally isometric to the hyperbolic space \(H^n(-1) \). So in this case \(M^n \) is is locally isometric to the hyperbolic space \(H^n(-1) \).
If \(r = n(1 - n) \) then putting (3.9) into (3.4) and (3.5) the equation (3.3) turns into the form

\[
S(X, W) = (1 - n)g(X, W).
\]

This implies that \(M^n \) is an Einstein manifold. So putting (3.11) into (3.1) we obtain

\[
R(X, Y, Z, W) = g(X, Z)g(Y, W) - g(Y, Z)g(X, W).
\]

Then \(M^n \) is of constant curvature \(-1\) and hence it is locally isometric to the hyperbolic space \(H^n(-1) \). If \(M^n \) is locally isometric to the hyperbolic space \(H^n(-1) \) then it is easy to see that \(M^n \) is quasi-conformally flat. This leads to the following theorem:

Theorem 3.1. Let \((M^n, g) \) \((n > 3)\) be a Kenmotsu manifold. Then \(M^n \) is quasi-conformally flat if and only if \(M^n \) is locally isometric to the hyperbolic space \(H^n(-1) \).

4. Quasi conformally semi-symmetric Kenmotsu manifolds

Let us consider a quasi conformally semi-symmetric Kenmotsu manifold \((M^n, g), (n > 3)\). Then the condition

\[
R(X, Y) \cdot \tilde{C} = 0
\]

holds on \((M^n, g)\) for every vector fields \(X, Y\). Hence we have

\[
0 = (R(X, Y) \cdot \tilde{C})(U, V, W) = R(X, Y)\tilde{C}(U, V)W - \tilde{C}(R(X, Y)U, V)W - \tilde{C}(U, R(X, Y)V)W - \tilde{C}(U, V)R(X, Y)W.
\]

So for \(X = \xi\) we get

\[
0 = R(\xi, Y)\tilde{C}(U, V)W - \tilde{C}(R(\xi, Y)U, V)W - \tilde{C}(U, R(\xi, Y)V)W - \tilde{C}(U, V)R(\xi, Y)W.
\]

In view of (2.10) the equation (4.1) can be written as

\[
0 = \eta(\tilde{C}(U, V)W)Y - \tilde{C}(U, V, W, Y)\xi - \eta(U)\tilde{C}(Y, V)W + g(Y, U)\tilde{C}(\xi, V)W - \eta(V)\tilde{C}(U, Y)W + g(Y, V)\tilde{C}(U, \xi)W - \eta(W)\tilde{C}(U, V)Y + g(Y, W)\tilde{C}(U, V)\xi,
\]

where \(\tilde{C}(U, V, W, Y) = g(\tilde{C}(U, V)W, Y)\). Taking the inner product of
(4.2) with \(\xi \) we have
\[
0 = \eta(\tilde{C}(U, V) W) \eta(Y) - \tilde{C}(U, V, W, Y) - \eta(U) \eta(\tilde{C}(Y, V) W) + \\
+ g(Y, U) \eta(\tilde{C}(\xi, V) W) - \eta(V) \eta(\tilde{C}(U, Y) W) + \\
+ g(Y, V) \eta(\tilde{C}(U, \xi) W) - \eta(W) \eta(\tilde{C}(U, V) Y).
\]
Putting \(Y = U \) the equation (4.3) turns into the form
\[
0 = - \tilde{C}(U, V, W, U) + g(U, U) \eta(\tilde{C}(\xi, V) W) + \\
+ g(U, V) \eta(\tilde{C}(U, \xi) W) - \eta(W) \eta(\tilde{C}(U, V) U).
\]
Let \(\{e_i\}, 1 \leq i \leq n, \) be an orthonormal basis of the tangent space at any point. Then in view of the equations (1.3), (2.7), (2.8), (2.10) and (2.12) the sum for \(U = e_i, 1 \leq i \leq n, \) of the relation (4.4) gives us
\[
S(V, W) = \left[\frac{-br - b(n^2 - 1) + a(1 - n)}{a - b} \right] g(V, W) + \\
+ \left[\frac{b[n(n - 1) + r]}{a - b} \right] \eta(V) \eta(W).
\]
So contracting the last equation we find the scalar curvature \(r \) of \(M^n \) as
\[
r = n(1 - n).
\]
Hence putting (4.6) into (4.5) we obtain
\[
(4.7) \quad S(V, W) = (1 - n)g(V, W).
\]
Then \(M^n \) is an Einstein manifold. So in view of (4.6), (4.7) and (1.3) the equation (4.2) is reduced to the form
\[
(4.8) \quad R(U, V, W, Y) = \left[\frac{2nb - a}{a} \right] (g(U, V) g(Y, W) - g(U, W) g(V, Y)).
\]
Hence by a suitable contraction of the last equation we find
\[
(4.9) \quad S(V, W) = \left[\frac{2nb - a}{a} \right] (n - 1)g(V, W).
\]
Comparing the right-hand sides of the equations (4.7) and (4.9) we obtain \(\frac{2nb - a}{a} = -1 \), which gives us \(b = 0 \). So the equation (4.8) turns into the form \(R(U, V, W, Y) = g(U, W) g(V, Y) - g(V, W) g(U, Y) \). Then \(M^n \) is locally isometric to hyperbolic space \(H^n(-1) \). Hence in view of Th. 3.1 we get that \(M^n \) is quasi-conformally flat. Then it is trivially quasi-conformally semisymmetric. So we have the following result:
Theorem 4.1. Let $(M^n, g) \ (n > 3)$ be a Kenmotsu manifold. Then M^n is quasi conformally semisymmetric if and only if M^n is locally isometric to the hyperbolic space $H^n(-1)$.

In view of Th. 3.1 and Th. 4.1 we have the following corollary:

Corollary 4.2. A Kenmotsu manifold $(M^n, g) \ (n > 3)$ is quasi conformally flat if and only if M^n is quasi conformally semisymmetric.

References