Quantum Stochastic Dynamics I: Spin Systems on a Lattice

Adam W. Majewski
Institute of Theoretical Physics and Astrophysics
Gdansk University
Gdansk, Poland

Boguslaw Zegarlinski
Mathematics Department
Imperial College
London, UK

Abstract:
In the context of non-commutative L_p spaces we discuss the conditions for existence and ergodicity of translation invariant stochastic spin flip and diffusion dynamics for quantum spin systems with finite range interactions on a lattice.

Key words: Non-commutative L_p spaces, stochastic spin flip and diffusion dynamics, quantum spins, systems on a lattice, finite range interactions.
1. Introduction

The analysis in the interpolating family of L_p spaces associated to a probability measure plays an essential role in the study of the classical Markov semigroups. In general it is important for their construction as well as for the investigation of the ergodicity properties. It is especially useful if the underlying configuration space is infinite dimensional. In this paper we introduce some basic ideas concerning the application of interpolating L_p spaces to study Markov semigroups in the noncommutative context of quantum spin systems on a lattice. In Section 2 we show that using the idea of thermodynamic limit, it is possible to give a very natural and very explicit construction of an interpolating family of spaces L_p, $p \in [1, \infty)$, associated to a quantum Gibbs state on the algebra of quantum spins on a lattice. In the noncommutative setting such family is no longer unique. In Section 3 we show that in this framework one can define in a natural way a Markov generator of quantum spin flip stochastic dynamics which satisfies detailed balance condition in a judiciously chosen L_2 space associated to a Gibbs states corresponding to a given interaction at some given inverse temperature $\beta \in (0, \infty)$. As a consequence of that, such stochastic dynamics leaves this Gibbs state invariant. In that section we restrict ourselves to a finite volume theory to make the ideas and constructions as explicit as possible. The infinite volume case is considered in Section 4 where we provide an abstract sufficient condition for the existence of an infinite volume translation invariant stochastic dynamics. Under our conditions the stochastic dynamics can be constructed as the thermodynamic limit of the corresponding finite volume stochastic dynamics with an appropriate control of the convergence (called an approximation property). They are also sufficient for the infinite volume Markov semigroup to possess a Feller property in the sense of mapping the inductive limit of local algebras into itself. We also show that under appropriate finite volume condition (similar to the classical one [AH]) we have a strong exponential decay to equilibrium (proven along the lines of [SZ]).

Section 5 is devoted to a complete description of a construction of an infinite volume translation invariant stochastic dynamics of the diffusion type with generator built of elementary completely positive generators introduced in [QSV].

The study of Markov semigroup in noncommutative setting is relatively more complicated than in classical case and the progress in this domain is much slower. We would like to mention few recent works in this subject. In particular the works [Ma2], [FNW], [N], where the completely positive hamiltonian semigroup in ground state representation has been considered. A first (very special) example of translation invariant stochastic dynamics satisfying a detailed balance condition has been constructed in [GM], where the authors used a clever representation associated to a classical Gibbs measure at a finite temperature. One should also mention more recent interesting construction of [Mal2] where some translation invariant dynamics has been constructed, although in general without characterizing the set of corresponding invariant states.

An interesting dual approach involving a construction of quantum analog of a Markov process has been also developed recently with a growing number of works. The interested reader can find a more detailed references for example in the recent interesting work [BGW].

2. Non-commutative L_p Spaces Associated to a Gibbs State.

Let \mathbb{Z}^d be a d-dimensional integer lattice and let \mathcal{F} denote the family of all its finite subsets. By \mathcal{F}_0 we will denote an increasing sequence of finite volumes invading all the lattice \mathbb{Z}^d. Given a sequence $\{F_\Lambda\}_{\Lambda \in \mathcal{F}_0}$, we will denote its limit as $\Lambda \to \mathbb{Z}^d$ through the sequence \mathcal{F}_0 by $\lim_{\mathcal{F}_0} F_\Lambda$. Let \mathcal{A} be a C*-algebra with norm $\| \cdot \|$ defined as the inductive limit over a finite dimensional complex matrix algebra \mathbb{M}. Later it will be natural to view \mathcal{A} as a noncommutative analog of the space of bounded continuous functions. For a set $X \in \mathcal{F}$, let \mathcal{A}_X denote a subalgebra of operators localized in the set X, i.e. the subalgebra in \mathcal{A} isomorphic to \mathbb{M}^X. For an arbitrary subset $\Lambda \subset \mathbb{Z}^d$ we define \mathcal{A}_Λ to be the smallest (closed) subalgebra of \mathcal{A} containing $\bigcup \{\mathcal{A}_X : X \in \mathcal{F}, X \subset \Lambda\}$. An operator $f \in \mathcal{A}$ will be called local if there is some $Y \in \mathcal{F}$ such that $f \in \mathcal{A}_Y$. By \mathcal{A}_0 we denote the subset of \mathcal{A} consisting of all local operators. We will use notation $\mathcal{A}_{0}^{\dagger}$ and \mathcal{A}^{+}, respectively, for the corresponding subsets of nonnegative elements.
By Tr_X, $X \in \mathcal{F}$, we denote a normalised partial trace on \mathcal{A}, i.e. the unique completely positive map

$$
\text{Tr}_X : \mathcal{A} \longrightarrow \mathcal{A}_X
$$

which satisfies the following conditions

(i) \hspace{1cm} \forall f \in \mathcal{A}, g, h \in \mathcal{A}_X \hspace{1cm} \text{Tr}_X (gfh) = g(\text{Tr}_X f)h \hspace{1cm} (2.2)

(ii) \hspace{1cm} \text{Tr}_X 1 = 1 \hspace{1cm} (2.3)

(iii) \hspace{1cm} \forall f, g \in \mathcal{A} \hspace{1cm} \text{Tr}_X fg = \text{Tr}_X gf \hspace{1cm} (2.4)

From (i) and (ii) the following property follows

$$
\text{Tr}_X (\text{Tr}_X f) = \text{Tr}_X f
$$

(2.5)

Let us recall that a map satisfying properties (i) and (ii) is called a conditional expectation. Let $\text{Tr} \equiv \lim_{\mathcal{F}_0} \text{Tr}_A$ be the normalized trace on \mathcal{A}. We have

$$
\text{Tr} (\text{Tr}_X (f^*) g) = \text{Tr} (f^* \text{Tr}_X (g))
$$

(2.6)

(A detailed account of matricial algebras can be found in [KR].)

Let $\Phi \equiv \{\Phi_X \in \mathcal{A}_X \}_{X \in \mathcal{F}}$ be a (Gibbsian) potential, i.e. a family of selfadjoint operators such that

$$
||\Phi||_1 \equiv \sup_{i \in \mathbb{Z}^d} \sum_{X \in \mathbb{Z}^d} ||\Phi_X|| < \infty
$$

(2.7)

A potential $\Phi \equiv \{\Phi_X \}_{X \in \mathcal{F}}$ is of finite range $R \geq 0$, iff $\Phi_X = 0$ for all $X \in \mathcal{F}$, diam$(X) > R$. We define a corresponding Hamiltonian H_A and the interaction energy U_A in $\Lambda \in \mathcal{F}$, by setting

$$
H_A \equiv H_A(\Phi) \equiv \sum_{X \subseteq \Lambda} \Phi_X
$$

(2.8)

and

$$
U_A \equiv U_A(\Phi) \equiv \sum_{X \cap \Lambda \neq \emptyset} \Phi_X,
$$

(2.9)

respectively. Let ρ_Λ be a density matrix given by

$$
\rho_\Lambda \equiv e^{-\beta H_A} \frac{\text{Tr} e^{-\beta H_A}}{\text{Tr} e^{-\beta H_A}}
$$

(2.10)

with $\beta \in (0, \infty)$. We define a finite volume Gibbs state ω_Λ as follows

$$
\omega_\Lambda(f) \equiv \text{Tr}(\rho_\Lambda f)
$$

(2.11)

It is known, see e.g. [BR], that for sufficiently small $\beta \in (0, \infty)$ the following limit state on \mathcal{A} exists and is faithful

$$
\omega \equiv \lim_{\mathcal{F}_0} \omega_\Lambda
$$

(2.12)

Let

$$
\alpha_\Lambda^f (\epsilon) \equiv e^{+iH_A} f e^{-iH_A}
$$

(2.13)

3
denote the finite volume automorphism group associated to potential Φ. One has the following KMS condition for the finite volume state ω_Λ

$$\omega_\Lambda(f^*g) = \omega_\Lambda(\alpha_{-i\beta}(g)f^*)$$

(2.14)

Suppose the potential $\Phi \equiv \{\Phi_X\}_{X \in \mathcal{F}}$ satisfies also

$$\|\Phi\|_{\text{exp},\varepsilon} \equiv \sup_{\xi \in \mathbb{Z}^d} \sum_{X \in \mathcal{F}} e^{t|\xi|}\|\Phi_X\| < \infty$$

(2.15)

for some $\varepsilon > 0$. Then the following limit exists, [BR],

$$\alpha_t(f) \equiv \lim_{n \to \infty} \alpha^n_t(f)$$

(2.16)

for every $f \in \mathcal{A}_0$ and defines the automorphisms group associated to the infinite volume state ω. In fact every operator $f \in \mathcal{A}_0$ is an analytic element for α_t, in the sense that for all β, such that $|\beta| \in [0, \beta_0]$, with some $\beta_0 \in (0, \infty)$ sufficiently small dependent only on the potential Φ, the following series converges in the norm of the algebra \mathcal{A}

$$\alpha_{i\beta}(f) \equiv \sum_{n=0}^{\infty} \frac{(-i\beta)^n}{n!} \delta^\Phi(f)$$

(2.17)

where δ^Φ is the generator of the automorphism group α_t given on the local elements by

$$\delta^\Phi(f) \equiv \frac{d}{dt}\alpha_t(f)|_{t=0} \equiv \lim_{n \to \infty} i[H_\Lambda(\Phi), f]$$

(2.18)

where $[F_1, F_2] \equiv F_1F_2 - F_2F_1$ denotes the commutator of two operators F_1 and F_2. Given Φ satisfying (2.15), the biggest $\beta_0 \equiv \beta_0(\Phi)$ for which the series (2.17) is convergent for every $f \in \mathcal{A}_0$ is called the radius of analyticity (of the modular dynamic).

Let us mention that the infinite volume state ω satisfies the following KMS condition

$$\omega(f^*g) = \omega(\alpha_{-i\beta}(g)f^*)$$

(2.19)

Therefore it is called an (α_t, β) - KMS state.

For later purposes we need to recall, [Se], [Ku], [Die], [Ye], [Ne], some properties of norms $\| \cdot \|_{L^p(\mathcal{M})}$, $p \in [1, \infty)$, associated to a normalised trace \mathcal{M}, defined on \mathcal{A}_0 as follows

$$\|f\|_{L^p(\mathcal{M})} \equiv (\mathcal{M}|f|^p)^{1/p}$$

(2.20)

where $|f| \equiv (f^*f)^{1/2}$. First of all we note that for $p = 2$ the corresponding norm is associated to the following scalar product

$$<f, g>_\mathcal{M} \equiv \mathcal{M}f^*g$$

(2.21)

and one has the following Hölder inequalities with $L^p(\mathcal{M})$-norms, see e.g. [Se], [Dix],

$$|<f, g>_\mathcal{M}| \leq \|f\|_{L^p(\mathcal{M})}\|g\|_{L^q(\mathcal{M})}$$

(2.22)

with $p, q \in (1, \infty)$ such that $p^{-1} + q^{-1} = 1$, and for $r \in [1, \infty)$, see e.g. [Dix] (Corollary 3 p.23),

$$\|fg\|_{L^r(\mathcal{M})} \leq \|f\|_{L^p(\mathcal{M})}\|g\|_{L^q(\mathcal{M})}$$

(2.23)

provided that $p^{-1} + q^{-1} = r^{-1}$.
Applying (2.22) with $g = 1$ and f replaced by $|f|^r$ for some $r \in [1, \infty)$, and $\frac{r}{p} > 1$ instead of p, or simply taking $g = 1$ in (2.23), we get the following important special case

$$\|f\|_{L_r(\Omega)} \leq \|f\|_{L_r(\Omega)} \quad (2.24)$$

when $r \leq p$. Clearly we have also

$$\|f\|_{L_p(\Omega)} \leq \|f\| \quad (2.25)$$

and therefore one can naturally regard $\| \cdot \|$ as an analog of the uniform norm on the space of bounded continuous functions.

Let us mention also that one has

$$\|f\|_{L_q(\Omega)} \leq \sup_{\|g\|_{L_q(\Omega)} = 1} \{\text{Tr} g^* f\} \quad (2.26)$$

where q is the dual index given by $p^{-1} + q^{-1} = 1$.

Given (2.26) one can easily get the Minkowski inequality. One can get it also using the Hölder inequality by the following elementary arguments for the case $p \geq 2$, for which we have

$$\|f + g\|_{L_p(\Omega)}^p = \text{Tr} |f + g|^p = \text{Tr} (f^* + g^*) (f + g) |f + g|^{p-2} =$$

$$\text{Tr} f^* f |f + g|^{p-2} + \text{Tr} f^* g |f + g|^{p-2} + \text{Tr} g^* f |f + g|^{p-2} + \text{Tr} g^* g |f + g|^{p-2} \quad (2.27)$$

If $p > 2$, we use Hölder inequality with the functions $f^* f$ and $|f + g|^{p-2}$ and norms $\|f\|_2$ and $\|f + g\|_{p/2}$, respectively, to get

$$0 \leq \text{Tr} f^* f |f + g|^{p-2} \leq \|f\|_2^2 \cdot \|f + g\|_{p/2} \quad (2.28)$$

and similarly for the last term on the right hand side of (2.27). For a term containing a product of f^* and g, by trace property and the Schwarz inequality, we have first

$$|\text{Tr} f^* g |f + g|^{p-2}| = |\text{Tr} (f|f + g|^{p-2})^* g |f + g|^{p-2}| \leq (\text{Tr} f^* f |f + g|^{p-2})^{1/2} (\text{Tr} g^* g |f + g|^{p-2})^{1/2} \quad (2.29)$$

Now the right hand side can be estimated with use of (2.28). Similarly we handle the other term involving g^* and f. Combining all that we obtain

$$\|f + g\|_{L_p(\Omega)} \leq (\|f\|_{L_p(\Omega)} + \|g\|_{L_p(\Omega)})^2 \cdot \|f + g\|_{L_{p/2}(\Omega)} \quad (2.30)$$

Hence, by simple algebra, we arrive at the following Minkowski inequality for $\mathbb{L}_p(\Omega)$ norms

$$\|f + g\|_{L_p(\Omega)} \leq \|f\|_{L_p(\Omega)} + \|g\|_{L_p(\Omega)} \quad (2.31)$$

See e.g. [DiK], [Se], for the general case $p \in [1, \infty)$.

Given a finite volume Gibbs state ω_Λ, we define the following $\mathbb{L}_p(\omega_\Lambda)$, $p \in [1, \infty)$, norms on \mathcal{A}

$$\|f\|_{L_p(\omega_\Lambda)} \equiv \left(\text{Tr} |f|^p \rho_\Lambda^\dagger \right)^{1/p} \quad (2.32)$$

In particular for $p = 2$ we see that the corresponding norm is given by the following scalar product

$$\langle f, g \rangle_{\omega_\Lambda} \equiv \text{Tr} \left(\rho_\Lambda^\dagger f^* \rho_\Lambda^\dagger g \right) = \text{Tr} \left((\rho_\Lambda f)^* (\rho_\Lambda g) \right) \quad (2.33)$$

Using the information about the $\mathbb{L}_p(\text{Tr})$-norms, one can get the following important for us lemma.
Lemma 2.1:
For any $f, g \in \mathcal{A}_0$ and any $p, q \in [1, \infty)$ we have:
(i) For any $c \in \mathcal{C}$
\[0 \leq \|cf\|_{L_p(\omega_A)} = |c| \cdot \|f\|_{L_p(\omega_A)} \]
(2.34)
with the equality on the left hand side iff $cf = 0$,
(ii) Hölder inequalities
\[|<f, g|_{\omega_A}| \leq \|f\|_{L_p(\omega_A)} \|g\|_{L_q(\omega_A)} \]
(2.35)
with $p, q \in (1, \infty)$ such that $p^{-1} + q^{-1} = 1$, and if $p \leq q$ we have
\[\|f\|_{L_p(\omega_A)} \leq \|f\|_{L_q(\omega_A)} \leq \|f\| \]
(2.36)
(iii) Duality
For $p \in (1, \infty)$
\[\|f\|_{L_p(\omega_A)} = \sup_{\|g\|_{L_q(\omega_A)} = 1} |<f, g|_{\omega_A}| \]
(2.37)
where q is the dual index given by $p^{-1} + q^{-1} = 1$
(iv) Minkowski inequality
\[\|f + g\|_{L_p(\omega_A)} \leq \|f\|_{L_p(\omega_A)} + \|g\|_{L_p(\omega_A)} \]
(2.38)

Proof: The proof of (2.34) is trivial. Since by definition (2.10) we have $\rho_A > 0$, we can get equality on
the left hand side of (2.34) iff $cf = 0$. To get (2.35) we use the following arguments, (see e.g. [Tr]), with
$p, q \in (1, \infty)$ satisfying $p^{-1} + q^{-1} = 1$
\[|<f, g|_{\omega_A}| = |\text{Tr} \left(\rho_A \frac{T_f}{\rho_A} \frac{T_g}{\rho_A} \right)| = |\text{Tr} \left(\rho_A \frac{T_f}{\rho_A} \frac{T_g}{\rho_A} \right)| = |\text{Tr} \left(\left(\rho_A \frac{T_f}{\rho_A} \frac{T_g}{\rho_A} \right) \rho_A \frac{T_f}{\rho_A} \frac{T_g}{\rho_A} \right)| \]
(2.39)
where we have used the trace property. Applying to the right hand side the Hölder inequality (2.22) for
trace, we get the Hölder inequality (2.35) for the case of finite volume state ω_A.
To get the inequality on the left hand side of (2.36), (the second Hölder inequality), we observe first that if
$p < q$, we have
\[\|f\|_{L_p(\omega_A)} = \|\rho_A \frac{T_f}{\rho_A} \frac{T_g}{\rho_A} \|_{L_q(\text{Tr})} = \|\rho_A \frac{T_f}{\rho_A} \frac{T_g}{\rho_A} \|_{L_q(\text{Tr})} \]
(2.40)
where $s^{-1} + q^{-1} = p^{-1}$. Now by (double) application of the Hölder inequality (2.23) for traces with use of
the normalisation condition $\text{Tr} \rho_A = 1$, we arrive at the left hand side inequality of (2.36).
The right hand side inequality of (2.36) is proven in Appendix 1 by elementary inductive arguments.
The Minkowski inequality (2.38) follows from the corresponding inequality (2.31) for the trace with the
function $\rho_A \frac{T_f}{\rho_A} \frac{T_g}{\rho_A}$.

Let us note that for $p \in \mathbb{N}$ we have the following useful representation of the $L_p(\omega_A)$-norms for nonnegative
elements $f \in \mathcal{A}_0$:

Lemma 2.2 Let $f \in \mathcal{A}_0^+$.
If $p = 1$, then
\[\|f\|_{L_1(\omega_A)} = \omega_A(f) = <f, 1|_{\omega_A} = <1, f|_{\omega_A} \]
(2.41)
If $p \in \mathbb{N}$, $p > 1$, then
\[\|f\|_{L_p(\omega_A)} = \omega_A \left(\frac{\alpha_p 1_{\beta}}{\alpha_p 1_{\beta}}(f) \frac{\alpha_p 1_{\beta}}{\alpha_p 1_{\beta}}(f) \cdots \frac{\alpha_p 1_{\beta}}{\alpha_p 1_{\beta}}(f) \right) \]
(2.42)
with the following (shift invariance) property

$$
\omega_\Lambda \left(\frac{\alpha_\Lambda}{\beta} f \right) \alpha_\Lambda \beta \left(f \right) \alpha_\Lambda \frac{\alpha_\Lambda}{\beta} \left(f \right) = \omega_\Lambda \left(\frac{\alpha_\Lambda}{\beta} \alpha_\Lambda \beta \left(f \right) \alpha_\Lambda \frac{\alpha_\Lambda}{\beta} \left(f \right) \frac{\alpha_\Lambda}{\beta} \left(f \right) \right) (243)
$$

for any $a \in [-1, 1]$. If $p \in \mathbb{N}$ is even, then for any $f \in A_0$ we have

$$
\|f\|_{L^p(A_0, \omega)} = \omega_\Lambda \left(\frac{\alpha_\Lambda}{\beta} \beta \left(f \right) \alpha_\Lambda \frac{\alpha_\Lambda}{\beta} \left(f \right) \alpha_\Lambda \frac{\alpha_\Lambda}{\beta} \left(f \right) \right) (244)
$$

It is clear that if $\beta \in (0, \beta_0)$, with $\beta_0 \in (0, \infty)$ being not bigger than the radius of analyticity and such that the limit (2.12) exists, the above formula has a limit and we can define on A_0 the $L_p(\omega)$-norms corresponding to the (α_ϵ, β)-KMS state ω. Similarly one can expect that the corresponding sequences of other norms on A_0 also converges in the thermodynamic limit. We have the following theorem.

Theorem 2.4:

Let ω be an (α_ϵ, β)-KMS state. There is a family of norms $L_p(\omega)$, $p \in [1, \infty)$ on A_0 such that the following conditions hold

(i) For any $f \in A_0^+$ and any $p \in \mathbb{N}$ we have

$$
\|f\|_{L^p(A_0, \omega)} = \omega \left(\frac{\alpha_\Lambda}{\beta} \beta \left(f \right) \alpha_\Lambda \frac{\alpha_\Lambda}{\beta} \left(f \right) \alpha_\Lambda \frac{\alpha_\Lambda}{\beta} \left(f \right) \right) (245)
$$

(ii) $\|f\|_{L^p(A_0, \omega)} = \omega \left(\left(\frac{\alpha_\Lambda}{\beta} \beta \left(f \right) \right) \alpha_\Lambda \frac{\alpha_\Lambda}{\beta} \left(f \right) \right) (246)$

(iii) For any $p, q \in [1, \infty)$ such that $p^{-1} + q^{-1} = 1$

$$
|\langle g, f \rangle_\omega | \leq \|f\|_{L^q(A_0, \omega)} \|g\|_{L^q(\omega)} (247)
$$

and if $p \leq q$

$$
0 \leq \|f\|_{L^p(A_0, \omega)} \leq \|f\|_{L^q(A_0, \omega)} \leq \|f\| (248)
$$

(iv) $\|f\|_{L^p(A_0, \omega)} = \sup_{\|g\|_{L^q(A_0, \omega)} = 1} |\langle g, f \rangle_\omega | (249)$

Remark: In general one could define the following norms

$$
\limsup_{f \to \infty} \|f\|_{L^p(A_0, \omega)}
$$

see also [Ha], [T2], [Ko], [MZ].

Using a norm $\|\cdot\|_{L^p(A_0, \omega)}$ introduced above, we can define the corresponding set $L_p(\omega)$ of equivalence classes of Cauchy’s sequences $\{f_n \in A_0\}_{n \in \mathbb{N}}$ modulo the class of the zero operator. It follows from the corresponding Minkowski inequality that one can introduce in this space the structure of complex linear space. In this way we arrive at the following definition.
Definition 2.4:
The linear space $L_p(\omega)$, $p \in [1, \infty)$, defined above is called the L_p-space associated to an (α, β)-KMS state ω.

Whenever it will not cause a confusion we will use a short notation L_p for the space $L_p(\omega)$.
Let us note the following fact.

Proposition 2.5
If $p, q \in [1, \infty)$, and $p \leq q$, then
$$A \subseteq L_q \subseteq L_p \quad (2.50)$$

Let us mention that it is also possible to define different family of interpolating norms and spaces. For example one could define an L_2 space by taking the following natural choice of the scalar product
$$<f, g> \equiv \omega(f^*g) \quad (2.51)$$

The reason why we prefer to make the other choice will become clear later in the next section where we introduce the stochastic dynamics.

Finally we would like to say that our construction of L_p spaces is similar to the corresponding construction in the semifinite case considered in [Tr], [Zo], [Sh]. Although, let us stress, that by taking the thermodynamic limit we are able to define our L_p spaces in a more general setting, i.e. in the thermodynamic limit we do not use integration with respect to a tracial state. Let us recall that the existence of a faithful trace excludes the von Neumann algebras of type III associated to an infinite volume Gibbs state corresponding to a potential Φ, [Po], [BR]. For general von Neumann algebras a rather involved construction of L_p spaces has been completed in the following works: [Ha], [Co], [ArM], [Hi], [T1], and of the interpolating spaces in [Ko], [T2]. In our work, having some concrete applications in mind, we have applied a pragmatic functional analytic approach, instead of the wise measure theoretic one. Let us say however that it is useful to use both constructions.

3. Markov Generators and Markov Semigroups of a Finite System

In this section we introduce a family of Markov generators and semigroups corresponding to a block spin flip stochastic dynamics of a quantum spin system on a lattice.

For $X \in \mathcal{F}$, let $E_{X, \Lambda} : \mathcal{A} \rightarrow \mathcal{A}$ be a map defined as follows
$$E_{X, \Lambda}(f) = \text{Tr}_X \left(\gamma_{X, \Lambda}^* f \gamma_{X, \Lambda} \right) \quad (3.1)$$
where $\gamma_{X, \Lambda} \equiv \gamma_{X, \Lambda}(\hat{1})$, with
$$\gamma_{X, \Lambda}(s) \equiv \rho_{\Lambda} (\text{Tr}_X \rho_{\Lambda})^{-s} \quad (3.2)$$
where Tr_X is the partial trace and ρ_{Λ} the density matrix of a finite volume Gibbs state ω_{Λ}. The map $E_{X, \Lambda}$ has the following properties.

Proposition 3.1:
(i) $$E_{X, \Lambda}(A) \subseteq A_{X} \quad (3.3)$$

(ii) $E_{X, \Lambda}$ is completely positive, i.e. [St] for any $n \in \mathbb{N}$ the map $E_{X, \Lambda}^{(n)}$ on the space $n \times n$ matrices
$$\{a_{k,l} \in \mathcal{A} \}_{k,l=1,\ldots,n}$$
defined by
$$E_{X, \Lambda}^{(n)}(\{a_{k,l}\}) \equiv \{E_{X, \Lambda}(a_{k,l})\} \quad (3.4)$$
is positive.

\[E_{X, \Lambda}(1) = 1 \] \hspace{1cm} (3.5)

\[
\text{Remark: Note that in general we have not} \\
E_{X, \Lambda}(gfh) = g(E_{X, \Lambda}f)h
\] \hspace{1cm} (3.6)

\text{for } g, h \in A_{X^*}, \text{ and therefore in general} \\
E_{X, \Lambda}(E_{X, \Lambda}(f)) \neq E_{X, \Lambda}(f)
\] \hspace{1cm} (3.7)

\textbf{Proof:} The property (i) follows from the definition of } E_{X, \Lambda} \text{ and the property of the partial trace. The complete positivity property is a consequence of the fact that } E_{X, \Lambda} \text{ is defined as a composition of two obviously completely positive maps: the partial trace and the map} \\
A \ni f \mapsto \gamma_{X, \Lambda}^* f \gamma_{X, \Lambda}
\] \hspace{1cm} (3.8)

\text{To see the unit preserving property, we use definitions (3.1) and (3.2) from which we have} \\
\[E_{X, \Lambda}(1) = \text{Tr}_X \left((\gamma_{X, \Lambda}^*)^* \right) = \text{Tr}_X \left((\rho_{X}^\Lambda)^{-\frac{1}{2}} \rho_{X}^\Lambda (\text{Tr}_X \rho_{X})^{-\frac{1}{2}} \right) = 1. \] \hspace{1cm} (3.9)

This ends the proof.

\[
\text{\Diamond}
\]

For later purposes let us mention the following particular consequences of Proposition 3.1.

\textbf{Proposition 3.2} \\
(i) \underline{Positivity} \\
\[\forall f \in A^+ \hspace{1cm} E_{X, \Lambda}(f) \geq 0 \] \hspace{1cm} (3.10)

(ii) \underline{\ast - Invariance} \\
\[\forall f \in A \hspace{1cm} (E_{X, \Lambda}(f))^\ast = E_{X, \Lambda}(f^\ast) \] \hspace{1cm} (3.11)

(iii) \underline{Boundedness} \\
\[\forall f \in A \hspace{1cm} \|E_{X, \Lambda}(f)\| \leq \|f\| \] \hspace{1cm} (3.12)

(iv) \underline{The Kadison - Schwarz inequality} \\
\[\forall f \in A \hspace{1cm} E_{X, \Lambda}(f)^\ast E_{X, \Lambda}(f) \leq E_{X, \Lambda}(f^\ast f) \] \hspace{1cm} (3.13)

\[
\text{\Diamond}
\]
The proof of (i) and (ii) easily follows from \(n = 1 \) positivity, and (iii) follows from (3.5) and (3.10), while (iv) is a consequence of \(n = 2 \) positivity; see e.g. [BR] vol 2, [Ta].

Another important consequence of our definition (3.1) of the map \(E_{X,\Lambda} \) is the following property.

Proposition 3.3

The map \(E_{X,\Lambda} \) is a positive, symmetric and bounded operator in \(L_2(\omega_\Lambda) \) with

\[
\|E_{X,\Lambda}\|_{L_2(\omega_\Lambda) \to L_2(\omega_\Lambda)} = 1
\]

(3.14)

\[\circ\]

Proof: First of all let us note that, by the boundedness property (3.12), the operator \(E_{X,\Lambda} \) is well defined as an operator in \(L_2(\omega_\Lambda) \) for any finite set \(\Lambda \in \mathcal{F} \). Using the definition of \(L_2(\omega_\Lambda) \) - scalar product, the \(* \) - invariance of the map \(E_{X,\Lambda} \) and a property of the trace, we have

\[
< E_{X,\Lambda}(f), g >_{\omega_\Lambda} = \text{Tr} \left(\rho_\Lambda^* (E_{X,\Lambda}(f)) \rho_\Lambda g \right) = \text{Tr} \left(E_{X,\Lambda}(f^*) \rho_\Lambda g \rho_\Lambda \right)
\]

(3.15)

Now from the definition (3.1) of \(E_{X,\Lambda} \), we get

\[
\text{Tr} \left(E_{X,\Lambda}(f^*) \rho_\Lambda g \rho_\Lambda \right) = \text{Tr} \left(\text{Tr}_X (\gamma_{X,\Lambda} f^* \gamma_{X,\Lambda}) \text{Tr}_X \left(\rho_\Lambda g \rho_\Lambda \right) \right) =
\]

(3.16)

and using the definition of \(\gamma_{X,\Lambda}(\cdot) \) in (3.2), we arrive at

\[
= \text{Tr} \left(\text{Tr}_X \left(\gamma_{X,\Lambda}(\frac{1}{4}) \rho_\Lambda f \rho_\Lambda \gamma_{X,\Lambda}(\frac{1}{4}) \right) \text{Tr}_X \left(\gamma_{X,\Lambda}(\frac{1}{4}) \rho_\Lambda g \rho_\Lambda \gamma_{X,\Lambda}(\frac{1}{4}) \right) \right)
\]

(3.17)

From this the symmetry as well as positivity of the operator \(E_{X,\Lambda} \) in \(L_2(\omega_\Lambda) \) follows. The proof of (3.14) will be given later, (see Proposition 3.6iv).

\[\Diamond\]

Let \(\mathcal{L}_{X,\Lambda} \) be an operator on \(\mathcal{A} \) defined by

\[
\mathcal{L}_{X,\Lambda} f \equiv E_{X,\Lambda}(f) - f
\]

(3.18)

It has the following properties.

Proposition 3.4:

(i) \[
\mathcal{L}_{X,\Lambda} 1 = 0
\]

(3.19)

(ii) \(* \) - Invariance

\[
(\mathcal{L}_{X,\Lambda} f)^* = \mathcal{L}_{X,\Lambda}(f^*)
\]

(3.20)

(iii) Dissipativity

For any \(f \in \mathcal{A} \)

\[
\mathcal{L}_{X,\Lambda}(f^* f) - \mathcal{L}_{X,\Lambda}(f^*) f - f^* \mathcal{L}_{X,\Lambda}(f) \geq 0
\]

(3.21)

(iv) Symmetry

For any \(f, g \in \mathcal{A} \) we have

\[
< \mathcal{L}_{X,\Lambda}(f), g >_{\omega_\Lambda} =< f, \mathcal{L}_{X,\Lambda}(g) >_{\omega_\Lambda}
\]

(3.22)

(v) Boundedness

\[
\|\mathcal{L}_{X,\Lambda}(f)\| \leq 2\|f\|
\]

(3.23)
and
\[\| \mathcal{L}_{X,\Lambda}(f) \|_{\mathbb{L}_2(\omega_\Lambda)} \leq 2 \| f \|_{\mathbb{L}_2(\omega_\Lambda)} \] (3.24)

Proof: We shall prove only the dissipativity property, as all the others easily follow from the definition of \(\mathcal{L}_{X,\Lambda} \) and the corresponding properties of \(E_{X,\Lambda} \). To get (iii), we observe that
\[
\mathcal{L}_{X,\Lambda}(f^* f) - \mathcal{L}_{X,\Lambda}(f^*) f - f^* \mathcal{L}_{X,\Lambda}(f) = E_{X,\Lambda}(f^* f) - E_{X,\Lambda}(f^*) f - f^* E_{X,\Lambda}(f) + f^* f =
\]
\[
= (E_{X,\Lambda}(f^* f) - E_{X,\Lambda}(f^*) E_{X,\Lambda}(f)) + |E_{X,\Lambda}(f) - f|^2
\] (3.25)

Hence using the Kadison - Schwarz inequality (3.13) for \(E_{X,\Lambda} \), we conclude that
\[
\mathcal{L}_{X,\Lambda}(f^* f) - \mathcal{L}_{X,\Lambda}(f^*) f - f^* \mathcal{L}_{X,\Lambda}(f) \geq 0
\] (3.26)

This ends the proof of Proposition 3.4.

◊

Remark: After this Proposition the careful reader should understand the usefulness of our choice of \(\mathbb{L}_2(\omega_\Lambda) \) space.

Definition 3.5:
An operator \(\mathcal{L} \) defined on a dense subalgebra \(\mathcal{D}(\mathcal{L}) \subset \mathcal{A} \) satisfying the conditions (i) - (iii), will be called a Markov pre - generator.

Remark: The most complete abstract characterization of generators of norm continuous semigroups on \(C^* \) - algebras can be found in [EO], while a characterization of generators of positive \(C_0 \) semigroups is given in [BDR].

Let \(\mathcal{L}_{X+J,\Lambda} \) be the bounded symmetric Markov generators defined similarly as above for the translations \(X + J \) of a given finite set \(X \in \mathcal{F} \). Using these operators we would like to introduce the following Markov generators
\[
\mathcal{L}^{X,\Lambda} f \equiv \sum_{J \in \Lambda} \mathcal{L}_{X+J,\Lambda} f
\] (3.27)
defined for any \(\Lambda \in \mathcal{F} \) on the algebra \(\mathcal{A} \). From Proposition 3.4 it is clear that \(\mathcal{L}^{X,\Lambda} \) is a bounded operator on the algebra as well as bounded and symmetric in \(\mathbb{L}_2(\omega_\Lambda) \). Let \(P_t^{X,\Lambda} \equiv e^{t \mathcal{L}^{X,\Lambda}} \) be a corresponding semigroup. It has the following properties.

Proposition 3.6:
(i) **Positivity preserving:** For any \(f \in \mathcal{A}^+ \)
\[
P_t^{X,\Lambda} f \geq 0
\] (3.28)

(ii) **Unit preserving**
\[
P_t^{X,\Lambda} 1 = 1
\] (3.29)

(iii) **\(\mathbb{L}_2 \) - Symmetry**
\[
< P_t^{X,\Lambda}(f), g >_{\omega_\Lambda} = < f, P_t^{X,\Lambda}(g) >_{\omega_\Lambda}
\] (3.30)

(iv) \(||P_t^{X,\Lambda}||_{\mathbb{L}_2(\omega_\Lambda) \to \mathbb{L}_2(\omega_\Lambda)} \leq 1 \) and
\[
< \mathcal{L}^{X,\Lambda}(f), f >_{\omega_\Lambda} \leq 0
\] (3.32)
(v) **Invariance:** For any $f \in \mathcal{A}$

$$
\omega_{\Lambda} \left(P_t^{X,\Lambda}(f) \right) = \omega_{\Lambda}(f)
$$

Equivalently we have

$$
\omega_{\Lambda} (L_{X,\Lambda}(f)) = 0
$$

\(\diamond \)

Remark: The inequality (3.32) implies

$$
<E_{X,\Lambda}(f), f >_{\omega_{\Lambda}} \leq < f, f >_{\omega_{\Lambda}}
$$

which implies (3.14) of Proposition 3.3. (In fact one can prove it also in a more direct way.)

Proof: The positivity preserving property (i) follows by the following (actually stronger) property in the proof of which we use the standard arguments, see e.g. [B], [BR], based on the dissipativity property of the generator $L^{X,\Lambda}$.

$$
P_t^{X,\Lambda}(f^* f) - P_t^{X,\Lambda}(f^*) P_t^{X,\Lambda}(f) = - \int_0^t \frac{d}{ds} P_s^{X,\Lambda} (P_s^{X,\Lambda}(f^*) P_s^{X,\Lambda}(f)) =
$$

$$
\int_0^t ds P_t^{X,\Lambda} \{ L^{X,\Lambda} (P_s^{X,\Lambda}(f^*) P_s^{X,\Lambda}(f)) - (L^{X,\Lambda} P_s^{X,\Lambda}(f^*)) P_s^{X,\Lambda}(f) - P_s^{X,\Lambda}(f^*) (L^{X,\Lambda} P_s^{X,\Lambda}(f^*)) \} \geq 0
$$

(3.36)

The properties (ii) and (iii) follow from the properties (i) and (iv) of generator $L^{X,\Lambda}$ given in Proposition 3.4. To get (3.31) we use the symmetry of the operator $P_t^{X,\Lambda}$ and the fact that for any $f \in \mathcal{A}$ we have

$$
||P_t^{X,\Lambda} f - \omega_{\Lambda} f||_{L_2(\omega_{\Lambda})} \leq ||P_t^{X,\Lambda} f - \omega_{\Lambda} f|| \leq ||f - \omega_{\Lambda} f||
$$

(3.37)

From this, by use of spectral theorem we conclude that (3.32) has to be true. To prove the invariance we observe that by the definition of L_2-norm and properties (i) and (ii), we have

$$
\omega_{\Lambda} \left(P_t^{X,\Lambda}(f) \right) = < 1 , P_t^{X,\Lambda}(f) >_{\omega_{\Lambda}} = < P_t^{X,\Lambda}1 , f >_{\omega_{\Lambda}} = \omega_{\Lambda}(f)
$$

(3.38)

This ends the proof of Proposition 3.6.

\(\diamond \)

Let us recall the following definition.

Definition 3.7: A strongly continuous semigroup P_t, $t \geq 0$, on a Banach algebra \mathcal{B}, is called Markov iff it is positivity and unit preserving. In case when $\mathcal{A} \subseteq \mathcal{B}$, we say that the semigroup P_t has a Feller property iff

$$
\forall f \in \mathcal{A}, t \geq 0, \quad P_t f \in \mathcal{A}
$$

(3.39)

\(\diamond \)

Thus the semigroups $P_t^{X,\Lambda}$ constructed above are Markov semigroups on \mathcal{A} and $L_2(\omega_{\Lambda})$, and obviously have the Feller property.

Given an automorphism group α_t on an algebra \mathcal{A} (or some its closure) it is easy to construct semigroups which preserves all the (α_t, β) - KMS states, for all β’s. Therefore the following feature of the stochastic dynamics introduced above is important.
Theorem 3.8.
Let $\mathcal{L}_{j,\Lambda} \equiv \sum_{j \in \Lambda} \mathcal{L}_{j,\Lambda,\beta \Phi}$ be the Markov generator defined by (3.18) with $X = \{j\}$ and let

$$\mathcal{L}^{0,\Lambda} = \sum_{j \in \Lambda} \mathcal{L}_{j,\Lambda}$$

If for some state ν on \mathcal{A}_{Λ} we have for any $f \in \mathcal{A}_{\Lambda}$

$$\nu \mathcal{L}^{0,\Lambda}(f) = 0$$

(3.40)

then ν is $(\alpha^{\Lambda}, \beta) - \text{KMS}$.

Remark: Similar result is true with the operator $\sum_{X + j \subseteq \Lambda} \mathcal{L}_{X + j,\Lambda}$ and arbitrary set $X \in \mathcal{F}$, provided that the union of $X + j \subseteq \Lambda$ covers the set Λ.

Proof: Suppose a state ν on \mathcal{A}_{Λ} has a density $\rho_{\nu} > 0$ with respect to the normalized trace Tr. Then the condition (3.40) implies that for every $f \in \mathcal{A}_{\Lambda}$ we have

$$0 = \text{Tr} \left(\rho_{\nu} \sum_{j \in \Lambda} \mathcal{L}_{j,\Lambda}(f) \right) = \sum_{j \in \Lambda} < \rho^{\frac{1}{2}}_{\Lambda} \rho_{\nu} \rho^{\frac{1}{2}}_{\Lambda}, \mathcal{L}_{j,\Lambda}(f) > \omega_{\Lambda} = \sum_{j \in \Lambda} < \mathcal{L}_{j,\Lambda}(\rho^{\frac{1}{2}}_{\Lambda} \rho_{\nu} \rho^{\frac{1}{2}}_{\Lambda}), f > \omega_{\Lambda}$$

(3.41)

In particular choosing $f = \rho^{\frac{1}{2}}_{\Lambda} \rho_{\nu} \rho^{\frac{1}{2}}_{\Lambda}$ we get

$$\sum_{j \in \Lambda} < \mathcal{L}_{j,\Lambda}(\rho^{\frac{1}{2}}_{\Lambda} \rho_{\nu} \rho^{\frac{1}{2}}_{\Lambda}), \rho^{\frac{1}{2}}_{\Lambda} \rho_{\nu} \rho^{\frac{1}{2}}_{\Lambda} \omega_{\Lambda} = 0$$

(3.42)

This can be written in the following form

$$\sum_{j \in \Lambda} < E_{j,\Lambda}(\rho^{\frac{1}{2}}_{\Lambda} \rho_{\nu} \rho^{\frac{1}{2}}_{\Lambda}), \rho^{\frac{1}{2}}_{\Lambda} \rho_{\nu} \rho^{\frac{1}{2}}_{\Lambda} \omega_{\Lambda} = |\Lambda| \cdot \| \rho^{\frac{1}{2}}_{\Lambda} \rho_{\nu} \rho^{\frac{1}{2}}_{\Lambda} \|^{2}_{2(\omega_{\Lambda})}$$

(3.43)

Since the operators $E_{j,\Lambda}$ are all contractive in $L_{2}(\omega_{\Lambda})$, the above equality can only be true if for every $j \in \Lambda$, we in fact have

$$E_{j,\Lambda}(\rho^{\frac{1}{2}}_{\Lambda} \rho_{\nu} \rho^{\frac{1}{2}}_{\Lambda}) = \rho^{\frac{1}{2}}_{\Lambda} \rho_{\nu} \rho^{\frac{1}{2}}_{\Lambda}$$

(3.44)

The left hand side of this equality, by definition of $E_{j,\Lambda}$, commutes with every element of \mathcal{A}_{j}. Since this is true for every $j \in \Lambda$ and $\{\mathcal{A}_{j}\}_{j \in \Lambda}$ generates \mathcal{A}_{Λ}, we conclude that

$$\rho^{\frac{1}{2}}_{\Lambda} \rho_{\nu} \rho^{\frac{1}{2}}_{\Lambda} = 1,$$

(3.45)

i.e. $\rho_{\nu} = \rho_{\Lambda}$, which clearly implies our theorem.

Finally let us mention that as shown in Appendix II the infinite volume limit of γ_{Λ} make sense as operators (possibly in some larger algebra). This motivates the general considerations of the next section, in which we formulate some general conditions for existence and ergodicity of infinite volume translation invariant spin flip stochastic dynamics.
4. Quantum Stochastic Dynamics: The Spin Flip Case

Let

\[\partial_j f \equiv f - \text{Tr}_j f \]

We define the following seminorm \[||| \cdot ||| \] in \(\mathcal{A} \)

\[|||f||| \equiv \sum_{j \in \mathbb{Z}^d} ||\partial_j f|| \]

One can see that the seminorm \[||| \cdot ||| \] is finite on a subalgebra \(\mathcal{A}_1 \subset \mathcal{A} \) containing \(\mathcal{A}_0 \) and it vanishes only on constants.

For \(X \in \mathcal{F} \), let

\[\mathcal{L}_{X \mathcal{F}_j}(f) \equiv E_{X \mathcal{F}_j}(f) - f \]

where \(E_{X \mathcal{F}_j} \) is a two - positive unit preserving map on \(\mathcal{A} \), such that \(E_{X \mathcal{F}_j}(\mathcal{A}) \subset \mathcal{A}_{X \mathcal{F}_j} \). We define a finite volume generator \(\mathcal{L}_X \) as follows

\[\mathcal{L}_X^X \equiv \sum_{j \in \mathbb{A}} \mathcal{L}_{X \mathcal{F}_j} \]

The generator \(\mathcal{L}_X \) is well defined bounded operator on all the algebra \(\mathcal{A} \). Let \(P_{\rho}^X_{t \mathbb{A}} \equiv e^{t \mathcal{L}_X^X} , \ t \geq 0 \) be the corresponding finite volume semigroup.

We would like to consider also an infinite volume generator \(\mathcal{L}_X \) defined formally by the formula (4.4) with \(\Lambda = \mathbb{Z}^d \). To ensure that it is defined on a sufficiently large domain, we will require that the elementary generators \(\mathcal{L}_{X \mathcal{F}_j} \) satisfy the following regularity property.

Definition 4.1:

The operator \(\mathcal{L}_{X \mathcal{F}_j} \) is called regular if and only if there are nonnegative constants \(b_{jk}^X, j, k \in \mathbb{Z}^d \), such that

\[||\mathcal{L}_{X \mathcal{F}_j} f|| \leq \sum_{k \in \mathbb{Z}^d} b_{jk}^X ||\partial_k f|| \]

and

\[\sup_{k \in \mathbb{Z}^d} \sum_{j \in \mathbb{Z}^d} b_{jk}^X = b^X < \infty \]

Remark: Let us mention that all block spin flip generators for classical discrete spin systems are regular.

It is easy to see that under the assumption of regularity, the finite as well as infinite volume generators are well defined on the domain containing the subalgebra \(\mathcal{A}_1 \), which is dense in \(\mathcal{A} \). If the elementary generators \(\mathcal{L}_{X \mathcal{F}_j} \) would be additionally symmetric in the space \(L_2(\omega) \), for some state \(\omega \), the operator \(\mathcal{L}_X \), as a nonpositive densely defined symmetric operator in \(L_2(\omega) \), could be extended to a selfadjoint operator, (although possibly not in a unique way). Using this extension we could define in \(L_2(\omega) \) an infinite volume semigroup which in general need not to have the Feller property, (i.e. it would not need to map \(\mathcal{A} \) into \(\mathcal{A} \)). Our first aim will be to formulate a condition which allows to construct an infinite volume semigroup \(P_{\rho}^X, t \geq 0 \) as a limit of finite volume semigroups in a way which ensures also the Feller property. It will be useful also to study the ergodicity properties of the semigroup \(P_{\rho}^X \). To formulate our condition formally we use an idea from statistical mechanics of classical spin systems on a lattice.

Definition 4.2:

The elementary generators \(\mathcal{L}_{X \mathcal{F}_j}, j \in \mathbb{Z}^d \) satisfy \(\mathbf{C X} \) condition if and only if there are nonnegative constants \(a_{kl}^X \), for \(k, l \in \mathbb{Z}^d \), such that \(a_{kl}^{X \mathcal{F}_j -} = a_{kl}^{X \mathcal{F}_j} \), for any \(i \in \mathbb{Z}^d \) and for any \(f \in \mathcal{A}_1 \) we have
\[(i) \quad ||[\partial_k, \mathcal{L}_{X+t}](f)|| \leq \sum_{l \in \mathbb{Z}^d} a^{X+l}_k ||\partial_l f|| \quad (4.7)\]

with
\[
\frac{1}{|X|} \sum_{k, l \in \mathbb{Z}^d} a^{X+l}_k < \infty \quad (4.8)
\]

\[(ii) \quad \frac{1}{|X|} \sum_{k, l \in \mathbb{Z}^d} a^{X+l}_k \leq \kappa < 1 \quad (4.9)\]

Remark: For the construction of the infinite volume Markov-Feller semigroup we will need only the condition \(\textbf{CX} \ (i)\). The condition \(\textbf{CX} \ (ii)\) is similar to the famous uniqueness condition of Dobrushin and Shlosman. One can expect that also in the case of quantum spin systems one could use it to develop a uniqueness theory along the lines of [DS1-3], (or better to say its dual version of Aizenman and Lieb). In our paper we will use it in a similar way as in [SZ], (see also [AH]), to prove the corresponding strong ergodicity property of infinite volume semigroup.

The interest in the condition \(\textbf{CX}\) is motivated by the following implications.

Theorem 4.3:
Suppose that the operators \(\mathcal{L}_{X+t}\) are regular and that the condition \(\textbf{CX} \ (i)\) is satisfied. Then the following limit exists and defines a Markov semigroup on \(A\)
\[
P_t^X \equiv e^{t\mathcal{L}_X} \equiv \lim_{\tau \to 0} P_{t, \Lambda}^X \quad (4.10)
\]
and we have the following approximation property:

There are positive functions \(\varphi\) and \(D\) satisfying \(\varphi(t) \to_{t \to 0} 0\) and \(D(t) \to_{t \to \infty} \infty\), such that for any \(f \in A_Y, Y \in \mathcal{F}\), we have
\[
||P_t^X f - P_{t, \Lambda}^X f|| \leq C(Y) \varphi(t) ||f|| \quad (4.11)
\]
with some constant \(C(Y) \in (0, \infty)\) independent of \(f\), provided
\[
d(f, \Lambda^\epsilon) \geq D(t) \quad (4.12)
\]

Theorem 4.4:
If also \(\textbf{CX} \ (ii)\) is satisfied then we have
\[
||P_t^X f|| \leq e^{-(1-\epsilon)|X|_1} ||f|| \quad (4.13)
\]
and therefore the semigroup \(P_t^X\) is strongly ergodic in the sense that there is unique \(P_t^X\)-invariant state \(\omega\) for which we have
\[
||P_t f - \omega f|| \leq 2e^{-(1-\epsilon)|X|_1} ||f|| \quad (4.14)
\]
for every \(f \in A_1\).

The proof of Theorem 4.3 is rather standard. We include it for the readers convenience.
Proof of Theorem 4.3: For $\Lambda_i \in \mathcal{F}$, $i = 1, 2$, let $P_i^f \equiv \mathcal{C}_t \equiv P_{i, \Lambda_i}$. Then we have
\[
\frac{d}{ds}(P_i^2 f - P_i^1 f) = \mathcal{L}_2(P_i^2 f - P_i^1 f) + (\mathcal{L}_2 - \mathcal{L}_1)P_i^1 f
\]
(4.15)
Hence
\[
\frac{d}{ds}P_{i-}^2(P_i^2 f - P_i^1 f) = P_{i-}^2(\mathcal{L}_2 - \mathcal{L}_1)P_i^1 f
\]
(4.16)
Integration of this equation from 0 to t and use of contractivity property of Markov semigroups yield
\[
\|P_i^2 f - P_i^1 f\| = \|\int_0^t ds P_{i-}^2(\mathcal{L}_2 - \mathcal{L}_1)P_i^1 f\| \leq \int_0^t ds\|(\mathcal{L}_2 - \mathcal{L}_1)P_i^1 f\|
\]
(4.17)
Therefore we need to study the expression $(\mathcal{L}_2 - \mathcal{L}_1)P_i^1 f$. As the difference of two Markov operators of interest to us equals to a sum of elementary generators \mathcal{L}_{X+j}, it is sufficient to study $\mathcal{L}_{X+j}P_i^1 f$ for $j \in \mathbb{Z}$. Since however by our regularity assumption we have
\[
\|\mathcal{L}_{X+j}P_i^1 f\| \leq \sum_k b_k \|\partial_k P_i^1 f\|
\]
(4.18)
we shall study the behavior of $\partial_k P_i^1 f$. For this we use the following differential equation
\[
\frac{d}{ds}\partial_k P_i^1 f = \partial_k \mathcal{L}_1 P_i^1 f = \mathcal{L}_1(\partial_k P_i^1 f) + [\partial_k, \mathcal{L}_1] P_i^1 f
\]
(4.19)
Hence we get
\[
\frac{d}{ds}P_{i-}^1(\partial_k P_i^1 f) = P_{i-}^1[\partial_k, \mathcal{L}_1] P_i^1 f = \sum_{i \in \Lambda_i} P_{i-}^1(\partial_k P_{i+}^1 f)
\]
(4.20)
Integration of this equation and use of contractivity property of the Markov semigroups, give the following bound
\[
\|\partial_k P_i^1 f\| \leq \|\partial_k f\| + \sum_{i \in \Lambda_i} \int_0^t ds\|\partial_k; \mathcal{L}_{X+j}\| P_i^1 f
\]
(4.21)
If the condition \textbf{CX} (i) is satisfied, the right hand side of (4.21) can be bounded by
\[
\|\partial_k P_i^1 f\| \leq \|\partial_k f\| + \int_0^t ds \sum_i G_X(k - 1)\|\partial_k P_i^1 f\|
\]
(4.22)
with a translation invariant matrix
\[
G_X(k - 1) \equiv \sum_{i \in \mathbb{Z}} a_{kl}^{X+i}
\]
(4.23)
Since by our assumptions about a_{kl}^{X+i} we have
\[
\sum_{k \in \mathbb{Z}} G_X(k) = \sum_k \sum_i a_{kl}^{X+i} = \sum_k \sum_i a_{kl}^X \leq \kappa |X| < \infty
\]
(4.24)
we can solve the inequality (4.22) by iteration and we obtain the following bound
\[
\|\partial_k P_i^1 f\| \leq \sum_i (e^{\epsilon G_X})^{[k]} \|\partial_k f\|
\]
(4.25)
Combining (4.17), (4.18) and (4.25), we arrive at the following estimate
\[
\|P_i^2 f - P_i^1 f\| \leq t \sum_{j \in \Lambda_i} \sum_k a_{kl}^X \|\partial_k f\|
\]
(4.26)
Hence for any \(A_2 \subset \mathbb{Z}^d \) containing a set \(A_1 \) we have

\[
\|P_t^{2f} - P_t^{1f}\| \leq t \sum_{j \in A_1} \sum_{k} t_j^{X} \| e^{-tG_X} \| \| \partial_k f \|
\]

(4.27)

Using the summability properties (4.6) and (4.24) of the matrices involved on the right hand side of (4.27), one can easily conclude that the limit

\[
P_t^{X} f \equiv \lim_{t \to 0} P_t^{X} f
\]

(4.28)

exists for all local elements \(f \in A_0 \). Hence, by continuity in the norm \(\| \cdot \| \), it exists also for any \(f \in A \).

From the estimate (4.27) one gets also the approximation property (4.11-12) with the appropriate functions \(\varphi(t) \) and \(D(t) \), (the second dependent only on the choice of the former). This ends the proof of Theorem 4.3.

\[\diamondsuit \]

Proof of Theorem 4.4: To prove Theorem 4.4 we follow closely [SZ]. First we note that by our assumption \(E_{X+J} A \subset A_{X+J} \) and therefore for any \(k \in X+J \) we have

\[
\partial_k L_{X+J} f = \partial_k (E_{X+J} f - f) = -\partial_k f
\]

(4.29)

Using this we get

\[
\frac{d}{ds} \partial_k P_s^{X} f = \partial_k L^{X} P_s^{X} f = -|X| \partial_k P_s^{X} f + L^{X,k} \partial_k P_s^{X} f + \sum_{j \in X+J \cap k} [\partial_k, L_{X+J}] P_s^{X} f
\]

(4.30)

where we have set

\[
L^{X,k} = \sum_{j \in X+J \cap k} L_{X+j}
\]

(4.31)

Setting \(P_t^{X,k} \equiv e^{tL^{X,k}} \), we get

\[
\frac{d}{ds} \left(e^{-|X|} P_t^{X,k} \partial_k P_s^{X} f \right) = -e^{-|X|} \sum_{j \in X+J \cap k} e^{t|X|} \partial_k P_s^{X,k} \left([\partial_k, L_{X+J}] P_s^{X} f \right)
\]

(4.32)

Integrating this equation from 0 to \(t \), and taking into account that \(P_t^{X,k} \) is a contraction semigroup on \(A \), we obtain the following bound

\[
\|\partial_k P_t^{X} f\| \leq e^{-|X|} \| \partial_k f \| + \int_0^t ds e^{-|X|} \sum_{j \in X+J \cap k} \| [\partial_k, L_{X+J}] P_s^{X} f \|
\]

(4.33)

Applying to the last term on the right hand side the condition **CX** (i), we get

\[
\|\partial_k P_t^{X} f\| \leq e^{-|X|} \| \partial_k f \| + \int_0^t ds e^{-|X|} \sum_{j \in X+J \cap k} \sum_{k_1} \partial_k^{X+J} \| \partial_k P_s^{X} f \|
\]

(4.34)

Summing this inequalities over \(k \in \mathbb{Z}^d \) and taking into the account that by translation invariance of \(a_k^{X+J} \) and the condition **CX** (ii) we have

\[
\sum_{k} \sum_{j \in X+J \cap k} \partial_k^{X+J} \leq \kappa |X|
\]

(4.35)

we obtain

\[
\|P_t^{X} f\| \leq e^{-|X|} \| f \| + \kappa |X| \int_0^t ds e^{-|X|} \| P_s^{X} f \|
\]

(4.36)
From this the inequality (4.13) easily follows. To prove the strong ergodicity property we note first that, by weak compactness of the space of states on \(\mathcal{A} \) and the fact that by our construction \(P_t^X \) has Feller property, the set of \(P_t^X \)-invariant states is nonempty. Let \(\omega \) be one such state. Then we have

\[
||P_t^X f - \omega f|| = ||P_t^X f - \omega (P_t^X f)|| = ||\Theta (P_t^X f \otimes 1 - 1 \otimes P_t^X f)|| \leq ||P_t^X f \otimes 1 - 1 \otimes P_t^X f||
\]

(4.37)

the norm on the right hand side means the norm on the injective tensor product algebra \(\mathcal{A} \) by itself, while \(\Theta \) is a completely positive map from \(\mathcal{A} \otimes \mathcal{A} \) to \(\mathcal{A} \) defined by \(\Theta(x_1 \otimes x_2) \equiv \omega(x_1)x_2 \), where \(x_1, x_2 \in \mathcal{A} \), (c.f. Section IV.4 in [Ta], in particular Corollary 4.25). Choosing some lexicographic sequence \(\{j_n\}_{n \in \mathbb{N}} \) in \(\mathbb{Z}^d \) and observing that

\[
P_t^X f \otimes 1 - 1 \otimes P_t^X f = \Sigma \otimes 1 - 1 \otimes \Sigma
\]

(4.38)

with

\[
\Sigma \equiv (P_t^X f - \text{Tr}_{j_1} P_t^X f) + \sum_{n \in \mathbb{N}} \text{Tr}_{\{j_1, \ldots, j_n\}} (P_t^X f - \text{Tr}_{j_n} P_t^X f)
\]

(4.39)

one easily arrives at the following inequality

\[
||P_t^X f - \omega f|| \leq 2||P_t^X f||
\]

(4.40)

Now the desired bound (4.14) follows from the first part of Theorem 4.4.

\[\Diamond\]

In the rest of this section we would like to consider the elementary operators defined by

\[
\mathcal{L}_{X + j}(f) = \text{Tr}_{X + j}(\gamma_{X + j} f \gamma_{X + j}) - f
\]

(4.41)

with some \(\gamma_{X + j} \in \mathcal{A} \), such that \(\text{Tr}_{X + j}(\gamma_{X + j} \gamma_{X + j}) = 1 \). This assumption assures that the finite volume dynamics \(P_t^A \equiv e^{t\mathcal{L}_X} \) have the Feller property. We would also like to formulate the general conditions implying the regularity and \(\mathbf{C}^{\infty} \) conditions. To get the first one, we will need the following simple lemma (in which we use a notation \(\{x, y\} \) for the anticommutator of operators \(x \) and \(y \), defined by \(\{x, y\} \equiv xy + yx \).

Lemma 4.5:

The operators \(\mathcal{L}_{X + j} \) admits the following representation

\[
\mathcal{L}_{X + j}(f) = \frac{1}{2} \text{Tr}_{X + j}(\{\gamma_{X + j}, f\} \gamma_{X + j}) + \frac{1}{2} \text{Tr}_{X + j}(\gamma_{X + j}[f, \gamma_{X + j}]) + \frac{1}{2} \text{Tr}_{X + j} (\{(f - \text{Tr}_{X + j} f), (\gamma_{X + j} \gamma_{X + j} - 1)\}) + (\text{Tr}_{X + j} f - f)
\]

(4.42)

and so

\[
||\mathcal{L}_{X + j}(f)|| \leq \frac{1}{2} (||\gamma_{X + j}|| \cdot ||f|| \cdot ||\gamma_{X + j}|| + ||\gamma_{X + j}|| \cdot ||[f, \gamma_{X + j}]||) + (||\gamma_{X + j} \gamma_{X + j} - 1|| + 1) \sum_{k \in \mathbb{X} + j} ||\partial_k f||
\]

(4.43)

\[\Diamond\]

Proof: We have

\[
\mathcal{L}_{X + j}(f) = \text{Tr}_{X + j}(\gamma_{X + j} f \gamma_{X + j}) - f
\]

(4.44)

\[= \frac{1}{2} \text{Tr}_{X + j}(\{\gamma_{X + j}, f\} \gamma_{X + j}) + \frac{1}{2} \text{Tr}_{X + j}(\gamma_{X + j}[f, \gamma_{X + j}]) + \frac{1}{2} \text{Tr}_{X + j} (\{(f - \text{Tr}_{X + j} f), (\gamma_{X + j} \gamma_{X + j} - 1)\}) - f
\]
Using the normalisation condition $\text{Tr}_{X+A}(\gamma_{X+A}^\dagger \gamma_{X+A}) = 1$ and a property of the partial trace, we can represent the last part of the right hand side of (4.44) as follows

$$
\frac{1}{2} \text{Tr}_{X+A} \left(\{ f, \gamma_{X+A}^\dagger \gamma_{X+A} \} \right) - f = \frac{1}{2} \text{Tr}_{X+A} \left(\{ (f - \text{Tr}_{X+A} f), (\gamma_{X+A}^\dagger \gamma_{X+A} - 1) \} \right) + (\text{Tr}_{X+A} f - f) \quad (4.45)
$$

Combining this with (4.44) we get the desired representation (4.42). The inequality (4.43) easily follows from (4.42).

\[\diamondsuit\]

Given Lemma 4.5 we obtain the following condition for the regularity.

Theorem 4.6:

Suppose

$$
\sup_{k \in \mathbb{Z}^d} \sum_{j \in \mathbb{Z}^d} \sum_{\ell \in \mathbb{Z}^d: \ell \not\in \{1, \ell_{X+A}\} \geq \ell_{k,X+A}} \| \partial \gamma_{X+A} \| < \infty \quad (4.46)
$$

Then the operators \mathcal{L}_{X+A} given by (4.41) satisfies the regularity condition.

\[\circ\]

Proof: In view of Lemma 4.5 it is sufficient to prove that the following inequality is true

$$
\| [\gamma_{X+A}, f] \| \leq \sum_k \delta_{jk}^X \| \partial_k f \| \quad (4.47)
$$

with some nonnegative constants δ_{jk}^X such that

$$
\sup_k \sum_j \delta_{jk}^X < \infty \quad (4.48)
$$

To do this let us choose a lexicographic sequence $I_n, n \in \mathbb{N}$, such that for some countable exhaustion $\mathcal{I} \equiv \{ \Lambda_1 \equiv X + \mathbb{J}, \Lambda_{m+1} \supset \Lambda_m \}_{m \in \mathbb{N}}$ we have

$$
I_n \in \Lambda_m \text{ and } I_n', I_{n'} \in \Lambda_{m+1} \setminus \Lambda_m \Rightarrow n' > n \quad (4.49)
$$

We observe now the following representation for a commutator, (which follows from the simple fact that a commutator vanishes if one of its entries equals to a multiple of the identity).

$$
[g, f] = \sum_{m \in \mathbb{N}} [\text{Tr}[I_{1, \ldots, I_m} \cdot (\partial_m g), f]] = \sum_{m \in \mathbb{N}} \sum_{n \in \mathbb{Z}^+} [\text{Tr}[I_{1, \ldots, I_m} \cdot (\partial_n g), \text{Tr}[I_{1, \ldots, I_n} \cdot (\partial_{n+1} f)]] \quad (4.50)
$$

with the convention in the second term that $\text{Tr}_{I_{m}} \equiv I$. (Observe that the last partial trace on the right hand side of (4.50) is associated to the set $\{ I_1, \ldots, I_n \}$, not to its complement, as in the previous trace.) Using also the local structure of our algebra, we get

$$
[g, f] = \sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}} [\text{Tr}[I_{1, \ldots, I_m} \cdot (\partial_n g), \text{Tr}[I_{1, \ldots, I_n} \cdot (\partial_{n+1} f)]] \quad (4.51)
$$

Hence we obtain

$$
\| [g, f] \| \leq \sum_{n \in \mathbb{N}} \left(\sum_{m \geq n} \| \partial_{n+1} f \| \right) \cdot \| \partial_{n+1} f \| \quad (4.52)
$$

An application of this formula to the case studied by us leads to the following inequality (4.47) with the corresponding constants δ_{jk}^X given by

$$
\delta_{jk}^X = \sum_{\ell \in \{ \ell_{I_{1, \ldots, I_n}} \mid \ell_{I_{1, \ldots, I_n}} \in \ell_{k,X+A} \}} \| \partial_{I_{1, \ldots, I_n}} \gamma_{I_{1, \ldots, I_n}} \| \quad (4.53)
$$
Thus the condition (4.46) implies that

$$\sup_k \sum_{j \in \mathbb{Z}^d} \delta_{kj} < \infty$$ \hspace{1cm} (4.54)

Similar considerations involving $\gamma_{X,j}$ together with the use of (4.43) allows us to construct the constants b_{jk} such that

$$||C_{X,j}(f)|| \leq \sum_{j \in \mathbb{Z}^d} b_{jk} ||\delta_{kj}||$$ \hspace{1cm} (4.55)

and

$$\sup_{k \in \mathbb{Z}^d} \sum_{j \in \mathbb{Z}^d} b_{jk} < \infty$$ \hspace{1cm} (4.56)

This ends the proof of Theorem 4.6.

Now we shall study the $\text{C}X$ condition. We have the following result

Theorem 4.7:

Suppose that (4.46) is true. Then

$$||[\delta_k, C_X](f)|| \leq \sum_{l \in X} a_{kl} \cdot ||\delta_l f||$$ \hspace{1cm} (4.57)

with

$$a_{kl} = ||\delta_k \gamma_{X,l} \cdot \delta_{kl} + \sum_{(l_n, l_n \in X) \in (l, X) \cap q(l, X)} ||\gamma_{X,l}|| \cdot ||\delta_{l_n} \gamma_{X,l}|| + \chi(1 \in X)||\gamma_{X,l}|| \cdot ||\delta_k \gamma_{X,l}||$$ \hspace{1cm} (4.58)

\ pedalpoint

Proof: Using Lemma 4.5 one can see that for any $k \in \mathbb{Z}^d$ we have

$$[\delta_k, C_X](f) = A1 + A2 + A3$$ \hspace{1cm} (4.59)

where

$$A1 \equiv \frac{1}{2} (C_{X} ([\gamma_{X}, \gamma_{X}]) - C_{X} ([\gamma_{X}, f] [\gamma_{X}]))$$ \hspace{1cm} (4.60a)

and

$$A2(f) \equiv A1 (f)^*$$ \hspace{1cm} (4.60b)

and

$$A3 \equiv \frac{1}{2} (C_{X} ((f - C_{X} [\gamma_{X}])) - C_{X} (1 - C_{X} [\gamma_{X}]))$$ \hspace{1cm} (4.61)

Let us consider first $A1$. After simple calculations one gets

$$2A1 = C_{X} ([\delta_k \gamma_{X}, \gamma_{X}]) + C_{X} ([\delta_k \gamma_{X}, f] [\delta_k \gamma_{X}])$$

$$- C_{X} (f) [\delta_k \gamma_{X}, f] [\delta_k \gamma_{X}]$$ \hspace{1cm} (4.62)

Now we use similar ideas as in (4.50) to expand γ_{X} and f. By this we get the following representation of the first term on the right hand side of (4.62)

$$C_{X} ([\delta_k \gamma_{X}, \gamma_{X}]) = \sum_{l_n \in \mathbb{L} \cap (l, X)} C_{X} ([\delta_k \gamma_{X}, l_n \gamma_{X}])$$
\[
= \sum_{l_n} \sum_{t_{n}, \not\in \mathbb{Z}^d \setminus \mathbb{Z}^d} \mathbf{Tr}_{X} \left(\left[\partial_k \mathbf{Tr}_{(\mathbb{I}_n), \ldots, \mathbb{I}_n} \gamma^X, \mathbf{Tr}_{(\mathbb{I}_n), \ldots, \mathbb{I}_n} \partial_k \gamma^X, f \right] \gamma^X \right)
\]

(4.63)

Hence we obtain the following bound on the first term on the right hand side of (4.62)

\[
\| \mathbf{Tr}_{X} \left(\left[\partial_k \gamma^X, f \right] \gamma^X \right) \| \leq \sum_{l_n} \left(\sum_{t_{n}, \not\in \mathbb{Z}^d \setminus \mathbb{Z}^d} \| \gamma^X \| \cdot \| \partial_k \gamma^X \| \right) \cdot \| \partial_k f \| \quad (4.64)
\]

The similar estimate will remain true also for the third term on the right hand side of (4.62). The second (as well as the last) term from the right hand side of (4.62) can be bounded as follows

\[
\| \mathbf{Tr}_{X} \left(\left[\mathbf{Tr}_{k} \gamma^X, f \right] \partial_k \gamma^X \right) \| \leq \sum_{l_{n} \in \mathbb{Z}^d} \| \partial_k \gamma^X \| \cdot \| \partial_k f \|
\]

(4.65)

Combining (4.64) and (4.65) we get

\[
\| A_1 + A_2 \| \leq \sum_{l_{n} \in \mathbb{Z}^d} \left(\| \partial_k \gamma^X \| \cdot \tilde{\delta}_{l_{n}} + \sum_{t_{n}, \not\in \mathbb{Z}^d \setminus \mathbb{Z}^d} \| \gamma^X \| \cdot \| \partial_k \gamma^X \| \right) \cdot \| \partial_k f \|
\]

(4.66)

For the \textbf{A3} term we have

\[
2A_3 \equiv \mathbf{Tr}_{X} \left(\left[\left(\mathbf{Tr}_{k} f - \mathbf{Tr}_{X} \mathbf{Tr}_{k} f \right), \partial_k (\gamma^X \gamma^X) \right] \right) - \mathbf{Tr}_{X} \left(\left(f - \mathbf{Tr}_{X} f \right), \partial_k (\gamma^X \gamma^X) \right)
\]

whence we obtain

\[
\| A_3 \| \leq \sum_{l_{n} \in \mathbb{X}} \| \gamma^X \| \cdot \| \partial_k \gamma^X \| \cdot \| \partial_k f \|
\]

(4.68)

Combining (4.66) and (4.68), we obtain

\[
\| \partial_k (\mathcal{L} X) (f) \| \leq \sum_{l_{n} \in \mathbb{X}} a_{k l} \cdot \| \partial_k f \|
\]

(4.69)

with

\[
a_{k l} \leq \left(\| \partial_k \gamma^X \| \cdot \tilde{\delta}_{l_{n}} + \sum_{t_{n}, \not\in \mathbb{Z}^d \setminus \mathbb{Z}^d} \| \gamma^X \| \cdot \| \partial_k \gamma^X \| \right) + \chi(1 \in \mathbb{X}) \| \gamma^X \| \cdot \| \partial_k \gamma^X \|
\]

(4.70)

This ends the proof of Theorem 4.7.

\[\Diamond\]

Since also in this paper we would like to discuss the general strategy for the case of diffusion type stochastic dynamics, some specific applications of the above presented strategy will be studied elsewhere.
5. Quantum Stochastic Dynamics: The Diffusion Case

Let \(\omega \) be an \((\alpha, \beta)\)-KMS state of a quantum lattice system. In this section we consider a family of \(L_2(\omega, \lambda) \) spaces with the following scalar product

\[
<f, g >_{\omega, \lambda} \equiv \omega \left((\alpha_{\lambda,\beta/2}(f))^* \alpha_{\lambda,\beta/2}(g) \right), \quad \lambda \in [0, 1]
\]

(5.1)

If \(\beta \in (0, \infty) \) is sufficiently small, then for \(f, g \in A_0 \) we have \(\alpha_{\lambda,\beta/2}(f), \alpha_{\lambda,\beta/2}(g) \in \mathcal{A} \) and in this case the right hand side of (5.1) make sense. In general it has to be understood in the sense of analytic continuation of an appropriate function.

In particular for \(\lambda = 0 \) we have

\[
<f, g >_{\omega, 0} = \omega(f^* g)
\]

whereas for \(\lambda = 1 \) we have

\[
<f, g >_{\omega, 1} = \omega(gf^*)
\]

The case \(\lambda = \frac{1}{2} \) has been considered in the previous sections. Let \(|| \cdot ||_{L_2(\omega, \lambda)} \) denote the corresponding norm.

The index \(\lambda \) will be frequently omitted, as all the claims of this section remain true for every \(L_2(\omega, \lambda) \) space.

For \(x \in \mathcal{A} \), let \(\nabla_x \) denote the associated derivation given by \(\nabla_x(f) \equiv i[x, f] \). Let \(\eta \) denote the translation automorphism on \(\mathcal{A} \) corresponding to the translation of the lattice by a vector \(j \in \mathbb{Z}^d \). For a subalgebra \(B \) of \(\mathcal{A} \), we define \(\tau(B) \equiv \bigcup_{j \in \mathbb{Z}^d} \eta(B) \).

For later purposes we would like to distinguish following Asymptotic Abelianess conditions.

Conditions AA :

There is \(p \in [1, 2] \), a finite set \(\mathbf{M}_0 \) of selfadjoint elements in the single spin algebra \(\mathbf{M} \) and a dense subalgebra \(\mathcal{A} \) in \(\mathcal{A} \) such that for any \(x \in \tau(\mathbf{M}_0) \) and \(f \in \mathcal{A} \), we have

Weak Asymptotic Abelianess:

\[
(WA_\mathcal{A}_p) \quad \int_{-\infty}^{\infty} ||\nabla_{\alpha_s(x)}(f)||^p_{L_2(\omega)} ds < \infty
\]

Strong Asymptotic Abelianess

\[
(SA_\mathcal{A}_p) \quad \int_{-\infty}^{\infty} ||\nabla_{\alpha_s(x)}(f)||^p ds < \infty
\]

Remark: The choice of \(\mathbf{M}_0 \) seems to be natural (see discussion given later), although some other choices should not be a priori excluded, as e.g. \(\delta^2_H(x) \).

Let \(K_\lambda \) be a positive definite function belonging to \(L_q(\mathbb{R}, ds) \), for \(q = \frac{p}{p-1} \) and suppose a condition

\(WA_\mathcal{A}_p \) is satisfied with some \(p \in [1, 2] \). We introduce an elementary quadratic form \(\mathcal{E}_x(\cdot, \cdot) \equiv \mathcal{E}_{\alpha_s(x)}(\cdot, \cdot) \) in direction \(x \in \tau(\mathbf{M}_0) \), with the domain \(\mathcal{D} \equiv \mathcal{D}(\mathcal{E}_x) = \mathcal{A} \) as follows

\[
\mathcal{E}_x(f, g) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dr ds \ K_\lambda(r - s) \langle \nabla_{\alpha_s(x)}(f), \nabla_{\alpha_s(x)}(g) >_{\omega} \equiv
\]

\[
\lim_{T \to \infty} \int_{-T}^{T} \int_{-T}^{T} dr ds \ K_\lambda(r - s) < \nabla_{\alpha_s(x)}(f), \nabla_{\alpha_s(x)}(g) >_{\omega} \lim_{T \to \infty} \mathcal{E}_x, \tau(f, g)
\]

where

\[
\mathcal{E}_x(f, g) \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dr ds \ K_\lambda(r - s) \langle \nabla_{\alpha_s(x)}(f), \nabla_{\alpha_s(x)}(g) >_{\omega} \equiv \lim_{T \to \infty} \mathcal{E}_x, \tau(f, g)
\]

If a condition \(AA_\mathcal{A} \) is true, then (using Hölder’s and Young’s inequalities) one can see that \(\mathcal{E}_x(\cdot, \cdot) \) is a well (densely) defined nonnegative form.
Suppose additionally that the function K_λ is analytic in an open strip containing $\text{Im } z \in [-1 - \lambda \beta, \lambda \beta]$ and satisfies the following conditions

$$K_\lambda(s - r - i\beta(1 - \lambda)) = K_\lambda(r - s + i\lambda)$$ \hspace{1cm} (5.3)$$

One can realize that by setting

$$K_\lambda(s) = \int_{-\infty}^\infty dq \, e^{iqs} \hat{K}_\lambda(q)$$ \hspace{1cm} (5.4)$$

with

$$\hat{K}_\lambda(q) = (1 + e^{-q(1 - 2\lambda)}) \hat{C}(q)$$ \hspace{1cm} (5.5)$$

where

$$0 \leq \hat{C}(q) = \hat{C}(-q)$$ \hspace{1cm} (5.6)$$

is some sufficiently smooth and fast decreasing function. For later purposes we assume that \hat{K}_λ is bounded for every $\lambda \in [0, 1]$ and that the following condition is satisfied

$$\sup_{\beta \in [-1 - \lambda \beta, \lambda \beta]} \int_{-\infty}^\infty dr |K_\lambda(r + i\beta)| < \infty$$ \hspace{1cm} (5.7)$$

For $T \in (0, \infty)$ we define on \mathcal{A} the following bounded generators $L_{\varepsilon, T} \equiv L_{\varepsilon, \lambda, T}$ of (completely) positive semigroups

$$L_{\varepsilon, T}(f) = L_{\varepsilon, \lambda, T}(f) = \int_{-T}^T \int_{-T}^T dr ds \, K_\lambda(r - s) i \left(\nabla_{\alpha, \varepsilon}(x)(f) \alpha_{\varepsilon}(x) - \alpha_{\varepsilon}(x) \nabla_{\alpha, \varepsilon}(x)(f) \right)$$ \hspace{1cm} (5.8a)$$

where

$$K_\lambda(r - s) \equiv K_\lambda(r - s + i\beta)$$ \hspace{1cm} (5.8b)$$

One has the following interesting fact.

Theorem 5.1:

If \textbf{SAA}_1 and (5.3) are satisfied with the positive definite kernel $K_\lambda \in L_1(\mathbb{R}, \text{d}r)$, then the following operator

$$L_\varepsilon(f) = -\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dr ds \, K_\lambda(r - s) i \left(\nabla_{\alpha, \varepsilon}(x)(f) \alpha_{\varepsilon}(x) - \alpha_{\varepsilon}(x) \nabla_{\alpha, \varepsilon}(x)(f) \right) \equiv \lim_{T \to 0} L_{\varepsilon, T}(f)$$ \hspace{1cm} (5.9)$$

is well defined as an operator $L : D_0 \to \mathcal{A}$, on a dense domain $D_0 \equiv \hat{A}$, and if

$$\sup_{\beta \in [-1 - \lambda \beta, \lambda \beta]} ||\alpha_{\beta}(x)|| \leq C_1 < \infty$$ \hspace{1cm} (5.10)$$

its quadratic form in $L_2(\omega, \lambda)$ coincides with $-E_{\varepsilon, \lambda}(\cdot, \cdot)$. Moreover the operator L_ε is:

- invariant, i.e.

$$\left(L_\varepsilon(f) \right)^* = L_\varepsilon(f^*)$$ \hspace{1cm} (5.11)$$

and dissipative, i.e. for any $f \in \hat{A}$ we have

$$\Gamma_\varepsilon(f, f) \equiv \frac{1}{2} \left(L_\varepsilon(f^* f) - (L_\varepsilon f)^* f - f^* (L_\varepsilon f) \right) \geq 0$$ \hspace{1cm} (5.12)$$

The operators (5.9) have been first introduced in $[\text{QSV}]$ in the special case of $L_2(\omega, \lambda = 0)$ space. The theorem says that one can introduce a similar well defined and symmetric operator in every $L_2(\omega, \lambda)$ space.
For the proof of this theorem, as well as for some later purposes, we need to study the nonnegative quadratic form \(E_{x,T}(\cdot, \cdot) \) and the completely positive operator \(L_{x,T} \), both defined for \(T \in (0, \infty) \) on all the algebra \(\mathcal{A} \). The quadratic form \(E_{x,T}(\cdot, \cdot) = E_{x,T}(\cdot, \cdot) \) defines a nonpositive symmetric operator \(\hat{L}_{x,T} = \hat{L}_{x,T} + \delta \hat{L}_{x,T} \) described in the following lemma.

Lemma 5.2

\[
\hat{L}_{x,T} = L_{x,T} + \delta \hat{L}_{x,T} \tag{5.13}
\]

with

\[
-\delta L_{x,T}(f) \equiv i \int_{-T}^{T} dr \int_{0}^{\beta} d\beta \left(1 - \lambda \right) \left(K_{\lambda}(T - r - i(\beta - \beta')(1 - \lambda)) \nabla_{\alpha_{r}(x)}(f) \alpha_{T + i\beta'(1 - \lambda)}(x) \right.
\]

\[
- K_{\lambda}(T - r + i(\beta - \beta')(1 - \lambda)) \nabla_{\alpha_{r}(x)}(f) \alpha_{T + i\beta'(1 - \lambda)}(x)
\]

\[
+ \lambda \left(K_{\lambda}(T - r - i(\beta - \beta')(1 - \lambda)) \nabla_{\alpha_{r}(x)}(f) - K_{\lambda}(T - r + i(\beta - \beta')(1 - \lambda)) \nabla_{\alpha_{r}(x)}(f) \right) \right)
\]

Proof of Lemma 5.2: First of all, using the formula (5.1) together with the \((\alpha_{t}, \beta)\) -KMS condition, we note that

\[
< \nabla_{\alpha_{r}(x)}(f) \nabla_{\alpha_{r}(x)}(g) >_{\omega, \lambda} = < f, i \nabla_{\alpha_{r}(x)}(g) \alpha_{T + i\beta'(1 - \lambda)}(x) - \alpha_{T - i\beta'(1 - \lambda)}(x) \nabla_{\alpha_{r}(x)}(f)>_{\omega, \lambda} \tag{5.15}
\]

Thus we have

\[
E_{x,T}(f, g) = < f, i \int_{-T}^{T} ds \int_{-T}^{T} dr ds \left(K_{\lambda}(s - r) \nabla_{\alpha_{r}(x)}(g) \alpha_{s + i\beta'(1 - \lambda)}(x) - K_{\lambda}(r - s) \alpha_{T - i\beta'(1 - \lambda)}(x) \nabla_{\alpha_{r}(x)}(f) \right) >_{\omega, \lambda} \tag{5.16}
\]

To discuss the first and the second term under the double integral, we consider the following analytic functions in a strip containing \(Im \ z \in [-i\beta(1 - \lambda), i\beta\lambda] \)

\[
z \rightarrow K_{\lambda}(z - i\beta(1 - \lambda) - r) < f, \nabla_{\alpha_{r}(x)}(g) \alpha_{x}(x) >_{\omega, \lambda} \tag{5.17}
\]

and

\[
z \rightarrow K_{\lambda}(z + i\beta\lambda - s) < f, \alpha_{x}(x) \nabla_{\alpha_{r}(x)}(g) >_{\omega, \lambda} \tag{5.18}
\]

respectively. Then by Cauchy integral theorem, we obtain for the first term

\[
\int_{-T}^{T} ds K_{\lambda}(s - r) < f, \nabla_{\alpha_{r}(x)}(g) \alpha_{T + i\beta'(1 - \lambda)}(x) >_{\omega, \lambda} = \int_{-T}^{T} ds K_{\lambda}(s - r + i\beta(1 - \lambda)) < f, \nabla_{\alpha_{r}(x)}(g) \alpha_{s}(x) >_{\omega, \lambda} +
\]

\[
+ \int_{0}^{\beta} d\beta'(1 - \lambda) \left(K_{\lambda}(T - r - i(\beta - \beta')(1 - \lambda)) < f, \nabla_{\alpha_{r}(x)}(g) \alpha_{T + i\beta'(1 - \lambda)}(x) >_{\omega, \lambda} \right.
\]

\[
- K_{\lambda}(T - r + i(\beta - \beta')(1 - \lambda)) < f, \nabla_{\alpha_{r}(x)}(g) \alpha_{T + i\beta'(1 - \lambda)}(x) >_{\omega, \lambda}
\]

and for the second

\[
\int_{-T}^{T} dr K_{\lambda}(r - s) < f, \alpha_{T - i\beta'(1 - \lambda)}(x) \nabla_{\alpha_{r}(x)}(g) >_{\omega, \lambda} = \int_{-T}^{T} dr K_{\lambda}(r - s + i\beta\lambda) < f, \alpha_{x}(x) \nabla_{\alpha_{r}(x)}(g) >_{\omega, \lambda} +
\]

\[
+ \int_{0}^{\beta} d\beta'(1 - \lambda) \left(K_{\lambda}(T - s + i(\beta - \beta')(1 - \lambda)) < f, \alpha_{T - i\beta'(1 - \lambda)}(x) \nabla_{\alpha_{r}(x)}(g) >_{\omega, \lambda} \right)
\]

and
Now applying the condition (5.3) to the K_λ in the first term on the right hand side of (5.19) together with (5.16) and setting $K_\lambda(r - s) = K_\lambda(r - s + i\beta \lambda)$, we arrive at the following equality

$$E_{\varepsilon, T}(f, g) = < f, i \int_{-T}^{T} ds K_\lambda(r - s) \left(\nabla_{s}(x) g \nabla_{x}(x) - \alpha(x) \nabla_{x}(x) g \right) \alpha_{\varepsilon, T}(g) >_{\varepsilon, \lambda} +$$

$$+ < f, i \int_{-T}^{T} ds \int_{0}^{\beta} d\beta' (1 - \lambda) \left(K_\lambda(T - r - i(\beta - \beta')(1 - \lambda)) \alpha_{T - i\beta'(1 - \lambda)}(x) \right)$$

$$- K_\lambda(-T - r - i(\beta - \beta')(1 - \lambda)) \alpha_{T - i\beta'(1 - \lambda)}(x) >_{\varepsilon, \lambda}$$

$$+ < f, i \int_{-T}^{T} ds \int_{0}^{\beta} d\beta' \lambda \left(K_\lambda(T - r - i(\beta - \beta')(1 - \lambda)) \alpha_{T - i\beta'(1 - \lambda)}(x) \nabla_{x}(x) g \right)$$

$$- K_\lambda(-T - r - i(\beta - \beta')(1 - \lambda)) \alpha_{T - i\beta'(1 - \lambda)}(x) \nabla_{x}(x) g >_{\varepsilon, \lambda}$$

$$\equiv < f, -\mathbf{L}_{\varepsilon, T}(g) >_{\varepsilon, \lambda} = < f, (-\mathbf{L}_{\varepsilon, T} - \delta \mathbf{L}_{\varepsilon, T})(g) >_{\varepsilon, \lambda}$$

This ends the proof of Lemma 5.2.

◊

The next useful fact is the following lemma.

Lemma 5.3

If

$$\sup_{\beta' \in [-\beta, \beta]} \int_{-\infty}^{\infty} d\tau |K_\lambda(r + i\beta')| < \infty$$

(5.22)

and

$$\sup_{\beta' \in [-\beta, \beta]} \|\alpha_{i\beta}(x)\| \leq C_1 < \infty$$

(5.23)

then for any $f \in \tilde{A}$ we have

$$\lim_{T \to \infty} \|\delta \mathbf{L}_{\varepsilon, T}(f)\| = 0$$

(5.24)

Moreover, if

$$\sup_{0 \leq \beta' \leq \beta} \left\{ \|\alpha_{i(\beta + \beta')}(x)\|, \|\alpha_{i(\beta + \beta')}(x)\alpha_{i(1 - \lambda/2, \beta - \beta')}(x)\| \right\} \leq C_2 < \infty$$

(5.25)

then

$$\sup_{T} \|\delta \mathbf{L}_{\varepsilon, T}\|_{L_2} \leq C < \infty$$

(5.26)

◊

Proof of Lemma 5.3: Suppose $f \in \tilde{A}$. Then we have

$$\|\delta \mathbf{L}_{\varepsilon, T}(f)\| \leq \int_{-\infty}^{\infty} d\tau \int_{0}^{\beta} d\beta' (1 - \lambda) \left(|K_\lambda(T - r - i\beta' (1 - \lambda))| + |K_\lambda(-T - r - i\beta' (1 - \lambda))| +$$

$$+ \lambda (|K_\lambda(T - r + i\beta' \lambda| + |K_\lambda(-T - r + i\beta' \lambda)|) \right) \sup_{\beta' \in [-\beta, \beta]} \|\alpha_{i\beta}(x)\| \|\nabla_{x}(x) f\|$$

(5.27)
Since by our assumption the last factor on the right hand side of (5.27) is integrable, the conditions (5.22) and (5.23) together with (5.27) imply

$$\lim_{T \to \infty} ||\delta L_{x,T}(f)|| = 0$$

(5.28)

(From (5.27) one can also see that in fact $\sup_T ||\delta L_{x,T}||_{A - \mathcal{A}} < \infty$.) If the condition (5.25) is satisfied, then the right, as well as the left, multiplication by $\alpha_{t+ix}(x)$, for any $t \in \mathbb{R}$, $\beta' \in [-\beta, \beta]$ is a bounded operator in $L^2(\omega, \lambda)$ with a norm not exceeding the left hand side of (5.27); see Lemma AIII.1 in Appendix III. Therefore we have

$$| < g, \delta L_{x,T}(f) >_{\omega, \lambda} | \leq 2C_2^2 \int_{-\infty}^{\infty} dr \int_0^\beta d\beta' \left((1-\lambda)|\mathbf{K}_\lambda(r-\beta' (1-\lambda))| + \lambda|\mathbf{K}_\lambda(r+\beta' \lambda)| \right) ||g||_{L^2(\omega, \lambda)} ||f||_{L^2(\omega, \lambda)}$$

(5.29)

Hence (5.26) follows. This ends the proof of Lemma 5.3.

\[\diamond \]

Proof of Theorem 5.1: Since for $f \in \tilde{A}$, we have

$$||L_x f|| \leq 2||K_\lambda||_{L_2(\mathbb{R})} ||f|| \int_{-\infty}^{\infty} ds ||\nabla_{a_i(x)} f||$$

(5.30)

so, if $\textbf{SAA} \ 1$ holds, the right hand side is finite, i.e. L_x is well defined on the dense domain $D_0 = \tilde{A}$. Using Lemma 5.2 and (5.24) from Lemma 5.3, one can easily see that

$$\mathcal{E}_x(f, g) = < f, -L_x g >_\omega$$

(5.31)

This ends the proof of the first part of the theorem. The $*$-invariance condition follows from our assumption that $\mathbf{K}_\lambda \geq 0$ (see (5.5)), which implies that $\mathbf{K}_\lambda \geq 0$, and therefore we also have $\mathbf{K}_\lambda(r-s) = \mathbf{K}_\lambda(s-r)$. To prove the dissipativity let us first note that for any $f, g \in D_0$ also $fg \in D_0$. Then by direct calculations with $f, g \in D_0$, we get

$$L_x(f^* g) = f^* L_x(g) + L_x(f^*) g + 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dr ds \mathbf{K}_\lambda(r-s) \nabla_{a_i(x)}(f^*) \cdot \nabla_{a_i(x)}(g)$$

(5.32)

whence, using the fact that \mathbf{K}_λ is positive definite, we obtain

$$\mathbf{\Gamma}_x(f, f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dr ds \mathbf{K}_\lambda(r-s) \nabla_{a_i(x)}(f^* \cdot \nabla_{a_i(x)}(f) \geq 0$$

(5.33)

This ends the proof of Theorem 5.1.

\[\diamond \]

Remark: Let us note that the square of gradient form $\mathbf{\Gamma}_x$ is well defined under weaker \textbf{AA} condition than the one assumed in Theorem 5.1.

It follows from Theorem 5.1 that L_x is a densely defined, symmetric and nonnegative operator in L^2, i.e. a pre - generator of a completely positive Markov semigroup. Its closure in L^2, which will be denoted later on by the same symbol L_x, can be used to define a semigroup for which the (α, β)-KMS state is invariant. It will be made clear later that the corresponding semigroup is indeed a Markov semigroup. One can expect however that such semigroup would have rather poor ergodic properties. Therefore one would like to consider a translation invariant generator defined as a sum of all elementary generators. We define it as follows. Let $x^a \in M_0, a = 1, \ldots, D$, be a base consisting of selfadjoint elements of norm one and let
\(x_j \equiv \{x^a_j = \eta(x^a)\}_{a=1,\ldots,D} \). We introduce a gradient at a point \(j \in \mathbb{Z}^2 \) by \(\nabla_{\gamma_j} f \equiv (\nabla_{\gamma_z}(\eta_{x^z}) f)_{a=1,\ldots,D} \).

With this notation we define an elementary generator \(L_j \) as follows

\[
L_j(f) \equiv \lim_{T \to \infty} L_{j,T}(f)
\]

with

\[
L_{j,T}(f) \equiv -\int_{-T}^T \int_{-T}^T d\tau ds K_\gamma(r-s) i \left(\nabla_{\gamma_j} f \cdot \alpha_s(x_j) - \alpha_r(x_j) \cdot \nabla_{\gamma_j} f \right)
\]

(5.34)

where the dot means a scalar product of finite component vectors. As follows from the definition and Theorem 5.1, \(L_j \) is a selfadjoint nonpositive operator with a domain \(\mathcal{D} \supseteq \mathcal{A} \). For \(\Lambda \in \mathcal{F} \) we define a finite volume generator \(L_\Lambda \) as follows

\[
L_\Lambda \equiv \sum_{j \in \Lambda} L_j
\]

(5.36)

with a dense domain \(\mathcal{D}(L_\Lambda) \subseteq \mathbb{L}_2(\omega) \) which is the closure of \(\mathcal{A} \) in the corresponding graph norm. By the construction it has the following properties.

Theorem 5.4

Suppose the conditions of Lemma 5.3 are satisfied for \(x = x^0_j \), \(j \in \Lambda \), \(a = 1,\ldots,D \). Then the nonnegative selfadjoint operator \((L_\Lambda, \mathcal{D}(L_\Lambda)) \) in \(\mathbb{L}_2(\omega) \) is the generator of a finite volume Markov semigroup \(P^\Lambda_t \equiv e^{tL_\Lambda} \).

Proof: The operator \(L_\Lambda \) is defined as a finite sum of nonnegative selfadjoint operators \(L_j \) with a common essential domain \(\mathcal{D}_0 \equiv \mathcal{A} \). Therefore it inherits the corresponding properties. We need only to show that it generates a Markov semigroup. For this, let us note that on its essential domain \(\mathcal{D}_0 \equiv \mathcal{A} \) we have

\[
L_{\Lambda,T} f = \lim_{T \to \infty} L_{\Lambda,T} f, \quad f \in \mathcal{D}_0
\]

(5.37)

where \(L_{\Lambda,T} \) is defined as a corresponding sum of bounded generators \(L_{j,T} \), \(j \in \Lambda \) given in (5.35). Clearly \(L_{\Lambda,T} \) is bounded on \(\mathcal{A} \). Therefore it can be used to define a Markov semigroup \(P^\Lambda_{t,T} \equiv e^{tL_{\Lambda,T}} \) on \(\mathcal{A} \). Let \(L_{A,T} \) be a selfadjoint nonnegative operator in \(\mathbb{L}_2 \) defined by the quadratic form

\[
\mathcal{E}_{\Lambda,T}(f,g) \equiv \sum_{j \in \Lambda} \mathcal{E}_{j,T}(f,g)
\]

(5.38)

with

\[
\mathcal{E}_{j,T}(f,g) \equiv \sum_{a=1,\ldots,D} \mathcal{E}_{j,T}^a(f,g)
\]

(5.39)

Under the conditions of Lemma 5.3 it is now easy to see that the operator

\[
\delta L_{\Lambda,T} \equiv L_{\Lambda,T} - L_{A,T}
\]

(5.40)

satisfies

\[
\sup_{T \in (0,\infty)} \|\delta L_{\Lambda,T}\|_{\mathbb{L}_2} \leq C |\Lambda|
\]

(5.41)

with some positive constant \(C \) independent of \(\Lambda \). Using this and observing that \(P^\Lambda_{t,T} \equiv e^{tL_{\Lambda,T}} = e^{t(L_{\Lambda,T} - \delta L_{\Lambda,T})} \) by an appropriate Duhamel expansion in \(\mathbb{L}_2 \), we arrive at the following stability estimate

\[
\|P^\Lambda_{t,T}\|_{\mathbb{L}_2} \leq e^{tC|\Lambda|}
\]

(5.42)

This together with (5.37) implies (via Theorem 7.2, p. 44 in [Go]) that

\[
P^\Lambda_t f = \mathbb{L}_2 - \lim_{T \to \infty} P^\Lambda_{t,T} f
\]

(5.43)

27
for any \(f \in L_2 \) and since every \(P^\Lambda_t \) is positivity and unit preserving, so must be \(P^\Lambda_t \). This ends the proof of Theorem 5.4.

\[\Diamond \]

Remark: Since our proof relies on some \(L_2 \) procedures, it does not tell us whether the semigroup \(P^\Lambda_t \), \(t \geq 0 \), has a Feller property, although the approximating semigroups \(P^\Lambda_{t,T} \) clearly have it.

A global generator \(\mathbf{L} \) is formally defined as follows

\[
\mathbf{L} \equiv \sum_{j \in \mathbb{Z}^d} \mathbf{L}_j
\]

To give a rigorous meaning to this definition we will need to impose the following additional restriction called **Hyper Asymptotic Abelianity:**

Suppose \(\mathcal{A} = A_0 \) and we have

\[
(HAA) \quad \| \| \nabla_{x,j}(f) \| \|_{L_2(\omega)} < \psi(s,f)
\]

with some positive function \(\psi(s,f) \) such that

\[
\psi(s,f) \leq C(f)(1 + |s|)^{-(d+1+\varepsilon)/2}
\]

with some positive constants \(C(f) \) and \(\varepsilon \) possibly dependent on the function \(f \).

The following result shows that definition of the global generator can make sense.

Theorem 5.5. Suppose that the following **Finite Speed of Propagation** property for automorphism group \(\alpha \), is true for any \(f \in \mathcal{A}_\Lambda \), \(\Lambda \in \mathcal{F} \),

\[
\| \| \nabla_{x,j}f \| \| \leq D(f)e^{-\kappa |d[\Lambda]|^{-1/2}}
\]

with some positive constants \(D(f), \kappa \) and \(v \) possibly dependent on \(f \in \mathcal{A}_0 \). Then the global generator \(\mathbf{L} \) is a well defined selfadjoint operator in \(L_2(\omega) \) with a dense domain \(D(\mathbf{L}) \supseteq A_0 \), provided the condition \(HAA \) is satisfied. Moreover the corresponding semigroup \(P_t \equiv e^{t\mathbf{L}} \) is Markov.

Remark: The finite speed of propagation of information (5.46) for automorphism semigroups of quantum spin systems on a lattice has been proven long time ago in [LR].

Proof: Let us consider the increasing sequence of nonnegative, symmetric and closed quadratic forms \(\mathcal{E}_\Lambda(\cdot,\cdot) \), \(\Lambda \in \mathcal{F} \), with a common dense essential domain \(\mathcal{A} \). By general arguments, see e.g. [Ka] Theorem 3.13, p. 461, the quadratic form

\[
\mathcal{E}(\cdot,\cdot) \equiv \lim_{\mathcal{F}_\lambda} \mathcal{E}_\lambda(\cdot,\cdot)
\]

if well defined on a dense domain, is also closed, symmetric and nonnegative quadratic form. Thus in this case it defines a selfadjoint operator, denoted later on by \(-\mathbf{L}\). Moreover we have by general arguments ([Ka] Theorem 3.13, p. 461), that the resolvent \(\mathbf{R}(\lambda) \) of the operator \(\mathbf{L} \) satisfies

\[
\mathbf{R}(\lambda) = \lim_{\mathcal{F}_\lambda} (\lambda - \mathbf{L})^{-1}
\]

(5.48)

Since by Theorem 5.4 the finite volume resolvents on the right hand side of (5.48) are positive for \(\lambda \in \mathbb{R}^+ \), so is \(\mathbf{R}(\lambda) \). This implies that \(\mathbf{L} \) is a Markov generator. Now to finish the proof it suffices to show that the quadratic form \(\mathcal{E}(\cdot,\cdot) \) is well defined on \(\mathcal{A} \). To do this we note that

\[
0 \leq \mathcal{E}(f,f) \leq \sum_{j \in \mathbb{Z}^d} \sum_{a = 1, \ldots, D} \int_0^\infty \int_0^\infty dr ds \mathcal{K}_\lambda(r-s) \| \nabla_{x,\tau_{[\varepsilon]}}(f) \|_{L_2} \cdot \| \nabla_{x,\tau_{[\varepsilon]}}(f) \|_{L_2} \leq
\]

(5.49)
\[
||\hat{K}_\lambda||_{\infty} \sum_{j \in \mathbb{Z}^d} \sum_{a=1}^D \int_{-\infty}^\infty ds ||\nabla_{\alpha, \tau_j(x)}(f)||^2_{L_2} < \infty
\]
(5.49)

(where we have used property of the Fourier transform of a convolution and the Parseval’s equality). Thus it is sufficient to show that for arbitrary \(A_0 \in \mathcal{F}\) and every \(f \in \mathcal{A}_{\lambda_0}\), we have

\[
\sum_{j \in \mathbb{Z}^d} \int_{-\infty}^\infty ds ||\nabla_{\alpha, (\tau_j(x))}f||^2_{L_2} < \infty
\]
(5.50)

for any \(x\) in the chosen base of \(M_0\). To do that, first we represent the sum on the left hand side of (5.50) as follows

\[
\sum_{N \in \mathbb{N}} \sum_{N-1 \leq \|j\|_0 < N} \int_{-\infty}^\infty ds ||\nabla_{\alpha, j(x)}f||^2_{L_2} =
\sum_{N \in \mathbb{N}} \sum_{N-1 \leq \|j\|_0 < N} \left(\int_{|s| < \frac{\|j\|_0}{2\pi}} ds ||\nabla_{\alpha, j(x)}f||^2_{L_2} + \int_{|s| > \frac{\|j\|_0}{2\pi}} ds ||\nabla_{\alpha, j(x)}f||^2_{L_2} \right)
\]
(5.51)

Now, using the finite speed of propagation (5.46), we get the following bound on the first part of the sum on the right hand side of (5.51).

\[
\sum_{N \in \mathbb{N}} \sum_{N-1 \leq \|j\|_0 < N} \int_{|s| < \frac{\|j\|_0}{2\pi}} ds ||\nabla_{\alpha, j(x)}f||^2_{L_2} \leq \sum_{N \in \mathbb{N}} \sum_{N-1 \leq \|j\|_0 < N} \frac{N}{v} D(f) e^{-vN} < \infty
\]
(5.52)

To obtain an estimate on the second part of the sum on the right hand side of (5.51) we make use of our HAA assumption. We get

\[
\leq \sum_{N \in \mathbb{N}} \sum_{N-1 \leq \|j\|_0 < N} \int_{|s| > \frac{\|j\|_0}{2\pi}} ds \psi(s, f)^2 \leq \sum_{N \in \mathbb{N}} \sum_{N-1 \leq \|j\|_0 < N} \int_{|s| > \frac{\|j\|_0}{2\pi}} ds C(f)(1 + |s|)^{(d+1+\varepsilon)} \leq \sum_{N \in \mathbb{N}} \sum_{N-1 \leq \|j\|_0 < N} C_1(N+1)^{(d+1+\varepsilon)} \leq \sum_{N \in \mathbb{N}} C_2 N^{d-1}(N+1)^{(d+1+\varepsilon)} < \infty
\]
(5.53)

with some positive constants \(C_1\) and \(C_2\) dependent on \(f\). Combining (5.52) and (5.53), we obtain the desired estimate (5.50). This ends the proof of Theorem 5.5.

\[\diamond\]

It does not follow from our construction whether the infinite volume Markov semigroup \(P_t \equiv e^{tL}\) can have a Feller property. This would be desirable in order to have a more interesting ergodicity theory. Therefore it would be useful to find some general conditions under which one could construct a Feller semigroup, i.e. a Markov semigroup mapping the algebra \(\mathcal{A}\) into itself. One could have a hope that such result is possible if one would impose the following Ultrastrong Asymptotic Abelianess condition:

There are positive constants \(C\) and \(\varepsilon\) such that

\[
||\nabla_{\alpha, j(x)}f|| \leq C(1 + |x|)^{-d-1-\varepsilon}
\]
(UAA)

for any \(f \in \mathcal{A}_0\) and \(x \in \mathbb{M}\).

Then of course one could mimic our arguments to show that the operator \(L\) from (5.44) is defined on the dense domain \(\mathcal{A}_0\), which is in this case mapped into \(\mathcal{A}\). Unfortunately such the appealing direction is wrong.
This is because already the modified \textbf{UAA} condition with the decay \((1 + |s|)^{-B_c}\), with arbitrary \(B > d\), implies for any \(x \in \mathcal{A}_0\) the following estimate
\[
\|\| \alpha_s(x) \|\| \leq C(1 + |s|)^{-(B-d)} \tag{5.54}
\]
provided the Finite Speed of Propagation property is true; here the triple bar norm \(\|\| : \|\|\) is the same as in Section 4 (because of Lemma IV.1 in the Appendix IV). But if (5.54) holds, then for any two \(\alpha_s\)-invariant states \(\omega\) and \(\tilde{\omega}\), and any selfajoint \(f \in \mathcal{A}_0\) we get
\[
|\omega(f) - \tilde{\omega}(f)| = |\omega(\alpha_s f) - \tilde{\omega}(\alpha_s f)| = |\alpha_s(f) - 1 \otimes \alpha_s f| \leq 2\|\| \alpha_s(f) \|\| \longrightarrow 0 \tag{5.55}
\]
when \(s \to \infty\). This implies that there could be only one \((\alpha_\epsilon, \beta)\text{-KMS}\) state for all temperatures. Clearly such a situation is not very exciting and we should not follow in this direction. Let us note that actually this excludes also the possibility of introducing a strong version of \textbf{HAA} , with \(L_2\) norm replaced by the algebra norm, in case when \(d = 1\). We do not know at the moment whether or not the weak asymptotic abelianess with \(\tilde{\mathcal{A}} = \mathcal{A}_0\) can hold with a faster decay than the strong one. It may be so that in one dimensional systems one can realize only a spin flip stochastic dynamics considered in previous sections.

\textbf{Acknowledgements}: The authors A.W.M and B.Z would like to thank for hospitality at the Mathematics Department of Bochum University and the Institute of Theoretical Physics and Astrophysics of Gdansk University, respectively. This work has been supported by EC grants ERB510PL920722/5874 and ERBCPACT921515/3523, without which this work would never be done.

The authors would like also to thank L. Accardi for pointing out that the operators similar to \(E_{X, \lambda}\) (discussed in Section 3) has been first considered in his work [A] in the context of quantum Markov chains.

\textbf{Appendix I:}

In this Appendix we give a simple proof of the inequality
\[
\|f\|_{\mathbb{L}_q(\omega_A)} \leq \|f\| \tag{AI.0}
\]
For this we will need the following lemma in which we set \(A \equiv |\rho^{\frac{1}{2}} f \rho^{\frac{1}{2}}|\)

\textbf{Lemma AI.1}

For any \(k \in \mathbb{N}\), and \(q \geq 2^k + 1\) we have
\[
\|f\|_{\mathbb{L}_q(\omega_A)} \leq \|f\|^{1 + \frac{1}{2} + \ldots + \frac{1}{2^k}} \left(\text{Tr} A^{q - 1 - 2^k} \rho^{\frac{1}{2}} f^* \rho^{\frac{1}{2}} \right)^{\frac{1}{2^k}} \tag{AI.1}
\]

\textbf{Proof}: Let us consider first the case \(k = 1\). We have
\[
\|f\|_{\mathbb{L}_q(\omega_A)} = \text{Tr} A^q = \text{Tr} \left(A^{q - 2} \rho^{\frac{1}{2}} f^* \rho^{\frac{1}{2}} \rho^{\frac{1}{2}} \right) = \text{Tr} \left(A^{q - 1} \rho^{\frac{1}{2}} f^* \rho^{\frac{1}{2}} \right) \left(f \rho A f \right)^{\frac{1}{2}} \tag{AI.2}
\]
Applying to the right hand side of (AI.2) the Hölder inequality we get
\[
\|f\|_{\mathbb{L}_q(\omega_A)} \leq \left(\text{Tr} \left(A^{q - 1} \rho f^* \rho A f \right) \right)^{\frac{1}{2}} \left(\text{Tr} \left(A^{q - 1} \rho f^* \rho A f \right) \right)^{\frac{1}{2}} = \left(\text{Tr} \left(A^{q - 1} \rho f^* \rho A f \right) \right)^{\frac{1}{2}}
\]
\[
\left(\text{Tr} \left(A^{q-3} \rho \frac{\partial^*}{\rho \frac{\partial}{\rho}} f^* f \rho \frac{\partial}{\rho} \right) \right)^{\frac{1}{2}} \left(\text{Tr} \left(A^{\frac{q-3}{2} + \frac{1}{2} \rho f^* f \rho A^{\frac{q-3}{2} + \frac{3}{2} q} \right) \right)^{\frac{1}{2}} \quad (A.3)
\]

The second factor on the right hand side of (A.3) can be estimated as follows

\[
\left(\text{Tr} \left(A^{\frac{q-3}{2} + \frac{1}{2} \rho f^* f \rho A^{\frac{q-3}{2} + \frac{3}{2} q} \right) \right)^{\frac{1}{2}} \leq ||f|| \left(\text{Tr} \left(A^{q-1} \rho \frac{\partial}{\rho} \right) \right)^{\frac{1}{2}} \quad (A.4)
\]

Since by our assumption \(\text{Tr} \rho = 1 \), by Hölder inequality for the trace, we estimate the second factor from the right hand side of (A.4) as follows

\[
\left(\text{Tr} \left(A^{q-1} \rho \frac{\partial}{\rho} \right) \right)^{\frac{1}{2}} \leq (\text{Tr} A^q) \frac{q-1}{2} \equiv ||f|| \frac{q-1}{2} \left(\text{Tr} A^q \right) \quad (A.5)
\]

From (A.4)-(A.5) we get

\[
\left(\text{Tr} \left(A^{\frac{q-3}{2} + \frac{1}{2} \rho f^* f \rho A^{\frac{q-3}{2} + \frac{3}{2} q} \right) \right)^{\frac{1}{2}} \leq ||f|| \cdot ||f|| \frac{q-1}{2} \left(\text{Tr} A^q \right) \quad (A.6)
\]

Using this together with (A.2)-(A.3) we get

\[
||f|| \frac{q-1}{2} \left(\text{Tr} A^{q-1} \rho f^* f \rho A^{\frac{q-1}{2} q} \right)^{\frac{1}{2}} \quad (A.7)
\]

This ends the proof of the case \(k = 1 \). Let us suppose now that (A.1) is true for some \(k - 1 \in \mathbb{N} \) such that \(2^{k-1} + 1 < q \). We will show that it has to be true also for \(k \). For this we note that the \(2^{k-1} \) power of the second factor from the right hand side of (A.1) with \(k - 1 \) can be represented as follows

\[
\text{Tr} \left(A^{q-1} \rho f^* f \rho A^{\frac{q-1}{2} q} \right) = \text{Tr} \left(\left(A^{\frac{q-1}{2} q} \rho f^* f \rho A^{\frac{q-1}{2} q} \right) \left(f \rho A^{\frac{q-1}{2} q} \right) \right) \quad (A.8)
\]

Applying to the right hand side of (A.8) the Hölder inequality we get

\[
\text{Tr} \left(A^{q-1} \rho f^* f \rho A^{\frac{q-1}{2} q} \right) \leq \left(\text{Tr} \left(A^{q-1} \rho f^* f \rho A^{\frac{q-1}{2} q} \right) \right) \frac{1}{2} \left(\text{Tr} \left(A^{q-1} \rho f^* f \rho A^{\frac{q-1}{2} q} \right) \right) \frac{1}{2} \quad (A.9)
\]

The first factor has the correct form. The second can be estimated, by similar arguments as in the case \(k = 1 \), as follows

\[
\left(\text{Tr} \left(A^{q-1} \rho f^* f \rho A^{\frac{q-1}{2} q} \right) \right)^{\frac{1}{2}} \leq ||f|| \left(\text{Tr} \left(A^{q-1} \rho \frac{\partial}{\rho} \right) \right)^{\frac{1}{2}} \leq ||f|| \cdot ||f|| \frac{q-1}{2} \left(\text{Tr} A^q \right) \quad (A.10)
\]

Using the above considerations (A.8)-(A.10), we obtain the following bound

\[
\left(\text{Tr} \left(A^{q-1} \rho f^* f \rho A^{\frac{q-1}{2} q} \right) \right)^{\frac{1}{2}} \leq ||f|| \cdot ||f|| \frac{q-1}{2} \left(\text{Tr} A^{q-1} \rho f^* f \rho A^{\frac{q-1}{2} q} \right)^{\frac{1}{2}} \quad (A.11)
\]

From this and (A.1) for the case \(k - 1 \), we get

\[
||f|| \leq \left(||f||^{q-1} \frac{q-1}{2} \right)^{\frac{1}{q-1}} \leq \left(||f||^{q-1} \frac{q-1}{2} \right)^{\frac{1}{q-1}} \cdot \left(||f|| \frac{q-1}{2} \right)^{\frac{1}{q-1}} \quad (A.12)
\]
Hence the case \(k \) follows. This ends the proof of the lemma.

\[\Box\]

In particular if \(q = 2^k + 1 \), Lemma A.1 gives us the following estimate

\[\|f\|^2_{L^2(\omega_{\Lambda_0})} \leq \|f\|^{2 - \frac{2}{2^k + 1}}_{L^1} \left(\text{Tr} \left(\omega \rho f \rho f \right) \right)^{\frac{1}{2^k + 1}} \] \hfill (A.13)

Now we note that the following lemma is true.

Lemma A.1.2. For any \(s \in [0,1] \) we have

\[(\text{Tr} \left(\rho^s f \rho^{1-s} f \right))^{\frac{1}{2}} \leq (\text{Tr} \rho f f^*)^{\frac{1}{2}} (\text{Tr} \rho f f^*)^{\frac{1}{2^k + 1}} \] \hfill (A.14)

Use of Lemma A.1.2 for \(s = \frac{1}{2} \) together with (A.13) ends the proof of the desired inequality (A.0) for \(p = 2^k + 1 \). The general case now follows from the Hölder inequality on the left hand side of (2.32).

Proof of Lemma A.1.2. The shortest proof one gets by applying the three lines theorem to the bounded analytic in the strip \(\Re z \in [0, 1] \) function

\[\text{Tr} \left(\rho^{z} f \rho^{1-z} f \right) \] \hfill (A.15)

For the case of interest to us with \(s = \frac{1}{2} \), \(q = 2^k + 1 \), one can use also the following elementary induction. We apply the following elementary step \(2^k \) times.

\[\text{Tr} \left(\rho^{z} f \rho^{1-z} f \right) = \left(\text{Tr} \left(\rho^{z} f \rho^{1-z} f \right) \right) \leq \left(\text{Tr} \left(\rho^{z} f \rho^{1-z} f \right) \right)^{\frac{1}{2}} \] \hfill (A.16)

for \(l = 0, \ldots, k - 1 \). In this way we arrive at the following inequality

\[\left| \text{Tr} \rho^{z} f \rho^{1-z} f \right| \leq \left(\text{Tr} \rho f f^* \right)^{\frac{1}{2^k + 1}} \] \hfill (A.17)

The second term on the right hand side involves the similar expression as the starting one, with the roles of \(f \) and \(f^* \) exchanged. Therefore we can apply to it the same arguments. Using this, by induction we arrive at the inequality of interest to us.

\[\Box\]

Appendix II

Let us define the following function

\[\gamma_{X, \Lambda}(z) \equiv \rho_\Lambda^{z} (\text{Tr}_X \rho_\Lambda)^{-z} = e^{-z \beta H_\Lambda} \left(\text{Tr}_X e^{-\beta H_\Lambda} \right)^{-z} \] \hfill (AII.1)

As for every \(\Lambda \in \mathcal{F} \) the symmetric operator \(H_\Lambda \) is bounded, it is clear that this is an operator analytic function on \(C \). Moreover the following useful fact is true.
Lemma AII.1:
Let β_0 be the radius of analyticity. Then there is a constant $C \in (0, \infty)$ such that for any $\Lambda \in \mathcal{F}$, $\beta \in (-\beta_0, \beta_0)$ and $z \in \mathbb{C}$, $|\text{Re} z| \leq 1$ we have
\[
\|\gamma_{\Lambda}(z)\| \leq C \quad (AII.2)
\]

Proof: Since the function $\gamma_{\Lambda}(z)$ is analytic, applying the three lines theorem in the strip $0 \leq \text{Re} z \leq 1$, we have
\[
\|\gamma_{\Lambda}(z)\| \leq \sup_{t \in \mathbb{R}} \|\gamma_{\Lambda}(1 + it)\|^{\text{Re} z} \quad (AII.3)
\]
Clearly from the definition of $\gamma_{\Lambda}(z)$, we have
\[
\|\gamma_{\Lambda}(1 + it)\| \leq \|\gamma_{\Lambda}(1)\| \quad (AII.4)
\]
Let us note now that
\[
\gamma_{\Lambda}(1) \equiv \epsilon^{\beta H_\Lambda} (\text{Tr} X e^{-\beta H_\Lambda})^{-1} = \xi_{\Lambda}(1) (\text{Tr} X \xi_{\Lambda}(1))^{-1} \quad (AII.5)
\]
where we have used a particular case of the following notation
\[
\xi_{\Lambda}(s) \equiv \epsilon^{s \beta H_\Lambda} e^{-s \beta H_\Lambda} \quad (AII.6)
\]
Now we observe that, if the set X is sufficiently far from the boundary of Λ, we have
\[
\frac{d}{ds} \xi_{\Lambda}(s) = \beta \alpha_{\Lambda}^\Lambda(U_X) \cdot \xi_{\Lambda}(s) \quad (AII.7)
\]
where $U_X \equiv \sum_{\gamma \Lambda \neq \Psi} \Phi_Y$. If $(1 + \delta) \beta \in (-\beta_0, \beta_0)$, with some $\delta \in (0, \infty)$, we have for $s \in [-1 - \delta, 1 + \delta]$, the following unique solution of the differential equation (AII.7) subjected to the initial condition $\xi_{\Lambda}(s = 0) = 1$
\[
\xi_{\Lambda}(s) = 1 + \sum_{n=1}^{\infty} \beta^n \int_{-\delta}^{\delta} ds_1 \ldots \int_{-\delta}^{\delta} ds_n \alpha_{\Lambda}^\Lambda(U_X) \ldots \alpha_{\Lambda}^\Lambda(U_X) \quad (AII.8)
\]
Hence we get
\[
e^{-\beta_0 \sup_{\gamma \Lambda \neq \Psi} \|\alpha_{\Lambda}^\Lambda(U_X)\|} \leq \|\xi_{\Lambda}(s)\| \leq e^{\beta_0 \sup_{\gamma \Lambda \neq \Psi} \|\alpha_{\Lambda}^\Lambda(U_X)\|} \quad (AII.9)
\]
Using this and (AII.5) we get that for $s_0 = \pm 1$ we have
\[
\|\gamma_{\Lambda}(s_0)\| \leq e^{2\beta_0 \sup_{\gamma \Lambda \neq \Psi} \|\alpha_{\Lambda}^\Lambda(U_X)\|} \quad (AII.10)
\]
On the other hand it is clear that
\[
\|\gamma_{\Lambda}(s = 0)\| = 1 \quad (AII.11)
\]
Since $\gamma_{\Lambda}(z)$ is analytic in the strip $|\text{Re} z| < 1 + \delta$, (and obviously bounded for any fixed $\Lambda \in \mathcal{F}$), using the three lines theorem, we conclude that for any z with $0 \leq |\text{Re} z| \leq 1$ we have
\[
\|\gamma_{\Lambda}(z)\| \leq e^{2\beta_0 z \sup_{\gamma \Lambda \neq \Psi} \|\alpha_{\Lambda}^\Lambda(U_X)\|} \quad (AII.12)
\]
This ends the proof of Lemma AII.1.
\[\diamondsuit\]
Using the method of [Ar] one can also show the similar result for the spin systems with finite range interactions on one dimensional lattice at arbitrary temperature. From the uniform boundedness result for the sequence of operator valued analytic in the strip functions $\gamma_{\lambda}(z)$, we see that one can choose a (weakly) convergent subsequence to an operator valued analytic function $\gamma_{\lambda}(z)$. In general the limit point $\gamma_{\lambda}(z)$ need not to be an element of the algebra \mathcal{A}.

Appendix III

In this Appendix we consider left and right multiplication operators in $L_2(\omega, \lambda)$.

Lemma III.1

For any $f, g \in L_2(\omega, \lambda)$ and an operator F such that $F g$ and $g F$ are in $L_2(\omega, \lambda)$ we have

$$| < f, F g >_{\omega, \lambda} | \leq ||a_{i\lambda\beta/2}(F)|| < f, f >_{\omega, \lambda}^{1/2} < g, g >_{\omega, \lambda}^{1/2}$$

(AIII.1)

and

$$| < f, g F >_{\omega, \lambda} | \leq ||a_{i\lambda\beta/2}(F)\alpha_{i(1-\lambda/2)\beta}(F^*)|| < f, f >_{\omega, \lambda}^{1/2} < g, g >_{\omega, \lambda}^{1/2}$$

(AIII.2)

Proof: We have

$$< F g, F g >_{\omega, \lambda} = \omega((a_{i\lambda\beta/2}(g))^* (a_{i\lambda\beta/2}(F))^* (a_{i\lambda\beta/2}(F) (a_{i\lambda\beta/2}(g))) \leq ||a_{i\lambda\beta/2}(F)||^2 < g, g >_{\omega, \lambda}$$

(AIII.3)

From this the inequality (AIII.1) follows. To get the inequality (AIII.2) we note that by definition of the scalar product and the KMS condition for the state ω we have

$$< g F, g F >_{\omega, \lambda} = \omega((a_{i\lambda\beta/2}(F))^* (a_{i\lambda\beta/2}(g))^* (a_{i\lambda\beta/2}(g) (a_{i\lambda\beta/2}(F))) =$$

(AIII.4)

$$= \omega((a_{i\lambda\beta/2}(g))^* (a_{i\lambda\beta/2}(g) (a_{i\lambda\beta/2}(F) (a_{i\lambda\beta/2}(F)^*))))$$

Hence by Schwartz inequality we obtain

$$< g F, g F >_{\omega, \lambda} \leq$$

(AIII.5)

$$\leq < g, g >_{\omega, \lambda}^{1/2} \cdot (\omega((a_{i\lambda\beta/2}(F)\alpha_{i(1-\lambda/2)\beta}(F^*))^* (a_{i\lambda\beta/2}(g))^* (a_{i\lambda\beta/2}(g) (a_{i\lambda\beta/2}(F) (a_{i(1-\lambda/2)\beta}(F^*))))^{1/2}$$

Iterating this procedure, in the limit we arrive at the following bound

$$< g F, g F >_{\omega, \lambda} \leq < g, g >_{\omega, \lambda} ||(a_{i\lambda\beta/2}(F)\alpha_{i(1-\lambda/2)\beta}(F^*))||$$

(AIII.6)

This clearly implies the inequality (AIII.2). \diamond

Appendix IV

Let $\{x^a : a = 1, \ldots, D\}$ be a base of the single spin algebra M_3, consisting of unitary operators. We define a seminorm $||| \cdot |||$ on \mathcal{A}_0 as follows

$$|||f|||_b \equiv \sum_{j \in \mathbb{Z}^d} \|\nabla_{x^j} f\|$$

(AIV.1)
Let

$$||f|| \equiv \sum_{j \in \mathbb{Z}^d} ||\partial_j f||$$ \hspace{1cm} (AIV.2)\\

where

$$\partial_j \equiv f - \text{Tr}_j f$$ \hspace{1cm} (AIV.3)

Lemma IV.1

The triple bar seminorms introduced above are equivalent and one has with some \(\lambda > 0 \)

$$\lambda^{-1} ||f||_b \leq ||f|| \leq \lambda ||f||$$ \hspace{1cm} (AIV.4)

\[\diamondsuit\]

Proof: We have

$$||\nabla x_j f|| = ||[x_j^\Phi, f]|| = ||[x_j^\Phi, f - \text{Tr}_j f]|| \leq 2||f - \text{Tr}_j f|| = 2||\partial_j f||$$ \hspace{1cm} (AIV.5)

Summation over \(a \)'s and \(j \)'s yields the right hand side inequality in (AIV.4). To get the inequality on the left hand side we observe first that for any vector \(\Phi \) and a positive operator \(f \) we have

$$||[x_j^\Phi, f]|| = ||x_j^\Phi f x_j^\Phi - f|| \geq \pm(\Phi, (x_j^\Phi f x_j^\Phi - f) \Phi)$$ \hspace{1cm} (AIV.6)

By an appropriate choice of the vector \(\Phi \) and the base \(x_j^\Phi : a = 1, \ldots, D \), one can arrange that \(x_j^\Phi \Phi : a = 1, \ldots, D' \), with \(D' \leq D \), is an O-N base in the corresponding finite dimensional Hilbert space associated to the point \(j \). Then summation over \(a \)'s of (AIV.6) yields

$$\sum_{a=1, \ldots, D'} ||[x_j^a, f]|| \geq \pm(\Phi, (f - \text{Tr}_j f) \Phi) = \pm(\Phi, \partial_j f \Phi)$$ \hspace{1cm} (AIV.7)

Hence taking the possible linear combinations with different \(\Phi \) and the supremum over all possible choices, we arrive at the following inequality

$$\sum_{a=1, \ldots, D'} ||[x_j^a, f]|| \geq ||\partial_j f||$$ \hspace{1cm} (AIV.8)

Summing over \(j \)'s we obtain the left hand side inequality (AIV.4) for a positive operator \(f \). From this the general case follows by an appropriate choice of the constant.

\[\diamondsuit\]

References

35

