DIRECT AND INVERSE THEOREMS FOR SZÁSZ-LUPAS TYPE OPERATORS IN SIMULTANEOUS APPROXIMATION

Naokant Deo

Abstract. In this paper we give the direct and inverse theorems for Szász-Lupas operators and study the simultaneous approximation for a new modification of the Szász operators with the weight function of Lupas operators.

1. Introduction

Let f be a function defined on the interval $[0, \infty)$ with real values. For $f \in [0, \infty)$ and $n \in \mathbb{N}$, the Szász operator $S_n(f, x)$ is defined as follows:

$$S_n(f, x) = \sum_{k=0}^{\infty} s_{n,k}(x) f(k/n), \text{ where } s_{n,k}(x) = e^{-nx} (nx)^k / k!.$$

The Szász-type operator $L_n(f, x)$ is defined by

$$L_n(f, x) = \sum_{k=0}^{\infty} s_{n,k}(x) \phi_{n,k}(f),$$

where

$$\phi_{n,k}(f) = \begin{cases} f(0), & \text{for } k = 0 \\ n \int_{0}^{\infty} s_{n,k}(t) f(t) dt, & \text{for } k = 1, 2, \ldots \end{cases}$$

In [10], Mazhar and Totik introduced the Szász-type operator and showed some approximation theorems. Lupas proposed a family of linear positive operators mapping $C[0, \infty)$ into $C[0, \infty)$, the class of all bounded and continuous functions on $[0, \infty)$ namely,

$$(B_n f)(x) = \sum_{k=0}^{\infty} p_{n,k}(x) f(k/n), \text{ where } p_{n,k}(x) = \binom{n+k-1}{k} x^k (1 + x)^{n+k}.$$

AMS Subject Classification: 41A35

Keywords and phrases: Linear positive operators, linear combination, integral modulus of smoothness, Steklov means.
Motivated by the integration of Bernstein polynomials of Derriennic [4], Sahai and Prasad [11] modified the operators \(B_n \) for function integrable on \([0, \infty)\) as
\[
(M_n f)(x) = (n - 1) \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^{\infty} p_{n,k}(t) f(t) \, dt.
\]

Now we consider another modification of operators with the weight function of Lupas operators, which are defined as
\[
(V_n f)(x) = (n - 1) \sum_{k=0}^{\infty} s_{n,k}(x) \int_0^{\infty} p_{n,k}(t) f(t) \, dt. \quad (1.1)
\]
The norm \(\|f\|_{C_\alpha} \) on the space \(C_\alpha[0, \infty) = \{ f \in C[0, \infty) : |f(t)| \leq K t^\alpha \text{ for some } \alpha > 0 \text{ and } K > 0 \} \) is defined by
\[
\|f\|_{C_\alpha} = \sup_{0 \leq t < \infty} |f(t)| t^{-\alpha}.
\]

To improve the saturation order \(O(n^{-1}) \) for the operator (1.1), we use the technique of linear combination as described below:
\[
V_n (f, k, x) = \sum_{j=0}^{k} C(j, k) V_{d_j, n}(f, x),
\]
where
\[
C(j, x) = \prod_{i=0, i \neq j}^{k} \frac{d_j}{d_j - d_i} \text{ for } k \neq 0 \text{ and } C(0, 0) = 1
\]
and \(d_0, d_1, d_2, \ldots, d_k \) are \((k+1)\) arbitrary, fixed and distinct positive integers. For our convenience we shall write the operator (1.1) as
\[
V_n(f, x) = \int_0^{\infty} W(n, x, t) f(t) \, dt,
\]
where
\[
W(n, x, t) = (n - 1) \sum_{k=0}^{\infty} s_{n,k}(x) p_{n,k}(t).
\]

The function \(f \) is said to belong to the generalized Zygmund class \(\text{Liz}(\alpha, k, a, b) \) if there exists a constant \(M \) such that
\[
\omega_{2k}(f, \eta, a, b) \leq M \eta^{\alpha k}, \eta > 0,
\]
where \(\omega_{2k}(f, \eta, a, b) \) denotes the modulus of continuity of \(2k \)-th order of \(f(x) \) on the interval \([a, b] \). The class \(\text{Liz}(\alpha, a, b) \) is more commonly denoted by \(\text{Lip}^{*}(\alpha, a, b) \).

Let \(f \in C_\alpha[0, \infty) \) and \(0 < a_1 < a_2 < a_3 < b_3 < b_2 < b_1 < \infty \). Then for \(m \in N \) the Steklov mean \(f_{\eta, m} \) of the \(m \)-th order corresponding to \(f \), for sufficiently small values of \(\eta > 0 \) is defined by
\[
f_{\eta, m}(x) = \eta^{-m} \left(\int_{-\eta/2}^{\eta/2} \left\{ f(x) + (-1)^{m-1} \sum_{i=1}^{m} \Delta_{\eta}^{m} f(x) \right\} dx_i \right)^{m} \prod_{i=1}^{m} dx_i, \quad (1.2)
\]
where \(x \in [a_1, b_1] \) and \(\Delta_{\eta}^{m} f(x) \) is the \(m \)-th order forward difference with step length \(\eta \).
The direct results in ordinary and simultaneous approximation for such type of modified Szász-Mirakyan operators were studied by many researchers see e.g. [2], [5], [6] and [12].

2. Auxiliary results

In this section, we shall give some basic results, which will be useful in proving the main results.

Lemma 2.1. [9] For $m \in \mathbb{N} \cup \{0\}$, let the m-th order moment for the Szász operator be defined by

$$
\mu_{n,m}(x) = \sum_{k=0}^{\infty} s_{n,k}(x) \left(\frac{k}{n} - x \right)^m.
$$

Then we have $\mu_{n,0}(x) = 1$, $\mu_{n,1}(x) = 0$ and

$$
n \mu_{n,m+1}(x) = x \left(\mu_{n,m}^\prime(x) + m \mu_{n,m-1}(x) \right), \quad \text{for } n \in \mathbb{N}.
$$

Consequently,

(i) $\mu_{n,m}(x)$ is a polynomial in x of degree $\lfloor m/2 \rfloor$;

(ii) for every $x \in [0, \infty)$, $\mu_{n,m}(x) = O\left(n^{-\lfloor(m+1)/2\rfloor}\right)$, where $\lfloor \beta \rfloor$ denotes the integral part of β.

Lemma 2.2. Let the m-th moment for the Szász operator be defined by

$$
\mu_{n,m}(x) = (n-1) \sum_{k=0}^{\infty} s_{n,k}(x) \int_{0}^{\infty} p_{n,k}(t)(t-x)^m dt.
$$

Then

(i) $\mu_{n,0}(x) = 1$, $\mu_{n,1}(x) = \frac{(1+2x)}{(n-2)}$, $n > 2$;

(ii) $(n-m-2)\mu_{n,m+1}(x) = x \left[\mu_{n,m}^\prime(x) + (m+2)x \mu_{n,m-1}(x) \right] + (m+1) \times \left(1+2x\right)\mu_{n,m}(x)$

(iii) $\mu_{n,m}(x) = O\left(n^{-\lfloor(m+1)/2\rfloor}\right)$ for all $x \in [0, \infty)$.

Proof. By the definition of $\mu_{n,m}(x)$, we can easily obtain (i). Now the proof of (ii) goes as follows:

$$
x \mu_{n,m}^\prime(x) = (n-1) \sum_{k=0}^{\infty} x s_{n,k}^\prime(x) \int_{0}^{\infty} p_{n,k}(t)(t-x)^m dt - m x \mu_{n,m-1}(x).
$$

Using relations $t(1+t)p_{n,k}^\prime(t) = (k-nt)p_{n,k}(t)$ and $x s_{n,k}^\prime(x) = (k-nt)s_{n,k}(x)$, we get

$$
x \left[\mu_{n,m}^\prime(x) + m \mu_{n,m-1}(x) \right]
= (n-1) \sum_{k=0}^{\infty} (k-nt) s_{n,k}(x) \int_{0}^{\infty} p_{n,k}(t)(t-x)^m dt
$$
Again using Leibnitz’s theorem in (1.1)

\[
\left(V_n^{(r)}f \right)(x) = (n-1) \sum_{k=0}^{\infty} s_{n,k}(x) \int_0^\infty f_n \left(x \right) f(t) dt
\]

and

\[
\left(V_n^{(r)}f \right)(x) = (n-1) \sum_{k=0}^{\infty} s_{n,k}(x) \int_0^\infty f_n \left(x \right) f(t) dt
\]

Again using Leibnitz’s theorem

\[
p_{n,r-k+1} \left(t \right) = \frac{(n-1)!}{(n-r-1)!} \sum_{i=0}^{r} (-1)^i \binom{r}{i} p_{n,i}(t)
\]

integrating by parts \(r \) times, we get the required result.

Lemma 2.4. For the function \(f_{\eta,m}(x) \) defined in (1.2), there hold:

(i) \(f_{\eta,m} \in C[a_1, b_1] \);

(ii) \(\|f_{\eta,m}^{(r)}\|_{C[a_2, b_2]} \leq M_r \eta^{-r} \omega_r(f, \eta, a_1, b_1), \quad r = 1, 2, \ldots, m \);

(iii) \(\|f - f_{\eta,m}\|_{C[a_2, b_2]} \leq M_{m+1} \omega_m(f, \eta, a_1, b_1) \);

(iv) \(\|f_{\eta,m}\|_{C[a_2, b_2]} \leq M_{m+2} \|f\|_{C[a_2, b_2]} \leq M' \|f\|_{C[a_1, b_1]} \)

where \(M' \) are certain constants independent of \(f \) and \(\eta \).

For the proof of the above properties of the function \(f_{\eta,m}(x) \) we refer to [12, page 167].
Theorems for Szász-Lupas type operators

Lemma 2.5. [8, 9] There exist polynomials \(q_{i,j,r}(x) \) independent of \(n \) and \(k \) such that
\[
x^r \frac{d^r}{dx^r} [e^{-nx}(nx)^k] = \sum_{i+j \leq r} n^i |k - nx|^j q_{i,j,r}(x) [e^{-nx}(nx)^k]
\]

Lemma 2.6. Let \(f \in C_\alpha[0, \infty) \). If \(f^{(2k+2)} \) exists at a point \(x \in (0, \infty) \), then
\[
\lim_{n \to \infty} n^{k+1} \{ V_n(f, k, x) - f(x) \} = \sum_{p=0}^{2k+2} Q(p, k, x) f^{(p)}(x),
\]
where \(Q(p, k, x) \) is a certain polynomial in \(x \) of degree \(p \).

The proof of Lemma 2.6 follows along the lines of [7].

Lemma 2.7. Let \(\delta \) and \(\gamma \) be any two positive numbers and \([a, b] \subset [0, \infty) \). Then, for any \(m > 0 \) there exists a constant \(M_m \) such that
\[
\left\| \int_{|t-x| \geq \delta} V_n(f(x)) t^\gamma dt \right\|_{C[a,b]} \leq M_m n^{-m}.
\]

The proof of this result follows easily by using Schwarz inequality and Lemma 2.7 from [1].

3. Main results

Theorem 3.1. (Direct Theorem) Let \(f \in C_\alpha[0, \infty) \). Then, for sufficiently large \(n \), there exists a constant \(M \) independent of \(f \) and \(n \) such that
\[
\left\| V_n(f, k, .) - f \right\|_{C[a_2,b_2]} \leq \max \left\{ C_2 \omega^{2k+2}(f; n^{-1/2}, a_1, b_1) C_2 n^{-(k+1)} \left\| f \right\|_{C_\alpha} \right\},
\]
where \(C_1 = C_1(k) \) and \(C_2 = C_2(k, f) \).

Proof. By linearity property
\[
\left\| V_n(f, k, .) - f \right\|_{C[a_2,b_2]} \leq \left\| V_n \left((f - f^{2k+2, \eta}), k, . \right) \right\|_{C[a_2,b_2]}
+ \left\| V_n \left(f^{2k+2, \eta}, k, . \right) - f^{2k+2, \eta} \right\|_{C[a_2,b_2]} + \left\| f - f^{2k+2, \eta} \right\|_{C[a_2,b_2]}
= A_1 + A_2 + A_3, \quad \text{say.}
\]

By property (iii) of Steklov mean, we get
\[
A_3 \leq C_1 \omega^{2k+2}(f, \eta, a_1, b_1).
\]

Next, by Lemma 2.6, we get
\[
A_2 \leq C_2 n^{-(k+1)} \left\| f^{2k+2, \eta} \right\|_{C[a_1, b_1]}.
\]
Using the interpolation property \([5]\) and properties of Steklov mean,

\[
A_2 \leq C_3 n^{-(k+1)} \left\{ \| f \|_{C_n} + \eta^{-2(k+2)} \omega_{2(k+2)}(f, \eta) \right\}.
\]

To estimate \(A_1\), we choose \(a_2, b_2\) such that

\[
0 < a_1 < a_2 < a_3 < b_3 < b_2 < b_1 < \infty.
\]

Also let \(\psi(t)\) be the characteristic function of the interval \([a_2, b_2]\), then

\[
A_1 \leq \left\| V_n \left((\psi(t) (f(t) - f_{2k+2, \eta}(t)), k_{\cdot} \right) \right\|_{C[a_2, b_2]}
+ \left\| V_n \left((1 - \psi(t) (f(t) - f_{2k+2, \eta}(t)), k_{\cdot} \right) \right\|_{C[a_2, b_2]}
\]

\[
= A_4 + A_5,
\]

say.

We note that in order to estimate \(A_4\) and \(A_5\), it is sufficient to consider their expressions without the linear combination. It is clear that by Lemma 2.3, we obtain

\[
V_n \left((\psi(t) (f(t) - f_{2k+2, \eta}(t)), x) \right)
= (n - 1) \sum_{k=0}^{\infty} s_{n,k}(x) \int_0^\infty p_{n,k}(t) \psi(t) (f(t) - f_{2k+2, \eta}(t)) \, dt.
\]

Hence,

\[
\left\| V_n \left((\psi(t) (f(t) - f_{2k+2, \eta}(t)), \cdot) \right) \right\|_{C[a_1, b_1]} \leq C_4 \| f - f_{2k+2, \eta} \|_{C[a_2, b_2]}.
\]

Now for \(x \in [a_3, b_3]\) and \(t \in [0, \infty) / [a_2, b_2]\) we can choose an \(\eta_1\) satisfying \(|t - x| \geq \eta_1\). Therefore by Lemma 2.5 and Schwarz inequality, we have

\[
I \equiv \left| V_n \left((1 - \psi(t)) (f(t) - f_{2k+2, \eta}(t)), x \right) \right| \leq \left| (n - 1) \sum_{i+j \leq r \atop i, j \geq 0} n^i \phi_{i,j,r}(x) \sum_{k=0}^{\infty} s_{n,k}(x) |k - nx|^j \right| \times
\]

\[
\int_0^\infty p_{n,k}(t) (1 - \psi(t)) |f(t) - f_{2k+2, \eta}(t)| \, dt.
\]

\[
\leq C_5 \| f \|_{C_n} \left(n - 1 \right) \sum_{i+j \leq r \atop i, j \geq 0} n^i \sum_{k=0}^{\infty} s_{n,k}(x) |k - nx|^j \int_{|t - x| \geq \eta_1} p_{n,k}(t) \, dt.
\]

\[
\leq C_5 \eta_1^{-2s} \left\{ (n - 1) \sum_{i+j \leq r \atop i, j \geq 0} n^i \sum_{k=0}^{\infty} s_{n,k}(x) |k - nx|^j \right| \times
\]

\[
\left(\int_0^\infty p_{n,k}(t) \, dt \right)^{1/2} \left(\int_0^\infty p_{n,k}(t) (t - x)^{4s} \, dt \right)^{1/2}
\]

\[
\leq C_5 \eta_1^{-2s} \| f \|_{C_n} \sum_{i+j \leq r \atop i, j \geq 0} n^i \left\{ \sum_{k=0}^{\infty} s_{n,k}(x) (k - nx)^{2j} \right\}^{1/2} \times
\]

\[
\left(n - 1 \right) \sum_{k=0}^{\infty} s_{n,k}(x) \int_0^\infty p_{n,k}(t) (t - x)^{4s} \, dt \right)^{1/2}.
\]
Hence, by Lemma 2.1 and Lemma 2.2, we have
\[I \leq C_6 \|f\|_{C^0_n} \sum n^{(i+\frac{1}{2})} \leq C_6 n^{-q} \|f\|_{C^0_n} \]
where \(q = (s - m/2) \). Now choose \(s > 0 \) such that \(q \geq k + 1 \). Then
\[I \leq C_6 n^{-(k+1)} \|f\|_{C^0_n}. \]

Therefore by property (iii) of Steklov mean, we get
\[A_1 \leq C_7 \|f - f_{2k+2}\|_{C[a_2, b_2]} + C_6 n^{-(k+1)} \|f\|_{C^0_n} \]
\[\leq C_8 n^{-2k+2}(f, \eta, a_1, b_1) + C_6 n^{-(k+1)} \|f\|_{C^0_n} \]

Hence with \(\eta = n^{-1/2} \), the theorem follows. \(\blacksquare \)

Theorem 3.2. (Inverse Theorem) If \(0 < \alpha < 2 \) and \(f \in C_\alpha [0, \infty) \) then in the following statements (i) \(\Rightarrow \) (ii):

(i) \(\|V_n(f, k, x) - f(x)\|_{C[a_1, b_1]} = O \left(n^{-\alpha(k+1)/2}\right) \), where \(f \in C_\alpha [a, b] \).

(ii) \(f \in Liz(\alpha, k + 1, a_2, b_2) \).

Proof. Let us choose points \(a', a'' \), \(b', b'' \) in such a way that \(a_1 < a' < a'' < a_2 < b_2 < b'' < b' < b_1 \). Also suppose \(g \in C_\alpha^{\infty} \) with \(\text{supp}(g) \subseteq [a'', b''] \) and \(g(x) = 1 \)
for \(x \in [a_2, b_2] \). It is sufficient to show that
\[\|V_n(fg, k, \cdot) - fg\|_{C[a', b']} = O \left(n^{-\alpha(k+1)/2}\right) \Rightarrow (ii). \tag{3.1} \]

Using \(F \) in place of \(fg \) for all the values of \(r > 0 \), we get
\[\|\Delta_r^{2k+2}F\|_{C[a', b']} \leq \|\Delta_r^{2k+2}(F - V_n(F, k, \cdot))\|_{C[a'', b'']} + \|\Delta_r^{2k+2}V_n(F, k, \cdot)\|_{C[a'', b'']} \tag{3.2} \]

By the definition of \(\Delta_r^{2k+2} \),
\[\|\Delta_r^{2k+2}V_n(F, k, \cdot)\|_{C[a'', b'']} \]
\[= \left\| \int_0^\infty \cdots \int_0^r V_n \left(F, k, x + \sum_{i=1}^{2k+2} x_i\right) dx_1 \cdots dx_{2k+2} \right\|_{C[a'', b'']} \]
\[\leq \|\Delta_r^{2k+2}V_n\|_{C[a'', b'']}^{(2k+2)}(F, k, \cdot) \]
\[\leq r^{2k+2} \left(\|V_n\|_{C[a'', b'']}^{(2k+2)}(F, k, \cdot) \right) \]
\[+ \left\| \Delta_r^{2k+2}V_n\right\|_{C[a'', b'']}^{(2k+2)}(F, k, \cdot) \] \tag{3.3}

where \(F, k, 2k+2 \) is the Steklov mean of \((2k + 2) \)-th order corresponding to \(F \). By Lemma 3 from [1], we get
\[\int_0^\infty \left| \frac{\partial^{2k+2}}{\partial x_{2k+2}} W_n(t, x) \right| dt \]
\[\leq \sum_{\substack{i+j \geq 2k+2 \atop i, j \geq 0}} (n - 1) \sum_{k=0}^{n-1} n! |k - nx|^j \left| q_{i+j, 2k+2}(x) \right| s_{n,k}(x) \int_0^\infty p_{n,k}(t) dt. \]
Since $\int_0^\infty p_{n,k}(t)\,dt = \frac{1}{n^k}$, by Lemma 2.1,
\[
\sum_{k=0}^\infty s_{n,k}(x)(k-nx)^{2j} = n^{2j} \sum_{k=0}^\infty s_{n,k}(x) \left(\frac{k}{n} - x\right)^{2j} = O(n^j) \tag{3.4}
\]

Using Schwarz inequality and Lemma 2.1, we obtain
\[
\left\|V_n^{(2k+2)}(F-F_{n,2k+2,k,\cdot})\right\|_{C[a^p,b^p+(2k+2)r]} \leq K_1 n^{k+1} \left\|F-F_{n,2k+2}\right\|_{C[a^p,b^p]} \tag{3.5}
\]

By Lemma 2 from [1], we get
\[
\int_0^\infty \left[\frac{\partial^k}{\partial x^k} W_n(t,x)\right] (t-x)^i\,dt = 0, \quad \text{for} \quad k > i. \tag{3.6}
\]

By Taylor’s expansion, we obtain
\[
F_{n,2k+2}(t) = \sum_{i=0}^{2k+1} \frac{F_{n,2k+2}^{(i)}(x)}{i!} (t-x)^i + F_{n,2k+2}^{(2k+2)}(\xi) \frac{(t-x)^{2k+2}}{(2k+2)!}, \tag{3.7}
\]

where $t < \xi < x$. By (3.6) and (3.7), we get
\[
\left\|\frac{\partial^{2k+2}}{\partial x^{2k+2}} V_n(F_{n,2k+2,k,\cdot})\right\|_{C[a^p,b^p+(2k+2)r]} \leq \sum_{j=0}^k \frac{|C(j,k)|}{(2k+2)!} \left\|F_{n,2k+2}^{(2k+2)}\right\|_{C[a^p,b^p]} \int_0^\infty \left[\frac{\partial^{2k+2}}{\partial x^{2k+2}} W_{n,t}(t,x)\right] (t-x)^{2k+2} \,dt \right\|_{C[a^p,b^p]}. \tag{3.8}
\]

Again applying Schwarz inequality for integration and summation and Lemma 3 from [1], we obtain
\[
I \equiv \int_0^\infty \left[\frac{\partial^{2k+2}}{\partial x^{2k+2}} W_n(t,x)\right] (t,x)^{2k+2} \,dt \leq (n-1) \sum_{i,j \geq 0} \sum_{k=0}^{2k+2} n^i s_{n,k}(x) (k-nx)^j \left|\frac{q_{i,j,2k+2}(x)}{x^{2k+2}}\right| \int_0^\infty p_{n,k}(t)(t-x)^{2k+2} \,dt \leq \sum_{i,j \geq 0} \sum_{k=0}^{2k+2} n^i s_{n,k}(x) (k-nx)^j \left\{\sum_{k=0}^{2k+2} s_{n,k}(x) (k-nx)^j\right\}^{1/2} \times \left\{(n-1) \sum_{k=0}^{\infty} s_{n,k}(x) \int_0^\infty p_{n,k}(t)(t-x)^4 \,dt\right\}^{1/2}. \tag{3.9}
\]

Using Lemma 2 from [1],
\[
(n-1) \sum_{k=0}^{\infty} s_{n,k}(x) \int_0^\infty p_{n,k}(t)(t-x)^4 \,dt = T_{n,4k+4}(x) = O \left(n^{-(2k+2)}\right). \tag{3.9}
\]

Using (3.4) and (3.9) in (3.8), we obtain
\[
I \leq \sum_{i,j \geq 0} \sum_{k=0}^{2k+2} n^i \left|\frac{q_{i,j,2k+2}(x)}{x^{2k+2}}\right| O(n^{j/2}) O \left(n^{-(k+1)}\right) = O(1). \tag{3.9}
\]
Hence
\[
\|W_n^{(2k+2)}(F_{\eta, 2k+2}, k, \cdot)\|_{C[a'', b''+2(2k+2)r]} \leq K_2 \|F_{\eta, 2k+2}\|_{C[a'', b'']},
\] (3.10)

On combining (3.2), (3.3), (3.5) and (3.10) it follows
\[
\|\Delta_r^{2k+2}F\|_{C[a'', b'']} \leq \|\Delta_r^{2k+2}(F - V_n(F, k, \cdot))\|_{C[a'', b'']} + K_3r^{2k+2}\left(n^{k+1}\|F - F_{\eta, 2k+2}\|_{C[a'', b'']} + \|F_{\eta, 2k+2}\|_{C[a'', b'']}\right).
\]

Since for small values of \(r\) the above relation holds, it follows from the properties of \(F_{\eta, 2k+2}\) and (3.1) that
\[
\omega_{2k+2}(F, h, [a'', b'']) = O(h^{\alpha(k+1)}).
\] (3.11)

Since \(F(x) = f(x)\) in \([a_2, b_2]\), from (3.11) we have
\[
\omega_{2k+2}(f, h, [a_2, b_2]) = O(h^{\alpha(k+1)}), \text{ i.e., } f \in L_{{\alpha, k+1}, a_2, b_2}.
\]

Let us assume (i). Putting \(\tau = \alpha(k+1)\), we first consider the case \(0 < \tau \leq 1\).

For \(x \in [a', b']\), we get
\[
V_n(f, k, x) - f(x)g(x) = g(x)V_n((f(t) - f(x)), k, x) + \sum_{j=0}^{k} C(j, k) \int_{a_1}^{b_1} W_{d_j, n}(t, x) f(x)(g(t) - g(x)) dt + O\left(n^{-k+1}\right)
\]
\[
= I_1 + I_2 + O\left(n^{-k+1}\right),
\] (3.12)

where the \(O\)-term holds uniformly for \(x \in [a', b']\). Now by assumption
\[
\|V_n(f, k, \cdot) - f\|_{C[a_1, b_1]} = O\left(n^{-\frac{\tau}{2}}\right),
\]
we have
\[
\|I_1\|_{C[a', b']} \leq \|g\|_{C[a', b']}\|V_n(f, k, \cdot) - f\|_{C[a', b']} \leq K_{5} n^{-\frac{\tau}{2}}.
\] (3.13)

By the Mean Value Theorem, we get
\[
I_2 = \sum_{j=0}^{k} C(j, k) \int_{a_2}^{b_2} W_{d_j, n}(t, x) f(t) \{g'(\xi)(t - x)\} dt.
\]

Once again applying Cauchy-Schwarz inequality and Lemma 2 from [1], we get
\[
\|I_2\|_{C[a', b']} \leq \|f\|_{C[a_1, b_1]}\|g'\|_{C[a', b']} \left(\sum_{j=0}^{k} C(j, k)\right) \times \max_{0 \leq j \leq k} \int_{0}^{\infty} W_{d_j, n}(t, x)(t - x)^2 dt \|_{C[a', b']}^{1/2} = O\left(n^{-\frac{\tau}{2}}\right).
\] (3.14)

Combining (3.12–3.14), we obtain
\[
\|V_n(f, g, k, \cdot) - f g\|_{C[a', b']} = O\left(n^{-\frac{\tau}{2}}\right), \text{ for } 0 < \tau \leq 1.
\]
Now to prove the implication for \(0 < \tau < 2k + 2\), it is sufficient to assume it for \(\tau \in (m - 1, m)\) and prove if for \(\tau \in (m - 1, m + 1)\), \((m = 1, 2, 3, \ldots, 2k + 1)\). Since the result holds for \(\tau \in (m - 1, m)\), we choose two points \(x_1, y_1\) in such a way that \(a_1 < x_1 < a' < b' < y_1 < b_1\). Then in view of assumption \((i) \Rightarrow (ii)\) for the interval \((m - 1, m)\) and equivalence of \((ii)\) it follows that \(f^{(m-1)}\) exists and belongs to the class \(\text{Lip}(1 - \delta, x_1, y_1)\) for any \(\delta > 0\).

Let \(g \in C_0^\infty\) be such that \(g(x) = 1\) on \([a'', b']\) and \(\text{supp}\ g \subset [a'', b']\). Then with \(\chi_2(t)\) denoting the characteristic function of the interval \([x_1, y_1]\), we have
\[
\|V_n(f, g, k,) - f\|_{C[a', b']^I} \leq \|V_n(g(x)f(t) - f(x)), k,.)\|_{C[a', b']^I} + \|V_n(f(t)(g(t) - g(x)))\chi(t), k,.)\|_{C[a', b']^I} + O\left(n^{-\gamma(k+1)}\right).
\]

Now
\[
\|V_n(g(x)(f(t) - f(x)), k,.)\|_{C[a', b']^I} \leq \|g\|_{C[a'', b']}\|V_n(f, k,.) - f\|_{C[a_1, b_1]} = O\left(n^{-\gamma/2}\right).
\]

Applying Taylor’s expansion of \(f\), we have
\[
I_3 \equiv \|V_n(f(t)g(t) - g(x))\chi(t), k,.)\|_{C[a', b']^I} =
\]
\[
\|\sum_{i=0}^{m-1} \frac{f^{(i)}(x)}{i!} (t-x)^i \frac{f^{(m-1)}(x) - f^{(m-1)}(x)}{(m-1)!} (g(t)-g(x))\chi(t), k,.)\|_{C[a', b']^I}
\]
where \(\xi\) lies between \(t\) and \(x\). Since \(f^{(m-1)} \in \text{Lip}(1 - \delta, x_1, y_1)\),
\[
|f^{(m-1)}(\xi) - f^{(m-1)}(x)| \leq K_6|\xi - x|^{1-\delta} \leq K_6|t - x|^{1-\delta},
\]
where \(K_6\) is the \(\text{Lip}(1 - \delta, x_1, y_1)\) constant for \(f^{(m-1)}\), we have
\[
I_3 \leq \|V_n\left(\sum_{i=0}^{m-1} \frac{f^{(i)}(x)}{i!} (t-x)^i (g(t)-g(x))\chi(t), k,.)\right)\|_{C[a', b']^I}
\]
\[
+ \frac{K_6}{(m-1)!}\|g\|_{C[a'', b']}\left(\sum_{j=0}^{k} |C(j, k)|\right)\|V_n(t - x)^{m+1-\delta}\chi(t,.)\|_{C[a', b']^I}
\]
\[
= I_4 + I_5 \quad \text{say.}
\]

By Taylor’s expansion of \(g\) and Lemma 2.6, we have
\[
I_4 = O\left(n^{-\gamma(k+1)}\right).
\]

Also, by Hölder’s expansion of \(g\) and Lemma 2 from \([1]\), we have
\[
I_5 \leq \frac{K_6}{(m-1)!}\|g\|_{C[a'', b']}\left(\sum_{j=0}^{k} |C(j, k)|\right) \times
\]
\[
\times \max_{0 \leq j \leq k} \left\|\int_{x_1}^{y_1} W_{d_j, n}(t - x)|t - x|^{m+1-\delta} dt\right\|_{C[a', b']^I}
\]
\[
\leq K_7 \max_{0 \leq j \leq k} \|\int_{x_1}^{y_1} W_{d_j, n}(t - x)(t - x)^{2(m+1)} dt\|_{C[a', b']^I}
\]
\[
= O\left(n^{-\gamma(k+1)/2}\right) = O\left(n^{\gamma/2}\right),
\]
\[(3.19) \]
by choosing δ such that $0 < \delta < m + 1 - \delta$. Combining the estimates (3.15–3.19), we get

$$\| V_n(fg, k, \cdot) - fg \|_{C^{[a', b']}} = O \left(n^{7/2} \right).$$

This completes the proof of the Theorem 3.2. \(\blacksquare \)

ACKNOWLEDGMENT. The author is extremely thankful to the referee for his valuable comments and suggestions, leading to a better presentation of the paper. The author is also thankful to Professor Mila Mršević for special attention.

REFERENCES

(received 07.04.2004, in revised form 29.01.2006)

Department of Applied Mathematics, Delhi College of Engineering, Bawana Road, Delhi-110042, India.

Presently at: School of Information Science and Engineering, Graduate School of the Chinese Academy of Sciences, No.3 Nanyitiao, Zhongguancun Haidian District, Beijing-100080, P. R. China.

E-mail: dr.naokant.deo@yahoo.com