SPACES RELATED TO γ-SETS

Filippo Cammaroto1 and Ljubiša D.R. Kočinac2

Abstract. We characterize Ramsey theoretically two classes of spaces which are related to γ-sets.

1. Introduction

The notation and terminology are mainly as in \cite{2}. X will denote an infinite Hausdorff topological space.

Let \mathcal{A} and \mathcal{B} be sets whose members are families of subsets of an infinite set X. Then (see \cite{7}, \cite{4}):

$S_1(\mathcal{A}, \mathcal{B})$ denotes the selection principle:
For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(b_n : n \in \mathbb{N})$ such that for each $n \in \mathbb{N}$, $b_n \in A_n$ and $\{b_n : n \in \mathbb{N}\} \in \mathcal{B}$.

$S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis:
For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ of finite (not necessarily non-empty) sets such that for each $n \in \mathbb{N}$, $B_n \subset A_n$ and $\bigcup_{n \in \mathbb{N}} B_n$ is an element of \mathcal{B}.

The symbol $G_1(\mathcal{A}, \mathcal{B})$ \cite{7} denotes an infinitely long game for two players, ONE and TWO, which play a round for each positive integer. In the n-th round ONE chooses a set $A_n \in \mathcal{A}$, and TWO responds by choosing an element $b_n \in A_n$. TWO wins a play $\langle A_1, b_1; \cdots ; A_n, b_n; \cdots \rangle$ if $\{b_n : n \in \mathbb{N}\} \in \mathcal{B}$; otherwise, ONE wins.

If ONE does not have a winning strategy in the game $G_1(\mathcal{A}, \mathcal{B})$, then the selection hypothesis $S_1(\mathcal{A}, \mathcal{B})$ is true, but the converse need not be always true. In many cases the game characterizes the corresponding selection principle.

1Supported by MURST-PRA 2000.
2Supported by MNZZS RS
For positive integers \(n \) and \(m \) the symbol \(A \to (B)^n_m \) denotes the statement:

For each \(A \in A \) and for each function \(f : [A]^n \to \{1, \ldots, m\} \) there are a set \(B \subset A, B \in B \), and an \(i \in \{1, \ldots, m\} \) such that for each \(Y \in [B]^n \), \(f(Y) = i \).

Here \([A]^n \) denotes the set of \(n \)-element subsets of \(A \). We call \(f \) a “coloring” and say that “\(B \) is homogeneous of color \(i \) for \(f \)”.

This symbol is called the ordinary partition symbol [7]. Several selection principles of the form \(S_1(A, B) \) have been characterized by the ordinary partition relation (see [7], [4], [6]).

An open cover \(U \) of a space \(X \) is an \(\omega \)-cover (resp. \(k \)-cover) if \(X \) does not belong to \(U \) and every finite (resp. compact) subset of \(X \) is contained in a member of \(U \). Because we deal with \(k \)-covers, we assume that spaces we consider are (infinite) non-compact. An open cover \(U \) of \(X \) is called a \(\gamma \)-cover \([3]\) if it is infinite and each \(x \in X \) belongs to all but finitely many elements of \(U \). Notice that it is equivalent to the assertion: Each finite subset of \(X \) belongs to all but finitely many members of \(U \). An open cover of a space \(X \) is called a \(\gamma_k \)-cover of \(X \) if each compact subset of \(X \) is contained in all but finitely many elements of \(U \) and \(X \) is not a member of the cover ([5]).

We suppose that all covers are countable. Recall that spaces in which every open \(k \)-cover contains a countable \(k \)-subcover are called \(k \)-Lindelöf.

For a topological space \(X \) we denote:

1. \(\Omega \) – the family of \(\omega \)-covers of \(X \);
2. \(\mathcal{K} \) – the family of \(k \)-covers of \(X \);
3. \(\Gamma \) – the family of \(\gamma \)-covers of \(X \);
4. \(\Gamma_k \) – the family of \(\gamma_k \)-covers of \(X \).

Let us observe that we have

\[\Gamma_k \subset \Gamma \subset \Omega, \quad \Gamma_k \subset \mathcal{K} \subset \Omega. \]

In [3], Gerlits and Nagy introduced the following notion: a space \(X \) is a \(\gamma \)-space (or a \(\gamma \)-set) if each \(\omega \)-cover \(U \) of \(X \) contains a countable family \(\{U_n : n \in \mathbb{N}\} \) which is a \(\gamma \)-cover of \(X \). They have also proved that the \(\gamma \)-set property of a space \(X \) is equivalent to the statement that \(X \) satisfies the selection property \(S_1(\Omega, \Gamma) \). It was shown in [4] that the \(\gamma \)-set property is equivalent also to the selection hypothesis \(S_{fin}(\Omega, \Gamma) \).

In [7], it was proved:

Theorem 1. For a space \(X \) the following statements are equivalent:

(a) \(X \) is a \(\gamma \)-set;

(b) \(\text{ONE has no winning strategy in the game } G_1(\Omega, \Gamma) \text{ on } X \);

(c) For all \(n, m \in \mathbb{N} \), \(X \) satisfies \(\Omega \to (\Gamma)^n_m \).

We shall prove here that similar results are true for two recently introduced classes of spaces which are similar to \(\gamma \)-sets. In fact, we give Ramsey theoretical characterizations of those classes of spaces.
2. k-γ-sets

In [1], the class of k-γ-sets was introduced as the class of $S_1(\mathcal{K}, \Gamma)$-sets and the following result regarding that class of spaces was shown.

Theorem 2. For a space X the following are equivalent:
1. X is a k-γ-set;
2. X satisfies $S_{fin}(\mathcal{K}, \Gamma)$;
3. ONE has no winning strategy in the game $G_1(\mathcal{K}, \Gamma)$ on X.

We show here that this class of spaces also can be described Ramsey-theoretically.

Theorem 3. For a k-Lindel"of space X the following are equivalent:
1. X is a k-γ-set;
2. For positive integers n and m, X satisfies $\mathcal{K} \rightarrow (\Gamma)^n_m$.

Proof. We consider the case $n = m = 2$, because the general case can be easily obtained from it by standard induction arguments.

$1) \Rightarrow 2$: Let $\mathcal{U} = \{U_1, U_2, \cdots \}$ be a countable k-cover of X and let $f : [\mathcal{U}]^2 \rightarrow \{1, 2\}$ be a coloring. For $j \in \{1, 2\}$ let $\mathcal{H}_j = \{V \in \mathcal{U} : f(\{U_1, V\}) = j\}$. Then at least one of the sets \mathcal{H}_1 and \mathcal{H}_2 is a k-cover of X. Denote such a set by \mathcal{U}_1 and the corresponding j by i_1. In a similar way define inductively sets \mathcal{U}_n of k-covers of X and elements i_n from $\{1, 2\}$ such that

$$\mathcal{U}_n = \{V \in \mathcal{U}_{n-1} : f(\{U_n, V\}) = i_n\}.$$

Apply now the $S_1(\mathcal{K}, \Gamma)$ property of X to the sequence $(\mathcal{U}_n : n \in \mathbb{N})$ to choose for each $n \in \mathbb{N}$ a $V_n \in \mathcal{U}_n$ such that $\mathcal{V} = \{V_n : n \in \mathbb{N}\} \in \Gamma$. Consider now the sets $\mathcal{V}_1 := \{V_m \in \mathcal{V} : i_m = 1\}$ and $\mathcal{V}_2 := \{V_m \in \mathcal{V} : i_m = 2\}$. At least one of them is infinite and so is a γ-cover of X, as each infinite subset of a γ-cover is also a γ-cover. So, one may suppose that there is an $i \in \{1, 2\}$ satisfying: for each $U_m \in \mathcal{V}$, $i_m = i$. We have that $f(\{A, B\}) = i$ for each $\{A, B\} \in [\mathcal{V}]^2$.

$2) \Rightarrow 1$: Let $(\mathcal{U}_n : n \in \mathbb{N})$ be a sequence of countable k-covers of X and let us suppose that for each $n \in \mathbb{N}$, $\mathcal{U}_n = \{U_{n,m} : m \in \mathbb{N}\}$. Define now \mathcal{V} to be the family of all nonempty sets of the form $U_{1,n} \cap U_{n,m}$, $n, m \in \mathbb{N}$. Clearly, \mathcal{V} is a k-cover of X. Let $f : [\mathcal{V}]^2 \rightarrow \{1, 2\}$ be define by

$$f(U_{1,n_1} \cap U_{n_1,m_1}, U_{1,n_2} \cap U_{n_2,m_2}) = \begin{cases} 1, & \text{if } n_1 = n_2, \\ 2, & \text{otherwise.} \end{cases}$$

Apply $\mathcal{K} \rightarrow (\Gamma)^2_2$ to find a γ-cover $\mathcal{W} \subset \mathcal{V}$ and an $i \in \{1, 2\}$ such that whenever U and V are from \mathcal{W}, then $f(\{U, V\}) = i$. Consider two possibilities:

(i) $i = 1$: Then there is some $n \in \mathbb{N}$ such that for each $W \in \mathcal{W}$ we have $W \subset U_{1,n}$. However, this implies that \mathcal{W} is not a γ-cover of X and this contradiction shows that this case is impossible.
(ii) $i = 2$: Whenever $W \in \mathcal{W}$ is of the form $U_{1,n} \cap U_{n,m}$ choose (one element) $H_n = U_{n,m} \in \mathcal{U}_n$. Otherwise, let $H_n = \emptyset$. Then the set $\mathcal{H} := \{H_n : n \in \mathbb{N}\}$ is a γ-cover of X (because \mathcal{W} refines \mathcal{H}), and the sequence $(H_n : n \in \mathbb{N})$ witnesses for $(\mathcal{U}_n : n \in \mathbb{N})$ that X satisfies $S_{\text{fin}}(\mathcal{K}, \Gamma)$. By Theorem 2 it is equivalent to $S_1(\mathcal{K}, \Gamma)$, i.e. (1) holds.

3. γ_k'-sets

The following class of spaces was introduced in [5]. A space X is said to be a γ_k'-set if it satisfies the selection hypothesis $S_1(\mathcal{K}, \Gamma_k)$.

A characterization of γ_k'-sets from [5] is given in the next theorem.

Theorem 4. For a space X the following are equivalent:

1. X is a γ_k'-set;
2. X satisfies $S_{\text{fin}}(\mathcal{K}, \Gamma_k)$;
3. ONE does not have a winning strategy in the game $G_1(\mathcal{K}, \Gamma_k)$ played on X.

We give now a Ramsey-theoretical characterization of γ_k'-sets.

Theorem 5. For a k-Lindelöf space X the following are equivalent:

1. X is a γ_k'-set;
2. For all $n, m \in \mathbb{N}$, X satisfies $\mathcal{K} \rightarrow (\Gamma_k)_m^n$.

Proof. We again consider only the case $n = m = 2$.

$(1) \Rightarrow (2)$: We shall use that (1) is equivalent to the fact that ONE has no winning strategy in the game $G_1(\mathcal{K}, \Gamma_k)$ played on X (Theorem 4).

Suppose $\mathcal{U} = \{U_1, U_2, \cdots\}$ is a k-cover of X and let $f : [\mathcal{U}]^2 \rightarrow \{1, 2\}$ be a coloring. Let us define a strategy σ for ONE in the game $G_1(\mathcal{K}, \Gamma_k)$.

In the first round ONE plays $\sigma(\emptyset) = \mathcal{U}$. Then choose $i_n \in \{1, 2\}$, $n \in \mathbb{N}$, such that $\sigma(U_n) = \{V \in \mathcal{U} : \sigma(\{U_n, V\}) = i_n\}$ is a k-cover of X (see the proof of Theorem 3). Let us write $\sigma(U_n) = \{U_{n,m} : m \in \mathbb{N}\}$. Suppose for each finite sequence (n_1, \ldots, n_p) of natural numbers we have defined sets U_{n_1, \ldots, n_p} and $i_{n_1, \ldots, n_{p-1}} \in \{1, 2\}$ satisfying the condition $\{U_{n, \ldots, n_p, m} : m \in \mathbb{N}\}$ is a k-cover of X which is equal to the set

$$\{V \in \sigma(U_{n_1, U_{n_2, \ldots, U_{n_p, \ldots, n_1}}) : f(\{U_{n_1, n_2, \ldots, n_p, V\}) = i_{n_1, n_2, \ldots, n_p}\}.$$

In this way one defines a strategy σ for ONE in $G_1(\mathcal{K}, \Gamma_k)$. As ONE has no winning strategy, there is a play (for TWO)

$$U_{n_1, U_{n_2, \ldots, U_{n_1, n_2, \ldots, n_m, \ldots}}},$$

which defeats this strategy. The set $\{U_{n_1, \ldots, U_{n_1, n_2, \ldots, n_m, \ldots}\}$ is a γ_k-cover of X. Besides, if $p < q$, then

$$f(\{U_{n_1, n_2, \ldots, n_p, U_{n_1, n_2, \ldots, n_q}\}) = i_{n_1, n_2, \ldots, n_p},$$
We may choose \(i \in \{1, 2\} \) such that for infinitely many \(m \) we have \(i_{n_1, n_2, \ldots, n_m} = i \).

Then define

\[
\mathcal{V} = \{ U_{n_1, n_2, \ldots, n_m} : i_{n_1, n_2, \ldots, n_m} = i \} \subset \mathcal{U}.
\]

This set is a \(\gamma_k \)-cover of \(X \) (because an infinite subset of a \(\gamma_k \)-cover is also a \(\gamma_k \)-cover) and, by construction, is homogeneous for \(f \) of color \(i \).

\[2 \Rightarrow 1\): Let \((\mathcal{U}_n : n \in \mathbb{N})\) be a sequence of countable \(k \)-covers of \(X \) and suppose that for each \(n \), \(\mathcal{U}_n = \{ U_{n;m} : m \in \mathbb{N} \} \). Consider now the set \(\mathcal{V} \) of all nonempty sets of the form \(U_{1;m} \cap U_{m;k}, n, k \in \mathbb{N} \). Clearly, \(\mathcal{V} \) is a \(k \)-cover of \(X \).

Define \(f : [\mathcal{V}]^2 \to \{1, 2\} \) by

\[
f(U_{1;n_1} \cap U_{n_1;k}, U_{1;n_2} \cap U_{n_2;m}) = \begin{cases} 1, & \text{if } n_1 = n_2, \\ 2, & \text{otherwise.} \end{cases}
\]

Since \(K \to (\Gamma_k)^2 \) holds there are \(j \in \{1, 2\} \) and a homogeneous for \(f \) of color \(j \) collection \(\mathcal{W} \subset \mathcal{V} \) such that \(\mathcal{W} \in \Gamma_k \).

Consider two possibilities:

(i) \(j = 1 \): Then there is some \(n \) such that for each \(W \in \mathcal{W} \) we have \(W \subset U_{1,n} \).

However, this means that \(W \) is not a \(\gamma_k \)-cover of \(X \) and we have a contradiction which shows that this case is impossible.

(ii) \(j = 2 \): For each \(W \in \mathcal{W} \) choose, when it is possible, \(U_{n,k_n} \) to be the second term in the chosen representation of \(W \); otherwise let \(U_{n,k_n} = \emptyset \). Let \(\mathcal{V}' \) be the set of all \(U_{n,k_n} \)'s chosen in this way. Then \(\mathcal{V}' \) is a \(\gamma_k \)-cover of \(X \) witnessing for \((\mathcal{U}_n : n \in \mathbb{N})\) that \(X \) satisfies \(S_{\text{fin}}(K, \Gamma_k) \). Apply now Theorem 4

REFERENCES

(received 12.11.2005, in revised form 08.03.2006)

Filippo Cammaroto, Dipartimento di Matematica, Università di Messina, 98166 Messina, Italia
E-mail: camfil@unime.it

Ljubiša D.R. Kočinac, Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia
E-mail: lkoacinac@ptt.yu