SIGNED DEGREE SETS IN SIGNED 3-PARTITE GRAPHS

S. Pirzada and F. A. Dar

Abstract. If each edge of a 3-partite graph is assigned a positive or a negative sign then it is called a signed 3-partite graph. Also, signed degree of a vertex x in a signed 3-partite graph is the number of positive edges incident with x less than the number of negative edges incident with x. The set of distinct signed degrees of the vertices of a signed 3-partite graph is called its signed degree set. In this paper, we prove that every set of n integers is the signed degree set of some connected signed 3-partite graph.

1. Introduction

A signed graph is a graph in which each edge is assigned a positive or a negative sign. The concept of signed graph is given by Harary [3]. Let G be a signed graph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$. The signed degree of $v_i \in V$ is $sdeg(v_i) = d_i^+ - d_i^-$, where d_i^+ (d_i^-) is the number of positive (negative) edges incident with v_i. A signed degree sequence $\sigma = [d_1, d_2, \ldots, d_n]$ of a signed graph G is formed by listing the vertex signed degrees in non-increasing order. An integral sequence is s-graphical if it is the signed degree sequence of a signed graph. Also, a non-zero sequence $\sigma = [d_1, d_2, \ldots, d_n]$ is standard sequence if σ is non-increasing, $\sum_{i=1}^{n} d_i$ is even, $d_1 > 0$, each $|d_i| < n$, and $|d_1| \geq |d_n|$.

Chartrand et al. [1] obtained the necessary and sufficient conditions for an integral sequence to be s-graphical, which is similar to Hakimi’s result for degree sequences in graphs [2]. Another necessary and sufficient conditions for an integral sequence to be the signed degree sequence of a signed graph is given by Yan et al. [8].

The set of distinct signed degrees of the vertices of a signed graph is called its signed degree set. Pirzada et al. [6] proved that every set of positive(negative) integers is the signed degree set of some connected graph and determined the smallest possible order for such a signed graph.

A signed 3-partite graph is a 3-partite graph in which each edge is assigned a positive or a negative sign. Let $G(U,V,W)$ be a signed 3-partite graph with

AMS Subject Classification: 05C22

Keywords and phrases: Signed graph, signed tripartite graph, signed degree, signed set.
$U = \{u_1, u_2, \ldots, u_p\}$, $V = \{v_1, v_2, \ldots, v_q\}$ and $W = \{w_1, w_2, \ldots, w_r\}$. Then, signed degree of u_i is $\text{sdeg} (u_i) = d_i = d_i^+ - d_i^-$, where d_i^+ (d_i^-) is the number of positive (negative) edges incident with u_i, signed degree of v_j is $\text{sdeg} (v_j) = e_j = e_j^+ - e_j^-$, where e_j^+ (e_j^-) is the number of positive (negative) edges incident with v_j, and signed degree of w_k is $\text{sdeg} (w_k) = f_k = f_k^+ - f_k^-$, where f_k^+ (f_k^-) is the number of positive (negative) edges incident with w_k. Then, the sequences $\alpha = [d_1, d_2, \ldots, d_p], \beta = [e_1, e_2, \ldots, e_q]$ and $\gamma = [f_1, f_2, \ldots, f_r]$ are called the signed degree sequences of $G(U, V, W)$. Also, the sequences of integers α, β and γ are said to be standard sequences if α is non-zero and non-increasing, $\sum_{i=1}^p d_i + \sum_{j=1}^q e_j + \sum_{k=1}^r f_k$ is even, $d_1 > 0$, each $|d_i| \leq q + r$, each $|e_j| \leq r + p$, each $|f_k| \leq p + q$, $|d_1| \geq |e_j|$ and $|d_1| \geq |f_k|$ for each j and k.

The following result is given by Pirzada et al. [5].

Theorem 1.1. Let $\alpha = [d_1, d_2, \ldots, d_p], \beta = [e_1, e_2, \ldots, e_q]$ and $\gamma = [f_1, f_2, \ldots, f_r]$ be standard sequences. Then, α, β and γ are the signed degree sequences of a signed 3-partite graph if and only if there exists integers g and h with $d_1 = g - h$ and $0 \leq h \leq \frac{q + r - d_1}{2}$ such that α', β' and γ' are the signed degree sequences of a signed 3-partite graph, where α' is obtained from α by deleting d_1 and β' and γ' are obtained from β and γ by reducing g greatest entries of β and γ by 1 each and adding h least entries of β and γ by 1 each.

The characterization of signed degree sequences in signed bipartite graphs can be found in [7]. That every set of integers is the signed degree set of some connected signed bipartite graph is proved in [4].

For any two sets X and Y, we denote by $X \oplus Y$ to mean that each vertex of X is joined to every vertex of Y by a positive edge.

2. Main Results

A signed 3-partite graph $G(U, V, W)$ is said to be connected if each vertex of one partite set is connected to every vertex of other partite sets. The set S of distinct signed degrees of the vertices of a signed 3-partite graph $G(U, V, W)$ is called its signed degree set.

First, we obtain the following result which shows that every set of positive integers is a signed degree set of some connected signed 3-partite graph.

Theorem 2.1. Let d_1, d_2, \ldots, d_n be positive integers. Then, there exists a connected signed 3-partite graph with signed degree set $S = \{s_i| i = 1, 2, \ldots, n\}$, where $s_i = \sum_{j=1}^i d_j$.

Proof. If $n = 1$, $d_1 = 1$ then a signed 3-partite graph $G(U, V, W)$ with $U = \{u_1, u_2\}$, $V = \{v_1, v_2, v_3\}$, $W = \{w_1\}$ and in which $u_1v_1, u_2v_2, u_2v_3, v_1w_1$ are positive edges and u_2v_1 is negative edge has signed degree set $S = \{d_1\}$.

Also, if $n = 1$, $d_1 > 0$, then a signed 3-partite graph $G(U, V, W)$ with $|U| = 1, |V| = d_1 - 1, |W| = d_1, U \oplus W$ and $V \oplus W$ has signed degree set $S = \{d_1\}$.
Now, assume that \(n \geq 2 \). Construct a signed 3-partite graph \(G(U, V, W) \) as follows.

Let \(U = X_1 \cup X_2 \cup \cdots \cup X_{n-1} \cup X_n, V = Y_1 \cup Y_2 \cup \cdots \cup Y_{n-1}, W = Z_1 \cup Z_2 \cup Z'_1 \cup \cdots \cup Z'_{n-1} \cup Z_n \cup Z'_n \), with \(X_i \cap X_j = \phi, Y_i \cap Y_j = \phi, Z_i \cap Z_j = \phi, \)

\(Z_i \cap Z'_j = \phi, Z'_i \cap Z'_j = \phi \) (\(i \neq j \)), \(|X_i| = |Z_i| = d_i \) for all \(i, 1 \leq i \leq n \), \(|Y_i| = |Z'_i| = d_{i+1} \) for all \(i, 1 \leq i \leq n-1 \), \(X_i \cap Z_j \) whenever \(i \geq j \), \(Y_i \cap Z_{i+1} \) for all \(i, 1 \leq i \leq n-1 \), \(Y_i \cup Z'_{i+1} \) for all \(i, 1 \leq i \leq n-1 \). Then, the signed degrees of the vertices of \(G(U, V, W) \) are as follows.

For \(1 \leq i \leq n \), \(sdeg(x_i) = \sum_{j=1}^n |Z_j| = \sum_{j=1}^n d_j = d_1 + d_2 + \cdots + d_i \), for all \(x_i \in X_i; \) for \(1 \leq i \leq n-1 \), \(sdeg(y_i) = |Z_{i+1}| + |Z'_{i+1}| = d_{i+1} + d_1 + d_2 + \cdots + d_i \), \(d_1 + d_2 + \cdots + d_i + d_{i+1} \) for all \(y_i \in Y_i; \) for \(1 \leq i \leq n \), \(sdeg(z_i) = (\sum_{j=1}^n |X_j|) + |Y_i| = \sum_{j=1}^n d_j + d_1 + d_2 + \cdots + d_{i-1} = d_1 + d_2 + \cdots + d_n \), \(z_i \in Z_i \); and for \(2 \leq i \leq n \), \(sdeg(z'_i) = |Y_{i-1}| + |Z'_{i-1}| = d_1 + d_2 + \cdots + d_{i-1} \), for all \(z'_i \in Z'_i \).

Therefore, signed degree set of \(G(U, V, W) \) is \(S \). Clearly, all the signed 3-partite graphs constructed above are connected. Hence, the result.

The next result follows from Theorem 2.1 by interchanging positive edges with negative edges.

Corollary 2.1. Every set of negative integers is a signed degree set of some connected signed 3-partite graph.

Now we have the following result.

Theorem 2.2 Every set of integers is a signed degree set of some connected signed 3-partite graph.

Proof. If \(S \) is a set of integers, then we have the following cases.

(i) \(S \) is a set of positive (negative) integers. Then, by Theorem 2.1 (Corollary 2.1), the result follows.

(ii) \(S = \{0\} \). Then, a signed 3-partite graph \(G(U, V, W) \) with \(U = \{u_1\}, V = \{v_1, v_2\}, W = \{w_1\} \) and in which \(u_1v_1, v_2w_1 \) are positive edges and \(u_1v_2, v_1w_1 \) are negative edges has signed degree set \(S \).

(iii) \(S \) is a set of non-negative (non-positive) integers. Let \(S = S_1 \cup \{0\} \), where \(S_1 \) is a set of negative (positive) integers. Then, by Theorem 2.1 (Corollary 2.1), there is a connected signed 3-partite graph \(G_1(U_1, V_1, W_1) \) with signed degree set \(S_1 \). Construct a new signed 3-partite graph \(G(U, V, W) \) as follows.

Let \(U = U_1 \cup \{u\}, V = V_1 \cup \{v\}, W = W_1 \cup \{w\} \), with \(U_1 \cap \{u\} = \phi, V_1 \cap \{v\} = \phi, W_1 \cap \{w\} = \phi \) and let \(uv, v_1w \) be positive edges and \(uw_1, v_1w \) be negative edges, where \(v_1 \in V_1 \). Then, \(G(U, V, W) \) has signed degree set \(S \). Also, note that addition of such edges do not effect the signed degrees of the vertices of \(G_1(U_1, V_1, W_1) \), and the vertices \(u, v, w \) have signed degrees zero each.

(iv) \(S \) is a set of non-zero integers. Let \(S = S_1 \cup S_2 \), where \(S_1 \) and \(S_2 \) are sets of positive and negative integers respectively. Then, by Theorem 2.1 and Corollary
2.1, there are connected signed 3-partite graphs $G_1(U_1, V_1, W_1)$ and $G_2(U_2, V_2, W_2)$ with S_1 and S_2 respectively.

Construct a new signed 3-partite graph $G(U, V, W)$ as follows.

Let $U = U_1 \cup U_2, V = V_1 \cup V_2, W = W_1 \cup W_2$ with $U_1 \cap U_2 = \phi, V_1 \cap V_2 = \phi, W_1 \cap W_2 = \phi$ and let u_1v_2, u_2w_1, v_1w_2 be positive edges and u_1w_2, u_2v_1, w_1v_2 be negative edges where $u_i \in U_i, v_i \in V_i, w_i \in W$. Then, signed degree set of $G(U, V, W)$ is S. Clearly addition of such edges do not effect the signed degrees of the vertices of $G_1(U_1, V_1, W_1)$ and $G_2(U_2, V_2, W_2)$.

(v) S is a set of all integers. Let $S = S_1 \cup S_2 \cup \{0\}$, where S_1 and S_2 are sets of positive and negative integers respectively. Then, by Theorem 2.1 and Corollary 2.1, there exist connected signed 3-partite graphs $G_1(U_1, V_1, W_1)$ and $G_2(U_2, V_2, W_2)$ with signed degree sets S_1 and S_2 respectively. Construct a new signed 3-partite graph $G(U, V, W)$ as follows.

Let $U = U_1 \cup U_2 \cup \{u\}, V = V_1 \cup V_2, W = W_1 \cup W_2$ with $U_1 \cap U_2 = \phi, U_1 \cap \{u\} = \phi, V_1 \cap V_2 = \phi, W_1 \cap W_2 = \phi$ and let u_1w_1, u_2w_1 be positive edges, where $u_2 \in U_2, v_1 \in V_1, w_1 \in W_1$. Then, signed degree set of $G(U, V, W)$ is S. We note that addition of such edges do not effect the signed degrees of the vertices of $G_1(U_1, V_1, W_1)$ and $G_2(U_2, V_2, W_2)$, and the signed degree of u is zero. Clearly, by construction, all the above signed 3-partite graphs are connected. This proves the result. ■

REFERENCES

(received 13.02.2007, in revised form 10.07.2007)

Department of Mathematics, University of Kashmir, India

E-mail: sdpirzada@yahoo.co.in, sfarooqdar@yahoo.co.in