CENTRALIZING AND COMMUTING GENERALIZED DERIVATIONS ON PRIME RINGS

Asif Ali and Tariq Shah

Abstract. Let \(R \) be a prime ring and \(d \) a derivation on \(R \). If \(f \) is a generalized derivation on \(R \) such that \(f \) is centralizing on a left ideal \(U \) of \(R \), then \(R \) is commutative.

A ring \(R \) is said to be prime if \(aRb = 0 \) implies that either \(a = 0 \) or \(b = 0 \). An additive mapping \(d: R \to R \) is said to be a derivation if \(d(xy) = d(x)y + xd(y) \) for all \(x, y \in R \). A mapping \(f \) is said to be commuting on a left ideal \(U \) of \(R \) if \([f(x), x] = 0 \) for all \(x \in U \) and \(f \) is said to be centralizing if \([f(x), x] \in Z(R) \) for all \(x \in U \). There has been considerable interest in commuting, centralizing and related mappings in prime and semiprime rings (see [2] for a partial bibliography).

In this note we extend some results of Bell and Martindale [1] for generalized derivations. An additive mapping \(f: R \to R \) is said to be a generalized derivation on \(R \) if \(f(xy) = f(x)y + xd(y) \) for all \(x, y \in R \) (where \(d \) is a derivation on \(R \)). These mappings were introduced in [3].

Throughout this note \(R \) will represent a prime ring with \(Z(R) \) being its centre.

In the following we state a well known fact as

Remark 1. For a nonzero element \(a \in Z(R) \), if \(ab \in Z(R) \), then \(b \in Z(R) \).

In order to prove the main result, we find it necessary to establish the following Lemma.

Lemma 1. If \(f \) is an additive mapping from \(R \) to \(R \) such that \(f \) is centralizing on a left ideal \(U \) of \(R \), then for all \(x \in U \cap Z(R) \), \(f(x) \in Z(R) \).

Proof. Since \(f \) is centralizing on \(U \), we have \([f(x + y), x + y] \in Z(R) \), for all \(x, y \in U \). This implies that

\[
[f(x), y] + [f(y), x] \in Z(R). \tag{1}
\]
Now if $x \in Z(R)$, then from equation (1), $[f(x), y] \in Z(R)$. Replacing y by $f(x)y$, we get $f(x)f(x), y] \in Z(R)$. If $[f(x), y] = 0$, then $f(x) \in C_R(U)$, the centralizer of U in R, and hence ([1, Identity IV]) belongs to $Z(R)$. But on the other hand if $[f(x), y] \neq 0$, it again follows from Remark 1 that $f(x) \in Z(R)$. ■

Next we prove the result which generalizes [1, Theorem 4].

Theorem 1. Let R be a prime ring. Let $d: R \rightarrow R$ be a nonzero derivation and f be a generalized derivation on a left ideal U of R. If f is commuting on U then R is commutative.

Proof. Since f is commuting on U, we have $[f(x), x] = 0$ for all $x \in U$. Replacing x by $x+y$, we get $[f(x), y] + [f(y), x] = 0$. Now by substituting $y = xy$ and simplifying we arrive at $[yd(x), x] = 0$. Replacing y by ry, we get $[r, x]U\ d(x) = 0$ for all $x \in U$ and $r \in R$. Since R is a prime ring, therefore either $[r, x] = 0$ or $d(x) = 0$ for all $t \in R$. So for any element $x \in U$, either $x \in Z(R)$ or $d(x) = 0$. Since d is nonzero on R, then by [4, Lemma 2], d is nonzero on U. Suppose $d(x) \neq 0$, for some $x \in U$, then $x \in Z(R)$. Suppose $z \in U$ is such that $z \notin Z(R)$, then $d(z) = 0$ and $x + z \notin Z(R)$. This implies $d(x + z) = 0$ and so $d(x) = 0$, a contradiction. This implies $z \in Z(R)$ for all $z \in U$. Thus U is commutative and hence by [4, Lemma 3], R is commutative. ■

Now we are ready to prove the result which involves centralizing generalized derivations on left ideals containing central elements.

Theorem 2. Let U be a left ideal of a prime ring R such that $U \cap Z(R) \neq 0$. Let d be a nonzero derivation and f be a generalized derivation on R such that f is centralizing on U. Then R is commutative.

Proof. We assume that $Z(R) \neq 0$ because otherwise f is commuting on U and there is nothing left to prove. Now for a nonzero $z \in Z(R)$, we replace x by zy in (1) and get $[f(z), y]y + z[d(y), y] + z[f(y), y] \in Z(R)$. Now by Lemma 1, $f(z) \in Z(R)$ and therefore $z[d(y), y] + z[f(y), y] \in Z(R)$. But as f is centralizing on U, we have $z[f(y), y] \in Z(R)$ and consequently $z[d(y), y] \in Z(R)$. Since z is nonzero, it follows from Remark 1 that $[d(y), y] \in Z(R)$. This implies d is centralizing on U and hence by [1, Theorem 4], we conclude that R is commutative. ■

References

(Received 23.11.2005)

Department of Mathematics, Quaid-i-Azam University, Islamabad-Pakistan

E-mail: dr_asif.ali@yahoo.com, stariqshah@gmail.com