λ-FRACTIONAL PROPERTIES OF GENERALIZED JANOWSKI FUNCTIONS IN THE UNIT DISC

Mert Çağlar, Yaşar Polatğlu, Emel Yavuz

Abstract. For analytic function \(f(z) = z + a_2z^2 + \cdots \) in the open unit disc \(D \), a new fractional operator \(D_\lambda f(z) \) is defined. Applying this fractional operator \(D_\lambda f(z) \) and the principle of subordination, we give new proofs for some classical results concerning the class \(S_\lambda^*(A, B, \alpha) \) of functions \(f(z) \).

1. Introduction

Let \(\Omega \) be the family of functions \(w(z) \) regular in the open unit disc \(\mathbb{D} = \{ z \in \mathbb{C} \mid |z| < 1 \} \) and satisfying the conditions \(w(0) = 0, |w(z)| < 1 \) for all \(z \in \mathbb{D} \).

Let \(g(z) = z + b_2z^2 + \cdots \) and \(h(z) = z + c_2z^2 + \cdots \) be analytic functions in \(\mathbb{D} \). We say that \(g(z) \) is subordinate to \(h(z) \), written as \(g \prec h \), if

\[
g(z) = h(w(z)), \ w(z) \in \Omega, \quad \text{and for all } z \in \mathbb{D}.
\]

In particular if \(h(z) \) is univalent in \(\mathbb{D} \), then \(g \prec h \) if and only if \(g(0) = h(0) \), \(g(\mathbb{D}) \subset h(\mathbb{D}) \) ([1], [3]).

For arbitrary fixed numbers \(A, B, \alpha, -1 \leq B < A \leq 1, 0 \leq \alpha < 1 \), let \(\mathcal{P}(A, B, \alpha) \) denote the family of functions \(p(z) = 1 + p_1z + p_2z^2 + \cdots \) regular in \(\mathbb{D} \) and such that \(p(z) \in \mathcal{P}(A, B, \alpha) \) if and only if

\[
p(z) \prec \frac{1 + [(1 - \alpha)A + \alpha B]z}{1 + Bz} \iff p(z) = \frac{1 + [(1 - \alpha)A + \alpha B]w(z)}{1 + Bw(z)}
\]

for some function \(w(z) \) and all \(z \in \mathbb{D} \).

Using the fractional calculus, we define the fractional operator \(D^\lambda f(z) \) by

\[
D^\lambda f(z) = \Gamma(2 - \lambda)z^{\lambda}D_\lambda^zf(z),
\]

where \(D_\lambda^zf(z) \) is the fractional derivative of order \(\lambda \) which will be defined below.

AMS Subject Classification: 30C45

Keywords and phrases: Starlike, fractional integral, fractional derivative, distortion theorem.
Furthermore, let $S^*_\lambda(A, B, \alpha)$ denote the family of functions $f(z) = z + a_2z^2 + \cdots$ regular in D and such that $f(z)$ is in $S^*_\lambda(A, B, \alpha)$ if and only if
\[\frac{z}{D^\lambda f(z)}' = p(z) \]
for some $p(z)$ in $P(A, B, \alpha)$ and for all $z \in D$.

The fractional integral of order λ is defined for a function $f(z) \in S^*_\lambda(A, B, \alpha)$, by
\[D^{-\lambda}_z f(z) = \frac{1}{\Gamma(\lambda)} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{1-\lambda}} d\zeta \quad (\lambda > 0), \]
where the function $f(z)$ is analytic in a simply connected region of the complex plane containing the origin and the multiplicity of $(z-\zeta)^{\lambda-1}$ is removed by requiring $\log(z-\zeta)$ to be real when $(z-\zeta) > 0$ ([4], [5]).

The fractional derivative of order λ is defined for a function $f(z) \in S^*_\lambda(A, B, \alpha)$, by
\[D^{\lambda}_z f(z) = \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\lambda}} d\zeta \quad (0 \leq \lambda < 1), \]
where the function $f(z)$ is analytic in a simply connected region of the complex plane containing the origin and the multiplicity of $(z-\zeta)^{-\lambda}$ is removed as in the definition of the fractional integral ([4], [5]).

Under the hypotheses of the fractional derivative of order λ, the fractional derivative of order $(n+\lambda)$ is defined for a function $f(z)$, by
\[D^{n+\lambda}_z f(z) = \frac{d^n}{dz^n} D^{\lambda}_z f(z) \quad (0 \leq \lambda < 1, \ n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}). \]

By means of the definitions above, we see that
\begin{align}
D^{\lambda}_z z^k &= \Gamma(k+1) \frac{z^{k+\lambda}}{\Gamma(k+1+\lambda)} \quad (\lambda > 0), \\
D^{\lambda}_z z^{-k} &= \Gamma(k+1) \frac{z^{-k-\lambda}}{\Gamma(k+1-\lambda)} \quad (0 \leq \lambda < 1)
\end{align}
(1.1)
and
\[D^{n+\lambda}_z z^k = \Gamma(k+1) \frac{z^{k-n-\lambda}}{\Gamma(k+1-n-\lambda)} \quad (0 \leq \lambda < 1, n \in \mathbb{N}_0). \]

Therefore, we conclude that, for any real λ
\[D^{\lambda}_z z^k = \Gamma(k+1) \frac{z^{k-\lambda}}{\Gamma(k+1-\lambda)}. \]
(1.2)

The following lemma, due to Jack [2], plays an important rôle in our proofs.

Lemma 1.1 Let $w(z)$ be a non-constant function analytic in $D(r) = \{z \mid |z| < r \}$ with $w(0) = 0$. If
\[|w(z_1)| = \text{Max} \{|w(z)| \mid |z| \leq |z_1|\} \quad (z_1 \in \mathbb{D}(r)), \]
then there exists a real number k ($k \geq 1$), such that $z_1w'(z_1) = kw(z_1)$.

2. Main Results

Lemma 2.1. Let \(f(z) = z + a_2 z^2 + \cdots \) be analytic in the open unit disc \(\mathbb{D} \). Then the \(\lambda \)-fractional operator \(D^\lambda f(z) \) satisfies the following equalities

\[
\begin{align*}
(i) \quad D^\lambda f(z) &= \Gamma(2-\lambda) z^\lambda D_1^\lambda f(z) = z + \sum_{n=2}^{\infty} a_n \frac{\Gamma(2-\lambda) \Gamma(n+1)}{\Gamma(n+1-\lambda)} z^n; \\
(ii) \quad for \lambda = 1, \quad Df(z) &= \lim_{\lambda \to 1} D^\lambda f(z) = zf'(z); \\
(iii) \quad for \lambda < 1, \delta < 1, \quad D^\lambda(D^\delta f(z)) &= D^{\lambda+\delta}(D^\lambda f(z)) \\
&= z + \sum_{n=2}^{\infty} a_n \frac{\Gamma(2-\lambda) \Gamma(2-\delta) \Gamma(n+1)^2}{\Gamma(n+1-\lambda) \Gamma(n+1-\delta)} z^n; \\
(iv) \quad D(D^\lambda f(z)) &= z + \sum_{n=2}^{\infty} n a_n \frac{\Gamma(2-\lambda) \Gamma(n+1)}{\Gamma(n+1-\lambda)} z^n = z(D^\lambda f(z))' \\
&= \Gamma(2-\lambda) z^\lambda (\lambda D^\lambda f(z) + zD^{\lambda+1} f(z)); \\
(v) \quad \frac{D(D^\lambda f(z))}{D^\lambda f(z)} - 1 &= \begin{cases}
\frac{z f'(z)}{f(z)} - 1, & for \lambda = 0, \\
\frac{z f''(z)}{f'(z)}, & for \lambda = 1.
\end{cases}
\end{align*}
\]

Proof. Making use of the fractional derivative rules (1.1) and (1.2), we obtain

\[
D_1^\lambda f(z) = \frac{\Gamma(2)}{\Gamma(2-\lambda)} z^{1-\lambda} + a_2 \frac{\Gamma(3)}{\Gamma(3-\lambda)} z^{2-\lambda} + \cdots + a_n \frac{\Gamma(n+1)}{\Gamma(n+1-\lambda)} z^{n-\lambda} + \cdots
\]

wherefrom

\[
D^\lambda f(z) = \Gamma(2-\lambda) z^\lambda D_1^\lambda f(z) = z + \sum_{n=2}^{\infty} a_n \frac{\Gamma(2-\lambda) \Gamma(n+1)}{\Gamma(n+1-\lambda)} z^n.
\]

Other equalities follow directly from (2.1). \(\blacksquare \)

Lemma 2.2. Let \(f(z) = z + a_2 z^2 + \cdots \) and \(g(z) = z + b_2 z^2 + \cdots \) be analytic functions in the open unit disc \(\mathbb{D} \). Then the solution of the fractional differential equation

\[
D_1^\lambda f(z) = \frac{1}{\Gamma(2-\lambda)} z^{-\lambda} g(z)
\]

is

\[
f(z) = z + \sum_{n=2}^{\infty} b_n \frac{\Gamma(n+1-\lambda)}{\Gamma(2-\lambda) \Gamma(n+1)} z^n.
\]

Proof. Using the definition of fractional integral, fractional derivative and fractional calculus of order \((n+\lambda)\), we get

\[
D_1^\lambda f(z) = \frac{\Gamma(2)}{\Gamma(2-\lambda)} z^{1-\lambda} + a_2 \frac{\Gamma(3)}{\Gamma(3-\lambda)} z^{2-\lambda} + \cdots + a_n \frac{\Gamma(n+1)}{\Gamma(n+1-\lambda)} z^{n-\lambda} + \cdots
\]

\[
= \frac{1}{\Gamma(2-\lambda)} z^{-\lambda} g(z)
\]

\[
= \frac{1}{\Gamma(2-\lambda)} z^{1-\lambda} + b_2 \frac{1}{\Gamma(2-\lambda)} z^{2-\lambda} + \cdots + b_n \frac{1}{\Gamma(2-\lambda)} z^{n-\lambda} + \cdots.
\]
Therefore, we have
\[
\frac{\Gamma(2)}{\Gamma(2-\lambda)} z^{1-\lambda} + a_2 \frac{\Gamma(3)}{\Gamma(3-\lambda)} z^{2-\lambda} + \cdots + a_n \frac{\Gamma(n+1)}{\Gamma(n+1-\lambda)} z^{n-\lambda} + \cdots
\]
\[
= \frac{1}{\Gamma(2-\lambda)} z^{1-\lambda} + b_2 \frac{1}{\Gamma(2-\lambda)} z^{2-\lambda} + \cdots + b_n \frac{1}{\Gamma(2-\lambda)} z^{n-\lambda} + \cdots \quad (2.2)
\]
Comparing the coefficient of $z^{n-\lambda}$ in both sides of (2.2) we obtain
\[
a_n = \frac{\Gamma(n+1-\lambda)}{\Gamma(2-\lambda) \Gamma(n+1)} b_n. \quad \blacksquare
\]

Theorem 2.3. Let $f(z) = z + a_2 z^2 + \cdots$ be analytic in the open unit disc \mathbb{D}. If $f(z)$ satisfies
\[
\left(\frac{D(D^\lambda f(z))}{D^\lambda f(z)} - 1 \right) F(z) = \begin{cases} \frac{(1-\alpha)(A-B)z}{1+Bz}, & B \neq 0, \\ (1-\alpha)A z = F_2(z), & B = 0, \end{cases}
\]
then $f(z) \in S^*_\alpha(A, B, \alpha)$ and this result is sharp as the function
\[
D^\lambda f(z) = \begin{cases} z(1+Bz), & B \neq 0, \\ ze^{(1-\alpha)Az}, & B = 0. \end{cases}
\]

Proof. We define the function $w(z)$ by
\[
\frac{D^\lambda f(z)}{z} = \begin{cases} (1+Bw(z)) e^{(1-\alpha)Aw(z)}, & B \neq 0, \\ e^{(1-\alpha)Aw(z)}, & B = 0, \end{cases}
\]
where $(1+Bw(z)) e^{(1-\alpha)Aw(z)}$ have the value 1 at the origin (we consider the corresponding Riemann branch). Then $w(z)$ is analytic in \mathbb{D} and $w(0) = 0$. If we take the logarithmic derivative of the equality (2.4), simple calculations yield
\[
\left(\frac{D^\lambda f(z)}{z} \right)' = \begin{cases} \frac{(1-\alpha)(A-B)zw'(z)}{1+Bw(z)}, & B \neq 0, \\ (1-\alpha)Aw'(z), & B = 0. \end{cases}
\]
Now, it is easy to realize that the subordination (2.3) is equivalent to $|w(z)| < 1$ for all $z \in \mathbb{D}$. Indeed, assume the contrary; then, there exists $z_1 \in \mathbb{D}$ such that $|w(z_1)|$ attains its maximum value on the circle $|z| = r$ at the point z_1, that is $|w(z_1)| = 1$. Then, by I.S. Jack’s lemma, $z_1 w'(z_1) = kw(z_1)$ for some real $k \geq 1$. For such z_1 we have
\[
\left(\frac{D^\lambda f(z_1)}{z_1} \right)' = \begin{cases} \frac{(1-\alpha)(A-B)k w(z_1)}{1+Bw(z_1)} = F_1(w(z_1)) \notin F_1(\mathbb{D}), & B \neq 0, \\ (1-\alpha)Aw(z_1) = F_2(w(z_1)) \notin F_2(\mathbb{D}), & B = 0, \end{cases}
\]
because \(|w(z)| = 1\) and \(k \geq 1\). But this contradicts (2.3), so assumption is wrong, i.e., \(|w(z)| < 1\) for every \(z \in \mathbb{D}\).

The sharpness of the result follows from the fact that

\[
D^\lambda f(z) = \begin{cases}
 z(1 + Bz) & B \neq 0, \\
 ze^{(1-\alpha)Az} & B = 0
\end{cases} \Rightarrow \frac{(1-\alpha)(A-B)}{B} D^\lambda f(z) \longrightarrow \begin{cases}
 \frac{(1-\alpha)(A-B)}{1+Bz}, & B \neq 0, \\
 (1-\alpha)Az, & B = 0.
\end{cases}
\]

\[\left|\left(\frac{\Gamma(2-\lambda)D^\lambda f(z)}{z^{1-\lambda}}\right)^B - 1\right| < 1, \quad B \neq 0, \quad (2.5)\]

\[\left|\log \left(\frac{\Gamma(2-\lambda)D^\lambda f(z)}{z^{1-\lambda}}\right)^{1/(1-\alpha)A}\right| < 1, \quad B = 0. \quad (2.6)\]

Proof. This corollary is a simple consequence of Theorem 2.3. \(\blacksquare\)

Remark 2.5. We note that the inequalities (2.5) and (2.6) are the \(\lambda\)-fractional Marx-Strohhacker inequalities. Indeed, for \(A = 1\), \(B = -1\), \(\alpha = 0\), we have

\[\left|\left(\frac{\Gamma(2-\lambda)D^\lambda f(z)}{z^{1-\lambda}}\right)^B - 1\right| < 1,\]

which yields

a) \[\left|\sqrt{\frac{z}{f(z)}} - 1\right| < 1\] for \(\lambda = 0\): this is the Marx-Strohhacker inequality for starlike functions [1];

b) \[\left|\sqrt[1-\alpha]{\frac{1}{f(z)}} - 1\right| < 1\] for \(\lambda = 1\): this is the Marx-Strohhacker inequality for convex functions [1].

Moreover, assigning special values to \(A\), \(B\), \(\alpha\) and \(\lambda\), we obtain Marx-Strohhacker inequalities for the all the subclasses \(S^\lambda_*(A, B, \alpha)\) of analytic functions in the unit disc where \(0 \leq \lambda < 1\), \(0 \leq \alpha < 1\), \(-1 \leq B < A \leq 1\).
Theorem 2.6. If \(f(z) \in S^*_\lambda(A, B, \alpha) \), then

\[
\frac{1}{\Gamma(2-\lambda)} r^{1-\lambda}(1-Br) \frac{(1-\alpha)(A-B)}{B} \leq |D_2^\lambda f(z)|
\]

\[
\leq \frac{1}{\Gamma(2-\lambda)} r^{1-\lambda}(1+Br) \frac{(1-\alpha)(A-B)}{B}, \quad B \neq 0,
\]

\[
\frac{1}{\Gamma(2-\lambda)} r^{1-\lambda}e^{-(1-\alpha)Ar} \leq |D_2^\lambda f(z)|
\]

\[
\leq \frac{1}{\Gamma(2-\lambda)} r^{1-\lambda}e^{(1-\alpha)Ar}, \quad B = 0.
\] (2.7)

These bounds are sharp, because the extremal function is the solution of the \(\lambda \)-fractional differential equation

\[D_\lambda^z f(z) = \begin{cases}
\frac{1-\lambda}{\Gamma(1-\lambda)}z^{1-\lambda}(1+Br) \frac{(1-\alpha)(A-B)}{B}, & B \neq 0, \\
\frac{1-\lambda}{\Gamma(1-\lambda)}z^{1-\lambda}e^{(1-\alpha)Az}, & B = 0.
\end{cases} \]

Proof. The set of the values \(\left(z \frac{(D^\lambda f(z))'}{D^\lambda f(z)} \right) \) is the closed disc centered at

\[
\begin{cases}
C(r) = \frac{1-B[(1-\alpha)A+\alpha B]}{1-Br^2}, & B \neq 0, \\
C(r) = (1,0), & B = 0,
\end{cases}
\]

with radius

\[
\begin{cases}
\rho(r) = \frac{(1-\alpha)(A-B)r}{1-Br^2}, & B \neq 0, \\
\rho(r) = (1-\alpha)|A|r, & B = 0.
\end{cases}
\]

By using the definition of the class \(S^*_\lambda(A, B, \alpha) \) and the definition of the subordination we can write

\[
|z \frac{(D^\lambda f(z))'}{D^\lambda f(z)} - \frac{1-B[(1-\alpha)A+\alpha B]}{1-Br^2}| \leq \frac{(1-\alpha)(A-B)r}{1-B^2r^2}.
\] (2.8)

After simple calculations from (2.8) we get

\[
\frac{1-(1-\alpha)(A-B)r-B[(1-\alpha)A+\alpha B]}{1-B^2r^2} \leq \text{Re} \left(z \frac{(D^\lambda f(z))'}{D^\lambda f(z)} \right)
\]

\[
\leq \frac{1+(1-\alpha)(A-B)r-B[(1-\alpha)A+\alpha B]}{1-B^2r^2}, \quad B \neq 0,
\] (2.9)

\[
1-(1-\alpha)|A|r \leq \text{Re} \left(z \frac{(D^\lambda f(z))'}{D^\lambda f(z)} \right) \leq 1+(1-\alpha)|A|r, \quad B = 0.
\]

On the other hand we have

\[
\text{Re} \left(z \frac{(D^\lambda f(z))'}{D^\lambda f(z)} \right) = r \frac{\partial}{\partial r} \log |D^\lambda f(z)|, \quad |z| = r.
\] (2.10)
If we substitute (2.9) into (2.10) we get

\[
\begin{align*}
\frac{1}{r} - \frac{(1 - \alpha)(A - B)}{1 - Br} \leq \frac{\partial}{\partial r} \log |D^\lambda f(z)| & \leq \frac{1}{r} + \frac{(1 - \alpha)(A - B)}{1 + Br}, & B \neq 0, \\
\frac{1}{r} - (1 - \alpha)|A| \leq \frac{\partial}{\partial r} \log |D^\lambda f(z)| & \leq \frac{1}{r} + (1 - \alpha)|A|, & B = 0.
\end{align*}
\]

(2.11)

Integrating both sides (2.11) and substituting \(D^\lambda f(z) = \Gamma(2 - \lambda)z^\lambda D^\lambda_2 f(z) \) into the result of integration we obtain (2.7).

Remark 2.7. Similarly, if we give special values to \(A, B, \alpha \) and \(\lambda \) we obtain the distortions of the subclasses \(S^*_\lambda(A, B, \alpha) \).

Acknowledgement. The authors would like to express sincerest thanks to the referee for suggestions.

References

(received 11.04.2007, in revised form 24.03.2008)

Department of Mathematics and Computer Science, İstanbul Kültür University, 34156 İstanbul, Turkey

E-mail: m.caglar@iku.edu.tr, y.polatoglu@iku.edu.tr, e.yavuz@iku.edu.tr