EQUITORSION CONFORM MAPPINGS OF GENERALIZED Riemannian Spaces

Mića S. Stanković, Ljubica S. Velimirović, Svetislav M. Minčić and Milan Lj. Zlatanović

Abstract. We define an equitorsion conform mapping of two generalized Riemannian spaces and obtain some invariant geometric objects of this mapping, generalizing the tensor of conform curvature.

0. Introduction

A generalized Riemannian space GR_N in the sense of Eisenhart’s definition [5] is a differentiable N-dimensional manifold, equipped with nonsymmetric basic tensor g_{ij}.

The use of non-symmetric basic tensor and non-symmetric connection became especially actual after appearance of the works of A. Einstein [1]–[4] related to creation of the Unified Field Theory (UFT). Remark that at UFT the symmetric part g_{ij} of the basic tensor g_{ij} is related to the gravitation, and antisymmetric one g_{ij} to the electromagnetism. M Prvanović [14] and S. Minčić [8] gave geometric interpretations of the torsion and curvature tensors of non-symmetric affine connection.

Consider two N-dimensional generalized Riemannian spaces GR_N and GR_N'. Generalized Cristoffel’s symbols of the first kind of the space GR_N and GR_N' are given by

$$
\Gamma_{i,jk} = \frac{1}{2}(g_{ji,k} - g_{jk,i} + g_{ik,j}) \quad \text{and} \quad \Gamma_{i,jk}' = \frac{1}{2}(g_{ji,k}' - g_{jk,i}' + g_{ik,j}') \quad (0.1)
$$

where, for example, $g_{ij,k} = \partial g_{ij}/\partial x^k$. Connection coefficients of these spaces are generalized Cristoffel’s symbols of the second kind $\Gamma_{jk}^i = g^{lp}_{jk} \Gamma_{p,ik}$ and $\Gamma_{jk}'^i = \frac{1}{2}(g_{jk,i}' - g_{ij,k}' + g_{ik,j}')$.

AMS Subject Classification: 53B05.

Keywords and phrases: Conform mapping; generalized Riemannian space; equitorsion conform mapping; equitorsion conform curvature tensor.

Supported by Grant 144032D of RFNS through Math. Inst. SANU.
\[\delta^i_j k, \] respectively, where \((g^i_j)^{(1)} = (g_{ij})^{-1}\) and \(i\) denote symmetrisation with division by indices \(i\) and \(j\). Generally it is \(\Gamma^i_j k \neq \Gamma^i_{k,j}\). We suppose that \(g = det(g_{ij}) \neq 0, \quad g = det(g^i_j) \neq 0, \quad g = det(g^{i,j}) \neq 0.\)

One says that a reciprocal one-valued mapping \(f : GR_N \to G\mathcal{R}_N\) is conform if for the basic tensors \(g_{ij}\) and \(\overline{g}_{ij}\) of these spaces the condition

\[\overline{g}_{ij} = e^{2\psi} g_{ij} \quad (0.2) \]

is satisfied, where \(\psi\) is an arbitrary function of \(x\)'s, and the spaces are considered in the common by this mapping system of local coordinates \(x^i\). In this case for the Cristoffel's symbols of the first kind of the spaces \(GR_N\) and \(G\mathcal{R}_N\) the relation

\[\Gamma^i_{j,k} = e^{2\psi}(\Gamma^i_{j,k} + g_{ij}\psi_{,k} - g_{jk}\psi_{,i} + g_{ik}\psi_{,j}) \quad (0.3) \]

holds true, and for the Cristoffel's symbols of the second kind

\[\Gamma^i_{j,k} = \Gamma^i_{j,k} + g_{ij}^2 g_{jk} \psi_{,p} \psi_{,p} + g_{pk} \psi_{,j} \quad (0.4) \]

holds. Let us denote \(\psi_{,k} = \psi_{,k} = \partial \psi / \partial x^k\) and \(\psi^i = g_{ij}^2 \psi_{,j}\). Now from (0.4) we have

\[\Gamma^i_{j,k} = \Gamma^i_{j,k} + g_{ij}^2 (g_{jp} \psi_{,k} - g_{jk} \psi_{,p} + g_{pk} \psi_{,j}) + g_{ij}^2 (g_{jp} \psi_{,k} - g_{jk} \psi_{,p} + g_{pk} \psi_{,j}), \]

i.e.

\[\Gamma^i_{j,k} = \Gamma^i_{j,k} + \delta^i_j \psi_{,k} + \delta^i_k \psi_{,j} - \psi^i g_{jk} + \xi^i_{jk}, \quad (0.5) \]

where

\[\xi^i_{jk} = g_{ij}^2 (g_{jp} \psi_{,k} - g_{jk} \psi_{,p} + g_{pk} \psi_{,j}) = -\xi^i_{kj} \quad (0.5') \]

and \(ij\) denotes an antisymmetrisation with division. In the corresponding points \(M(x)\) and \(\overline{M}(x)\) of conform mapping we can put

\[\Gamma^i_{j,k} = \Gamma^i_{j,k} + P^i_{j,k} \quad (i, j, k = 1, \ldots, N), \quad (0.6) \]

where \(P^i_{j,k}\) is the deformation tensor of the connection \(\Gamma\) of \(GR_N\) according to the conform mapping \(f : GR_N \to G\mathcal{R}_N\).

Notice that in \(GR_N\) we have

\[\Gamma^i_{j,p} = 0, \quad (0.7) \]

(eq. (2.10) in [13]).

In a generalized Riemannian space one can define four kinds of covariant derivatives [10, 11]. For example, for a tensor \(a^i_j\) in \(GR_N\) we have

\[a^i_{j,m} = a^i_{j,m} + \Gamma^i_{p,m} a^p_{j} - \Gamma^p_{j,m} a^i_{p}, \]

\[a^i_{j,m} = a^i_{j,m} + \Gamma^i_{m,p} a^p_{j} - \Gamma^p_{m,j} a^i_{p}, \]

\[a^i_{j,m} = a^i_{j,m} + \Gamma^i_{p,m} a^p_{j} - \Gamma^p_{m,j} a^i_{p}, \]

\[a^i_{j,m} = a^i_{j,m} + \Gamma^i_{m,p} a^p_{j} - \Gamma^p_{j,m} a^i_{p}. \]
Denote by $\theta^\frac{\partial}{\partial \theta}$ a covariant derivative of the kind θ in GR_N and GR^\perp_N respectively. We have [7]
\[g_{ij}\theta^m = 0. \]

In the case of the space GR_N, we have five independent curvature tensors [9] (in \mathbb{R}^5 is denoted by \tilde{R}^i_{jmn}):
\begin{align*}
R_1^{i jmn} &= \Gamma^i_{jm,n} - \Gamma^i_{jn,m} + \Gamma^p_{jm}\Gamma^i_{pn} - \Gamma^p_{jn}\Gamma^i_{pm}, \\
R_2^{i jmn} &= \Gamma^i_{mj,n} - \Gamma^i_{nj,m} + \Gamma^p_{mj}\Gamma^i_{np} - \Gamma^p_{nj}\Gamma^i_{mp}, \\
R_3^{i jmn} &= \Gamma^i_{jm,n} - \Gamma^i_{nj,m} + \Gamma^p_{jm}\Gamma^i_{np} + \Gamma^p_{nj}\Gamma^i_{pm} + \Gamma^p_{mn}(\Gamma^i_{pj} - \Gamma^i_{jp}), \\
R_4^{i jmn} &= \Gamma^i_{jm,n} - \Gamma^i_{nj,m} + \Gamma^p_{mj}\Gamma^i_{np} + \Gamma^p_{nj}\Gamma^i_{mp} + \Gamma^p_{mn}(\Gamma^i_{pj} - \Gamma^i_{jp}), \\
R_5^{i jmn} &= \frac{1}{2}(\Gamma^i_{jm,n} + \Gamma^i_{mj,n} - \Gamma^i_{jn,m} + \Gamma^p_{jm}\Gamma^i_{pn} + \Gamma^p_{mj}\Gamma^i_{np}) - \Gamma^p_{jn}\Gamma^i_{mp} - \Gamma^p_{nj}\Gamma^i_{pm}).
\end{align*}

We use the conform mapping $f: GR_N \rightarrow GR^\perp_N$ to obtain tensors $\tilde{R}^i_{\theta jmn}$ ($\theta = 1, \ldots, 5$), where for example
\[\tilde{R}_1^{i jmn} = \Gamma^i_{jm,n} - \Gamma^i_{jn,m} + \Gamma^p_{jm}\Gamma^i_{pn} - \Gamma^p_{jn}\Gamma^i_{pm}. \]

In the case of conform mapping $f: R_N \rightarrow \mathbb{R}^N$ of Riemannian spaces R_N and \mathbb{R}^N [6, 15] we have an invariant geometric object
\[C_{jmn} = R_{jmn} + \delta^i_m P_{jn} - \delta^i_n P_{jm} + P^i_{m} g_{jn} - P^i_{n} g_{mj}. \]

where
\[P_{jm} = \frac{1}{N - 2}(R_{jm} - \frac{1}{2(N - 1)}R g_{jm}), \]
and R_{jmn} is Riemann-Cristoffel’s curvature tensor of the space R_N, R_{jm} Ricci’s tensor and R a scalar curvature.

The object C_{jmn}^{i} is called a conform curvature tensor [6, 15]. Having a conform mapping of two generalized Riemannian spaces, we cannot find a generalization of the tensor of conform curvature as an invariant of conform mapping in general case. For that reason we define a special conform mapping.

A mapping $f: GR_N \rightarrow GR^\perp_N$ is an equitorsion conform mapping if the torsion tensors of the spaces GR_N and GR^\perp_N are equal. Then from (0.5) and (0.6) we have
\[\xi_{jk} = 0. \]

In [12] we have investigated equitorsion geodesic mappings of generalized Riemannian spaces.
1. Equitorsion conform curvature tensor of the first kind

Using (0.6), we get a relation between the first kind curvature tensors of the spaces \(GR_N \) and \(\mathcal{G}R_N [12, 16] \)

\[
\mathcal{T}^i_{jmn} = R^i_{jmn} + P^i_{jmn} - P^i_{jmn} P^m_{j\nu} P^\nu_{jm} - P^m_{j\nu} P^\nu_{jm} + 2\Gamma^p_{mn} P^i_{jp}.
\]

Substituting \(P \) with respect to (0.5, 6, 10), and using (0.7'), we obtain

\[
\mathcal{T}^i_{jmn} = R^i_{jmn} + \delta^i_j (\psi^m_{|1} - \psi_m |1) + \delta^i_m (\psi^j_{|1} - \psi_j |1)
\]

\[
- \delta^i_n (\psi^j_{|1} - \psi_j |1) g_{jm} + (\psi^j_{|1} - \psi_j |1) g_{jm}
\]

\[
- \delta^i_n \psi^m \psi^g_{jm} + \delta^i_m \psi^m \psi^g_{jn} + 2\delta^i_j \Gamma^{i}_{mn} \psi_p + 2\Gamma^{i}_{mn} \psi_j - 2\Gamma^{i}_{j,mn} \psi^i.
\]

Denoting

\[
\psi_{ij} = \psi_{1ij} - \psi_i \psi_j, \quad \psi^i_j = g^{ip} \psi_{p j}
\]

\[
\Delta_1 \psi = g^{pq} \psi_{p q} = \psi_p \psi^p
\]

and using the relation

\[
\psi_{mn} = \psi_{nm} = -2\Gamma^{i}_{mn} \psi_p
\]

in (1.1), we get

\[
\mathcal{T}^i_{jmn} = R^i_{jmn} + \delta^i_j \psi^m_{|1} - \psi^j_{|1} \psi^m + \psi^i_{m} g_{jm} - \psi^i_{n} g_{jm}
\]

\[
+ (\delta^i_m g_{jm} - \delta^i_n g_{jm}) \Delta_1 \psi + 2\Gamma^{i}_{mn} \psi_j - 2\Gamma^{i}_{j,mn} \psi^i.
\]

Further, let us denote

\[
\Delta^2 \psi = g^{pq} \psi_{p q}
\]

Then we have

\[
\psi_p = g^{pq} g^{pq} (\psi_{p q} - \psi_p \psi_q) g^{pq} = \Delta^2 \psi - \Delta_1 \psi.
\]

Contracting by indices \(i \) and \(n \) in (1.4) we get

\[
\mathcal{T}^i_{jmn} = R^i_{jmn} - (N - 2) \psi_{jm} - [\Delta^2 \psi + (N - 2) \Delta_1 \psi] g_{jm} - 2\Gamma^{i}_{j,mn} \psi^p.
\]

From (0.2) we get

\[
\mathcal{T}^i_{jmn} = e^{2\psi} g^{i j}.
\]

In (1.6) multiplying by \(g^{jm} \) and contracting by \(j \) and then by \(m \) we get

\[
e^{2\psi} \mathcal{T}^i_{1} = R - 2(N - 1) \Delta^2 \psi - (N - 1) (N - 2) \Delta_1 \psi,
\]
where $\tilde{R}_1^i = \tilde{g}^{pq} \tilde{R}_1^i_{pq}$, and $R = g^{pq} R_1^i_{pq}$ are scalar curvature of the first kind of the spaces GR_N and GR_N respectively. From (1.8) we have

$$\Delta_2 \psi = \frac{1}{2(N-1)} (R - e^{2\psi} \tilde{R}_1^i) - \frac{N-2}{2} \Delta_1 \psi. \quad (1.9)$$

Substituting (1.9) in (1.6) we get

$$(N - 2) \psi_{jm} = R_{jm} - \tilde{R}_1^i_{jm} - \frac{1}{2(N-1)} (R - e^{2\psi} \tilde{R}_1^i) g_{jm}$$

$$- \frac{N-2}{2} \Delta_1 \psi g_{jm} - 2 \Gamma_{j.m.p} \psi^p. \quad (1.10)$$

Let us denote in the space GR_N

$$P_{jm} = \frac{1}{N-2} (R_{jm} - \frac{1}{2(N-1)} R_{gjm}) \quad (1.10')$$

and analogously \tilde{P}_{jm} in the space GR_N. In this case for ψ_{jm} we obtain

$$\psi_{jm} = P_{jm} - \tilde{P}_{jm} - \frac{1}{2} \Delta_1 \psi g_{jm} - \frac{2}{N-2} \Gamma_{j.m.p} \psi^p. \quad (1.11)$$

Substituting (1.11) in (1.4), we get

$$\tilde{R}_1^i_{jmn} = R_1^i_{jmn} + \delta_m^i (P_{jm} - \tilde{P}_{jm}) - \delta_n^i (P_{jm} - \tilde{P}_{jm})$$

$$+ P_{jm}^i g_{jn} - \tilde{P}_{jm}^i g_{jn} - \frac{1}{N-2} (\delta_n^i \Gamma_{j.m.p} - \delta_m^i \Gamma_{j.n.p} + \Gamma_{im}^i \psi_{jm} - \Gamma_{jm}^i \psi_m) \psi^p$$

$$+ 2 \Gamma_{mn}^i \psi_j - 2 \Gamma_{j.m.n} \psi^i. \quad (1.12)$$

We can see that it follows from (0.2)

$$\psi_i = \frac{1}{2N} \left(\frac{\partial}{\partial x^i} \ln g - \frac{\partial}{\partial x^i} \ln \tilde{g} \right) \quad (1.13)$$

where $g = \det (g_{ij})$, $\tilde{g} = \det (\tilde{g}_{ij})$. From (0.10) and (1.13) we obtain

$$\Gamma_{j,m,n} \psi^i = \frac{1}{2N} \Gamma_{j,m,n} \tilde{g}_{pq} \frac{\partial}{\partial x^p} \ln \tilde{g} - \frac{1}{2N} \Gamma_{j,m,n} g_{pq} \frac{\partial}{\partial x^p} \ln g \quad (1.14)$$

and

$$\Gamma_{q,mj}^i \psi^q = \frac{1}{2N} \Gamma_{q,mj}^i \tilde{g}_{pq} \frac{\partial}{\partial x^p} \ln \tilde{g} - \frac{1}{2N} \Gamma_{q,mj}^i g_{pq} \frac{\partial}{\partial x^p} \ln g. \quad (1.15)$$

Taking into account (1.13, 14,15), we can write the relation (1.12) in the form

$$\tilde{C}_1^i_{jmn} = C_1^i_{jmn}, \quad (1.16)$$
where
\[
\begin{align*}
C^i_{j mn} &= R^i_{j mn} + \delta^i_m P^j_{m n} - \delta^i_n P^j_{m n} + P^i_{1 m} g_{j n} - P^i_{1 n} g_{j m} \\
&
+ \frac{1}{N(N - 2)} (\delta^i_m \Gamma_{j np} - \delta^i_n \Gamma_{j mp} + \Gamma^i_{m p g} g_{j n} - \Gamma^i_{n p g} g_{j m}) g^{p q} \frac{\partial}{\partial x^q} \ln g \\
&
+ \frac{1}{N} (\Gamma_{j mn p} g^p - \Gamma_{m n p} g^p) \frac{\partial}{\partial x^p} \ln g
\end{align*}
\]

and analogously for \(\overline{C}^i_{j mn} \). From (1.16) we see that the tensor \(C^i_{j mn} \) is an invariant of equitorsion conform mapping, and one can call it the equitorsion conform curvature tensor of the first kind. So, we have

Theorem 1. Let generalized Riemannian spaces \(GR_N \) and \(GR_N' \) be defined by virtue of their nonsymmetric basic tensors \(g_{ij} \) and \(\overline{g}_{ij} \) respectively. The equitorsion conform curvature tensor of the first kind \(C^i_{j mn} \) (1.17) is an invariant of the equitorsion conform mapping \(f : GR_N \rightarrow GR_N' \), defined by (0.2), (0.5), (0.10), i.e. (1.16) is in force, where the tensor \(P^{i}_{1} \) is given by (1.10).

2. Equitorsion conform curvature tensor of the second kind

For the second kind curvature tensors of the spaces \(GR_N \) and \(GR_N' \) we get the relation [12, 16]
\[
\overline{R}^i_{j mn} = R^i_{j mn} + \delta^i_{m} P^j_{m} - P^i_{n m} - P^i_{n j} + 2 \Gamma^i_{m n} P_{j}, \tag{2.1}
\]
i.e., using (0.5,6,10) one obtains
\[
\overline{R}^i_{j mn} = R^i_{j mn} + \delta^i_{m} \psi_{j n} - \delta^i_{n} \psi_{j m} + \psi^i_{n} g_{j m} - \psi^i_{m} g_{j n} \\
+ (\delta^i_{m} g_{j m} - \delta^i_{n} g_{j n}) \Delta \psi + 2 \Gamma^i_{m n} \psi_{j} - 2 \Gamma_{m n} \psi_{i} g_{j},
\]
where
\[
\psi_{i j} = \psi_{i j} - \psi_{j i}, \quad \psi^i_{2 j} = g^{p q} \psi_{i q}, \quad \Delta \psi = g^{p q} \psi_{p} \psi_{q} \tag{2.2}
\]
Now, analogously to previous case, we get the invariant object of the equitorsion conform mapping \(f : GR_N \rightarrow GR_N' \)
\[
C^i_{j mn} = R^i_{j mn} + \delta^i_{m} P^j_{2 m} - \delta^i_{n} P^j_{2 n} + P^i_{2 m} g_{j n} - P^i_{2 n} g_{j m} \\
+ \frac{1}{N(N - 2)} (\delta^i_{m} \Gamma_{j np} - \delta^i_{n} \Gamma_{j mp} + \Gamma^i_{m p g} g_{j n} - \Gamma^i_{n p g} g_{j m}) g^{p q} \frac{\partial}{\partial x^q} \ln g \\
+ \frac{1}{N} (\Gamma_{j mn p} g^p - \Gamma_{m n p} g^p) \frac{\partial}{\partial x^p} \ln g
\]
\(\tag{2.3} \)
where
\[P_{jm}^2 \equiv \frac{1}{N - 2} \left(R_{jm}^2 - \frac{1}{2(N - 1)} R g_{mj} \right), \quad (2.4) \]

\(R_{jm}^2 \) is Ricci’s curvature tensor of the second kind and \(R^2 \) is a scalar curvature tensor of the second kind. The object \(C_{jm}^2 \) is a tensor and we call it equitorsion conform curvature tensor of the second kind. Accordingly, we have

Theorem 2. Starting from the curvature tensor \(R_{jm}^2 \), under conditions as in Theorem 1, one obtains an invariant tensor \(C_{jm}^2 \) (2.3) of the equitorsion conform mapping of generalized Riemannian spaces, where \(P^2 \) is given according to (2.4).

3. Equitorsion conform curvature tensor of the third kind

In the case of the third kind curvature tensors of the spaces \(GR_N \) and \(G\bar{R}_N \) we get the relation [12, 16]
\[R_{jm}^3 = R_{jm}^3 + P_{jm}^3 - P_{nj}^3 P_{jm}^3 + P_{np}^3 P_{jm}^3 - P_{nj}^3 P_{pm}^3 \]
\[+ 2P_{nm}^3 \Gamma_{pj}^i + 2P_{nm}^3 \Gamma_{pj}^3 \]
i.e., because of (0.5,6,10), (1.2a,b) and (2.2),
\[\mathcal{R}_{jm}^3 = R_{jm}^3 + \delta^i_{jm} \psi_{jn} - \delta^i_{nj} \psi_{jm} + \psi^i_{gm} g_{mj} \]
\[+ (\delta^i_{nj} g_{mj} - \delta^i_{mj} g_{nj}) \Delta_1 \psi + 2\psi_{m} \Gamma_{nj}^i + 2\psi_{n} \Gamma_{mj}^i - 2\psi^i g_{nm} \Gamma_{pj}^i \]
\[\quad \text{(3.1)} \]

Also, the following is satisfied
\[\psi_{mn} = \psi_{mn} + 2\Gamma_{nm}^p \psi_{np}, \quad \psi_{mn}^i = \psi_{mn}^i + 2g^{ip} \Gamma_{mn}^q \psi_{pq}. \quad \text{(3.2)} \]

From (3.1), (3.2) and (10) we get
\[\mathcal{R}_{jm}^3 = R_{jm}^3 + \delta^i_{jm} \psi_{jn} - \delta^i_{nj} \psi_{jm} + \psi^i_{gm} g_{mj} \]
\[+ (\delta^i_{nj} g_{mj} - \delta^i_{mj} g_{nj}) \Delta_1 \psi + 2\psi_{m} \Gamma_{nj}^i + 2\psi_{n} \Gamma_{mj}^i - 2\psi^i g_{nm} \Gamma_{pj}^i \]
\[+ 2\delta^i_{m} \Gamma_{pj}^p \psi_{np} - 2g^{ip} \Gamma_{mj}^q \psi_{pq} g_{jm}. \quad \text{(3.3)} \]

Contracting (3.3) with respect to \(i \) and \(n \), and using (1.5), we get
\[\mathcal{R}_{jm}^3 = R_{jm}^3 - (N - 2) \psi_{jm} - [\Delta_2 \psi + (N - 2) \Delta_1 \psi] g_{jm} - \psi^p \Gamma_{m,pj}. \quad \text{(3.4)} \]

Multiplying (3.4) by \(\mathcal{R}_{jm}^3 \) and using (2), we get
\[\Delta_1 \psi = \frac{1}{2(N - 1)} \left(R_{jm}^3 - e^{2\psi} \Gamma_{jm}^3 \right) - \frac{N - 2}{2} \Delta_1 \psi. \quad \text{(3.5)} \]
Substituting (3.5) in (3.4) and denoting
\[P_{3jm} = \frac{1}{N-2} \left(R_{3jm} - \frac{1}{2(N-1)} R g_{jm} \right) \]
(3.6)
in \(GR_N \) and analogously in \(G\overline{R}_N \), in this case for \(\psi_{1jm} \) we obtain
\[\psi_{1jm} = P_{3jm} - \frac{1}{2} \Delta_1 \psi g_{jm} - \frac{2}{N-2} \Gamma_{m,pj} \psi^p. \]
(3.7)
Substituting (3.7) in (3.3) and using (1.14,15) we get
\[C_{3}^{ijmn} = C_{3}^{ijmn} \]
(3.8)
where
\[C_{3}^{ijmn} = R_{3}^{ijmn} + \delta^i_m P_{3j}^m - \delta^i_n P_{3j}^m + P_{3}^{i,m} g_{nj} - P_{3}^{i,m} g_{jm} \]
\[+ \frac{1}{N(N-2)} (\delta^i_m \Gamma_{n,pj} - \delta^i_n \Gamma_{m,pj}) g^{pq} \frac{\partial}{\partial x^q} \ln g \]
\[+ \frac{1}{N} \left(g^{ip} \Gamma_{m,jn} - \delta^i_m \Gamma_{j}^n - \delta^i_n \Gamma_{j}^m \right) g^{pq} \frac{\partial}{\partial x^q} \ln g \]
\[+ \Gamma_{pj}^i g_{mn} g^{pq} - \delta^i_m \Gamma_{j}^n \frac{\partial}{\partial x^q} \ln g \]
(3.9)
And analogously for \(C_{3}^{ijmn} \) of the space \(G\overline{R}_N \). From (3.8) we can see that the tensor \(C_{3}^{ijmn} \) is an invariant of equitorsion conform mapping, and one can call it the equitorsion conform curvature tensor of the third kind. Now we have

Theorem 3. From the curvature tensor \(R_{3}^{ijmn} \), under the conditions as in Theorem 1, we obtain an invariant tensor \(C_{3}^{ijmn} \) (3.9) of the equitorsion conform mapping \(f : GR_N \rightarrow G\overline{R}_N \), where \(P_{3} \) is given according to (3.6).

4. Equitorsion conform curvature tensor of the fourth kind

For curvature tensors of the fourth kind we get [12, 16]
\[\bar{R}_{4}^{ijmn} = R_{4}^{ijmn} + P_{4}^{i,m} |_n - P_{4}^{j,m} |_n + P_{4}^{i} P_{4}^{j} P_{4}^{m} P_{4}^{n} - P_{4}^{m} P_{4}^{n} P_{4}^{i} P_{4}^{j} \]
\[+ 2 P_{4}^{m} \Gamma_{pj}^{i} + 2 P_{4}^{m} \Gamma_{pj}^{i} \]
\[+ \Gamma_{pj}^{i} g_{mn} g^{pq} - \Gamma_{pj}^{i} \frac{\partial}{\partial x^q} \ln g \]
i.e.
\[\bar{R}_{4}^{ijmn} = R_{4}^{ijmn} + \delta^i_m \psi_{jn} - \delta^i_j \psi_{jm} + \psi_{n}^i g_{nj} - \psi_{j}^i g_{jm} \]
\[+ (\delta^i_m g_{nj} - \delta^i_n g_{jm}) \Delta_1 \psi + 2 \psi_{n}^i \Gamma_{jm}^{i} + 2 \psi_{m}^i \Gamma_{nj}^{i} - 2 \psi^p g_{mn} \Gamma_{pj}^{i} \]
\[+ 2 \delta^i_m \Gamma_{pj}^{i} \psi_p - 2 g^{ip} \Gamma_{pj}^{i} \psi_q g_{jm}. \]
In this case, analogously to previous case, we get an invariant object of the equitorsion conform mapping in the form

\[
C^i_{jmn} = R^i_{jmn} + \delta^i_m P_{jpn} - \delta^i_n P_{jpm} + P^i_{jm} g_{nj} - P^i_{jn} g_{mj} \\
+ \frac{1}{N(N-2)} (\delta^i_m \Gamma_{n,pj} - \delta^i_n \Gamma_{m,pj}) g_{pq} \frac{\partial}{\partial x^q} \ln g \\
+ \frac{1}{N} (g_{ip} \Gamma^q_{pn} g_{jm} - \delta^i_m \Gamma^q_{nj} - \delta^i_n \Gamma^q_{mj}) \\
+ \Gamma_{pj} g_{nm} g_{pq} (\delta^i_m \Gamma^q_{nj} - \delta^i_n \Gamma^q_{mj}) \frac{\partial}{\partial x^q} \ln g,
\]

where \(R^i_{jmn} \) is Ricci’s curvature tensor of the fourth kind and \(R \) a scalar curvature of the fourth kind. The object \(C^i_{jmn} \) is a tensor and we call it equitorsion conform curvature tensor of the fourth kind of the equitorsion conform mapping. So, the next theorem is valid.

Theorem 4. From the curvature tensor \(R^i_{jmn} \), under the conditions as in Theorem 1, one obtains an invariant tensor \(C^i_{jmn} \) of the equitorsion conform mapping of generalized Riemannian spaces, where \(P \) is given with respect to \(R \).

5. Equitorsion conform curvature tensor of the fifth kind

For the curvature tensors of the fifth kind of the spaces \(GR_N \) and \(G\bar{R}_N \) we find the relation \([12, 16]\)

\[
\overline{R}^i_{jmn} = R^i_{jmn} + \frac{1}{2} (P^i_{jm} - P^i_{jn} + \delta^i_m P^m_{jn} - \delta^i_n P^n_{jm} + P^i_{pm} P^p_{jm} - P^i_{pj} P^j_{pm})
\]

i.e.

\[
\overline{R}^i_{jmn} = R^i_{jmn} + \frac{1}{2} \left[\delta^i_m (\psi_{j4n} + \psi_{j3n} - 2\psi_{j} \psi_n) - \delta^i_n (\psi_{j3m} + \psi_{j4m} - 2\psi_{j} \psi_m) \right. \\
\left. + (\psi^i_{j3m} + \psi^i_{j4m} - 2\psi_{j} \psi^i_m) g_{jn} - (\psi^i_{j3n} + \psi^i_{j4n} - 2\psi_{j} \psi^i_n) g_{jm} \right] + 2(\delta^i_m g_{jn} - \delta^i_n g_{jm}) \psi_p \psi^p.
\]

Let us denote

\[
\psi_{jn} = \frac{1}{2} (\psi_{j3n} + \psi_{j4n} - 2\psi_{j} \psi_n), \quad \psi^i_{jn} = g^{ip}_{j34} \psi_{jp}, \quad \Delta_1 \psi = g^{pq} \psi_p \psi^q.
\]

Then

\[
\overline{R}^i_{jmn} = R^i_{jmn} + \delta^i_m \psi_{jn} - \delta^i_n \psi_{jm} + \psi^i_{jn} g_{jm} - \psi^i_{jm} g_{jn} \\
+ (\delta^i_m g_{jn} - \delta^i_n g_{jm}) \Delta_1 \psi.
\]
Contracting by indices \(i, n\) and denoting

\[R_{5 \ jmn}^p = R_{5 \ jmn}, \quad R_{5 \ jmp}^p = R_{5 \ jmn}, \quad \Delta_{34} \psi = \frac{1}{2} g_{5 \ljm}(\psi_{p\ljq} + \psi_{p\ljq}), \quad (5.4) \]

we obtain

\[R_{5 \ jm} = R_{5 \ jm} - (N - 2) \psi_{34} - [\Delta_{34} \psi + (N - 2) \Delta_1 \psi] g_{jm}, \quad (5.5) \]

wherefrom, multiplying by \(g_{jm} = e^{-2\psi} g_{jm} \) and contracting by \(j \) and then by \(m \) one obtains

\[\Delta_{34} \psi = \frac{1}{2} (N - 1) (R_{5 \ jm} - e^{2\psi} R_{5 \ jm}) - \frac{N - 2}{2} \Delta_1 \psi. \quad (5.6) \]

From (5.5) and (5.6) we get

\[\psi_{34} = P_{5 \ jm} - P_{5 \ jm} - \frac{1}{2} \Delta_1 \psi g_{jm} \quad (5.7) \]

where we denoted

\[P_{5 \ jm} = \frac{1}{N - 2} (R_{5 \ jm} - \Delta_{34} \psi g_{jm}) \quad (5.8) \]

in \(GR_N \) and analogously \(P_{5 \ jm} \) in \(G\overline{R}_N \).

Analogously to previous cases eliminating \(\psi_{34} \) from (5.3) we can write

\[C_{5 \ jmn}^i = C_{5 \ jmn}^i, \quad (5.9) \]

where we denoted

\[C_{5 \ jmn}^i = R_{5 \ jmn}^i + \delta_m^i P_{5 \ jm} - \delta_n^i P_{5 \ jm} + P_{5 \ im} g_{nj} - P_{5 \ jm} g_{in}. \quad (5.10) \]

The object \(C_{5 \ jmn}^i \) is an invariant of the equitensor conform mapping. We call it equitensor conform curvature tensor of the fifth kind. So, we have

Theorem 5. Starting from the curvature tensor \(R_{5 \ jmn}^i \), under the conditions as in the Theorem 1, we obtain an invariant tensor \(C_{5 \ jmn}^i \) (5.10) of the equitensor mapping \(f : GR_N \rightarrow G\overline{R}_N \), where \(P_{5 \ jm} \) is given according to (5.8).

If \(GR_N(G\overline{R}_N) \) reduces to \(R_N(G\overline{R}_N) \), then the objects \(C_{5 \ jmn}^i (\theta = 1, \ldots, 5) \) reduces to the conform curvature tensor (0.9).

REFERENCES

Equitorsion conform mappings of generalized Riemannian spaces

(received 02.12.2007, in revised form 27.11.2008)

Prirodno-matematički fakultet, Višegradska 33, 18000 Niš, Serbia

E-mail: stmica@ptt.rs