ON A UNIQUENESS THEOREM IN THE INVERSE STURM-LIOUVILLE PROBLEM

T. N. Harutyunyan

Abstract. We introduce new supplementary data to the set of eigenvalues, to determine uniquely the potential and boundary conditions of the Sturm-Liouville problem. As a corollary we obtain extensions of some known uniqueness theorems in the inverse Sturm-Liouville problem.

1. Introduction and statement of the result

Let $L(q, \alpha, \beta)$ denote the Sturm-Liouville problem

\[
\ell y \equiv -y'' + q(x)y = \mu y, \quad x \in (0, \pi), \quad \mu \in \mathbb{C},
\]

\[
y(0) \cos \alpha + y'(0) \sin \alpha = 0, \quad \alpha \in (0, \pi],
\]

\[
y(\pi) \cos \beta + y'(\pi) \sin \beta = 0, \quad \beta \in [0, \pi),
\]

where q is a real-valued, summable on $[0, \pi]$ function (we write $q \in L^1_{\mathbb{R}}[0, \pi]$). By $L(q, \alpha, \beta)$ we also denote the self-adjoint operator, generated by the problem (1.1)–(1.3). It is known, that the spectrum of $L(q, \alpha, \beta)$ is discrete and consists of simple eigenvalues (see [1], [2]), which we denote by $\mu_n(q, \alpha, \beta)$, $n = 0, 1, 2, \ldots$, emphasizing the dependence of μ_n on q, α and β.

Let $y = \varphi(x, \mu, \alpha, q)$ and $y = \psi(x, \mu, \beta, q)$ be the solutions of (1.1) with initial values

\[
\varphi(0, \mu, \alpha, q) = \sin \alpha, \quad \varphi'(0, \mu, \alpha, q) = -\cos \alpha
\]

\[
\psi(\pi, \mu, \beta, q) = \sin \beta, \quad \psi'(\pi, \mu, \beta, q) = -\cos \beta.
\]

The eigenvalues μ_n of $L(q, \alpha, \beta)$ are the solutions of the equation

\[
\chi(\mu) \overset{\text{def}}{=} \varphi(\pi, \mu, \alpha) \cos \beta + \varphi'(\pi, \mu, \alpha) \sin \beta
\]

\[
= -[\psi(0, \mu, \beta) \cos \alpha + \psi'(0, \mu, \beta) \sin \alpha] = 0. \quad (1.4)
\]

AMS Subject Classification: 34L20, 47E05.

Keywords and phrases: Inverse Sturm-Liouville problem; uniqueness theorem; spectral data.
It is easy to see, that \(\varphi_n(x) \overset{\text{def}}{=} \varphi(x, \mu_n(q, \alpha, \beta), \alpha, q) \) and \(\psi_n(x) \overset{\text{def}}{=} \psi(x, \mu_n(q, \alpha, \beta), \beta, q) \), \(n = 0, 1, 2, \ldots \), are the eigenfunctions, corresponding to the eigenvalue \(\mu_n(q, \alpha, \beta) \). The squares of the \(L^2 \)-norm of these eigenfunctions:

\[
a_n = a_n(q, \alpha, \beta) = \int_0^\pi \varphi_n^2(x) \, dx, \quad (1.5)
\]

are usually called the norming constants.

Since all eigenvalues are simple, there exist constants \(c_n = c_n(q, \alpha, \beta) \), \(n = 0, 1, 2, \ldots \), such that

\[
\varphi_n(x) = c_n \cdot \psi_n(x). \quad (1.6)
\]

The main result of this paper is the following “uniqueness” theorem (in inverse problem):

Theorem 1. If for all \(n = 0, 1, 2, \ldots \)

\[
\mu_n(q_1, \alpha_1, \beta_1) = \mu_n(q_2, \alpha_2, \beta_2), \quad \text{(A)}
\]

\[
c_n(q_1, \alpha_1, \beta_1) = c_n(q_2, \alpha_2, \beta_2), \quad \text{(B)}
\]

then \(\alpha_1 = \alpha_2, \beta_1 = \beta_2 \) and \(q_1(x) = q_2(x) \) almost everywhere (a.e.) on \([0, \pi]\).

The problem \(L(q, \alpha, \beta) \) is called “even” if \(\alpha + \beta = \pi \) and \(q(\pi - x) = q(x) \) a.e. on \([0, \pi]\).

Corollary. The problem \(L(q, \alpha, \beta) \) is even if and only if \(c_n(q, \alpha, \beta) = (-1)^n \).

The inverse Sturm-Liouville problems were stated and solved in different versions (see, for example, [3]–[18]). We will consider below the connections between some of the known uniqueness theorems and our Theorem 1 and its corollary (see §5, Theorems 1’, 2, 2’, 3).

2. Some preliminary results

Lemma 1. Let \((\alpha, \beta, q) \in (0, \pi] \times [0, \pi) \times L^1_{\mathbb{R}}[0, \pi]\). Then, for \(n \geq 1 \) (except \(\mu_0(\alpha, \beta, q) \))

\[
\mu_n(\alpha, \beta, q) = [n + \delta_n(\alpha, \beta)]^2 + [q] + r_n(\alpha, \beta, q) \quad (2.1)
\]

where \([q] = \frac{1}{\pi} \int_0^\pi q(x) \, dx \),

\[
\delta_n(\alpha, \beta) = \frac{1}{\pi} \left[\arccos \frac{\cos \alpha}{\sqrt{[n + \delta_n(\alpha, \beta)]^2 \sin^2 \alpha + \cos^2 \alpha}} \right. \\
\left. - \arccos \frac{\cos \beta}{\sqrt{[n + \delta_n(\alpha, \beta)]^2 \sin^2 \beta + \cos^2 \beta}} \right],
\]
and \(r_n = r_n(\alpha, \beta, q) = o(1) \), when \(n \to \infty \), uniformly by \(\alpha, \beta \in [0, \pi] \), and \(q \) from bounded subsets of \(L^1_k[0, \pi] \). The well-known asymptotics

\[
\mu_n(\alpha, \beta, q) = n^2 + \frac{2}{\pi} (\text{ctg} \beta - \text{ctg} \alpha) + [q] + \tilde{r}_n(\alpha, \beta, q), \quad \text{if } \sin \alpha \neq 0, \sin \beta \neq 0,
\]

(2.2)

\[
\mu_n(\pi, \beta, q) = \left(n + \frac{1}{2}\right)^2 + \frac{2}{\pi} \text{ctg} \beta + [q] + \tilde{r}_n(\beta, q), \quad \text{if } \sin \beta \neq 0 \quad (\beta \in (0, \pi)),
\]

(2.3)

\[
\mu_n(\alpha, 0, q) = \left(n + \frac{1}{2}\right)^2 - \frac{2}{\pi} \text{ctg} \alpha + [q] + \tilde{r}_n(\alpha, q), \quad \text{if } \sin \alpha \neq 0, \quad (\alpha \in (0, \pi)),
\]

(2.4)

\[
\mu_n(\pi, 0, q) = (n + 1)^2 + [q] + \tilde{r}_n(q),
\]

(2.5)

where \(\tilde{r}_n = o(1) \) (but this estimate is not uniform in \((\alpha, \beta) \in [0, \pi] \)), are the particular cases of (2.1). The sequence \(\{\delta_n(\alpha, \beta)\}_{n=1}^{\infty} \) has the limit

\[
\delta_\infty(\alpha, \beta) = \begin{cases}
0, & \text{if } \alpha, \beta \in (0, \pi), \\
\frac{1}{2}, & \text{if } \alpha = \pi, \beta \in (0, \pi) \text{ or } \alpha(0, \pi), \beta = 0, \\
1, & \text{if } \alpha = \pi, \beta = 0.
\end{cases}
\]

(2.6)

For the proof and the details of Lemma 1 see paper [19].

Let \(y_i(x, \mu, q), i = 1, 2 \), be the solutions of (1.1) with initial values

\[
y_1(0, \mu, q) = y'_2(0, \mu, q) = 1,
\]

\[
y'_1(0, \mu, q) = y_2(0, \mu, q) = 0.
\]

It is clear, that

\[
\varphi(x, \mu, \alpha, q) \equiv y_1(x, \mu, q) \sin \alpha - y_2(x, \mu, q) \cos \alpha.
\]

(2.7)

Lemma 2. 1) Let \(q \in L^1_{\mathbb{C}}[0, \pi] \). Then

\[
y_1(x, \lambda^2, q) = \cos \lambda x + \frac{\sin \lambda x}{2 \lambda} \int_0^x q(s) \, ds + \frac{1}{2 \lambda} \int_0^x q(s) \sin \lambda (x - 2s) \, ds + O\left(\frac{e^{\text{Im} \lambda |x|}}{\lambda^2}\right),
\]

(2.8)

\[
y_2(x, \lambda^2, q) = \sin \lambda x - \frac{\cos \lambda x}{2 \lambda^2} \int_0^x q(s) \, ds + \frac{1}{2 \lambda^2} \int_0^x q(s) \cos \lambda (x - 2s) \, ds + O\left(\frac{e^{\text{Im} \lambda |x|}}{\lambda^3}\right).
\]

(2.9)

In particular (for real \(\lambda \))

\[
y_1(\pi, \lambda^2, q) = \cos \lambda \pi + \frac{\sin \lambda \pi}{2 \lambda} \int_0^\pi q(s) \, ds + o\left(\frac{1}{\lambda}\right), \quad \lambda \to +\infty,
\]

(2.10)

\[
y_2(\pi, \lambda^2, q) = \sin \frac{\lambda \pi}{\lambda} - \frac{\cos \lambda \pi}{2 \lambda^2} \int_0^\pi q(s) \, ds + o\left(\frac{1}{\lambda^2}\right), \quad \lambda \to +\infty.
\]

(2.11)
Also
\[y'_1(x, \lambda^2, q) = -\lambda \sin \pi x + O \left(e^{\text{Im} \lambda x} \right), \quad \text{(2.12)} \]
\[y'_2(x, \lambda^2, q) = \cos \lambda x + O \left(\frac{e^{\text{Im} \lambda x}}{|\lambda|} \right), \quad \text{(2.13)} \]

2) For \(\mu = -t^2 = (it)^2 \rightarrow -\infty \) (\(t \rightarrow +\infty \))
\[\chi(\mu) = \chi(-t^2) = \left\{ \begin{array}{ll}
\frac{t e^{\pi t}}{\pi} [\sin \alpha \cdot \sin \beta + O(\frac{1}{t})], & \text{if } \sin \alpha \neq 0, \ \sin \beta \neq 0, \\
\frac{t e^{\pi t}}{\pi} [\sin \beta + O(\frac{1}{t})], & \text{if } \sin \beta \neq 0, \ \alpha = \pi, \\
\frac{t e^{\pi t}}{\pi} [1 + O(\frac{1}{t})], & \text{if } \alpha = \pi, \ \beta = 0,
\end{array} \right. \quad \text{(2.14)} \]

3) Let \(q \in L^1_{\mathbb{R}}[0, \pi] \). Then
\[\varphi(\pi, \mu, \alpha, q) = \sum_{n=0}^{\infty} \varphi(\pi, \mu_n, \alpha, q) \cdot \prod_{m \neq n, m=0}^{\infty} \frac{\mu_m - \mu}{\mu_m - \mu_n}. \quad \text{(2.15)} \]

Proof. 1) The asymptotic formulae (2.8)–(2.13) are proved in detail in [19], or they are corollaries of the results of [19] (see also [8]). For \(q \in L^2[0, \pi] \) they can be found in [10], [11] and other papers.

2) Relation (2.14) is the corollary of (1.4), (2.7) and (2.8)–(2.13).

3) For \(q \in L^2[0, \pi] \) (2.15) is proved in [11] (more detailed proof is presented in [17]). For \(q \in L^1_{\mathbb{R}}[0, \pi] \) the proof is the same. ■

Now we establish some connections between spectral data. The following formula is well known (see, e.g., [18], (2.8))
\[\int_0^\pi \varphi_n^2(x) \, dx = \varphi'(\pi, \mu_n) \cdot \varphi(\pi, \mu_n) = \varphi(\pi, \mu_n) \cdot \varphi(\pi, \mu_n) \]
\[(f(x, \mu) = \frac{\partial}{\partial \mu} f(x, \mu)) \text{ which is equivalent to (see (1.4), (1.5, (1.6)))} \]
\[a_n(q, \alpha, \beta) = -c_n(q, \alpha, \beta) \cdot \chi(\mu_n). \quad \text{(2.16)} \]
By definition (1.6) we have, that (\(\alpha \in (0, \pi] \))
\[c_n(q, \alpha, \beta) = \frac{\varphi(\pi, \mu_n(q, \alpha, \beta), \alpha, q)}{\sin \beta}, \quad \sin \beta \neq 0 \ (\beta \neq 0) \quad \text{(2.17)} \]
and
\[c_n(q, \alpha, 0) = -\varphi'(\pi, \mu_n(q, \alpha, 0), \alpha). \quad \text{(2.18)} \]
The normalized eigenfunctions \(h_n \) we define as
\[h_n(x) = \frac{\varphi_n(x)}{\|\varphi_n\|}. \quad \text{(2.19)} \]
Now we present the definitions of spectral data \(\ell_n = \ell_n(q, \alpha, \beta) \), which were introduced in [10], [11] and [17] (as supplementary data to eigenvalues), and their connection with our spectral data \(c_n = c_n(q, \alpha, \beta) \), that follows from 1.6 and (2.17)–(2.19).

\[
\ell_n(q, \alpha, \beta) = \log \left[(-1)^n \cdot \frac{b_n(\pi)}{b_n(0)} \right] = \log \left[(-1)^n c_n(q, \alpha, \beta) \cdot \frac{\sin \beta}{\sin \alpha} \right],
\]
if \(\sin \alpha \neq 0, \sin \beta \neq 0, \) \hspace{1cm} (2.20)

\[
\ell_n(q, \pi, \beta) = \log \left[(-1)^n \cdot \frac{b_n(\pi)}{b_n(0)} \right] = \log \left[(-1)^n c_n(q, \pi, \beta) \cdot \sin \beta \right],
\]
if \(\sin \beta \neq 0, \alpha = \pi, \) \hspace{1cm} (2.21)

\[
\ell_n(q, \alpha, 0) = \log \left[(-1)^{n+1} \cdot \frac{b_n'(\pi)}{b_n'(0)} \right] = \log \left[(-1)^n c_n(q, \alpha, 0) \cdot \frac{1}{\sin \alpha} \right],
\]
if \(\sin \alpha \neq 0, \beta = 0, \) \hspace{1cm} (2.22)

\[
\ell_n(q, \pi, 0) = \log \left[(-1)^n \cdot \frac{b_n'(\pi)}{b_n'(0)} \right] = \log \left[(-1)^n c_n(q, \pi, 0) \right], \text{ if } \alpha = \pi, \beta = 0.
\] \hspace{1cm} (2.23)

3. The proof of Theorem 1

We prove Theorem 1 in 4 steps. At first we consider the case \(\alpha_1 = \pi, \beta_1 = 0. \) From condition (A), (2.1) and (2.5) we obtain \((n = 0, 1, 2, \ldots) \)

\[
(n + 1)^2 + [q_1] + r_n(q_1, \pi, 0) = (n + \delta_n(\alpha_2, \beta_2))^2 + [q_2] + r_n(q_2, \alpha_2, \beta_2).
\]

It follows easily that \(\delta_n(\alpha_2, \beta_2) \to 1, \) when \(n \to \infty. \) According to (2.6), it is possible only if \(\alpha_2 = \pi, \beta_2 = 0. \) Then, from condition (B) and (2.23), we obtain \(\ell_n(q_1, \pi, 0) = \ell_n(q_2, \pi, 0) \) for \(n = 0, 1, 2, \ldots, \) and we can repeat the proof of Theorem 5, chapter III, of [10], page 62, to obtain \(q_1(x) = q_2(x), \) a.e.

Remark. The uniqueness theorems in [10], [11] and [17] are proved under condition \(q_1, q_2 \in L^2_{\mathbb{R}}[0, \pi], \) but they are true also for \(q_1, q_2 \in L^2_{\mathbb{R}}[0, \pi], \) because the asymptotic formulae and estimates (see (2.8)–(2.13)) for solutions of (1.1) (which are used particularly to prove that some contour integrals tend to zero) are true also for \(q \in L^1[0, \pi], \) as it is proved in details in [20].

Secondly, we consider the case \(\alpha_1 = \pi, \beta \in (0, \pi). \) Then condition (A) gives us

\[
\left(n + \frac{1}{2}\right)^2 + \frac{2}{\pi} \cot \beta + [q_1] + r_n(q_1, \pi, \beta_1) = [n + \delta_n(\alpha_2, \beta_2)]^2 + [q_2] + r_n(q_2, \alpha_2, \beta_2)
\]

by (2.1) and (2.3). It easy to prove from (3.1), that \(\lim_{n \to -\infty} \delta_n(\alpha_2, \beta_2) = \frac{1}{2}, \) and by (2.6) it is possible only if \(\alpha_2 = \pi, \beta_2 \in (0, \pi) \) or \(\alpha_2 \in (0, \pi), \beta_2 = 0. \)

In the case \(\alpha_2 = \pi, \beta_2 \in (0, \pi) \) we have

\[
\frac{2}{\pi} \cot \beta_1 + [q_1] = \frac{2}{\pi} \cot \beta_2 + [q_2]
\]
by (3.1) and (2.3). Also
\[\frac{y_2(\pi, \mu_n, q_1)}{\sin \beta_1} = \frac{y_2(\pi, \mu_n, q_2)}{\sin \beta_2}\]
by condition (B) and (2.17). Together with (A) and (2.15) we obtain
\[\frac{y_2(\pi, \mu, q_1)}{\sin \beta_1} = \frac{y_2(\pi, \mu, q_2)}{\sin \beta_2}\]
for all \(\mu \in \mathbb{C}\). Substituting \(\mu = \left(n + \frac{1}{2}\right)^2\) in (3.2), by (2.11) we obtain
\[
\frac{y_2\left(\pi, \left(n + \frac{1}{2}\right)^2, q_1\right)}{\sin \beta_1} = \frac{1}{\sin \beta_1} \left[\frac{(-1)^n}{n + \frac{1}{2}} + \frac{o(1)}{(n + \frac{1}{2})^2}\right] = \frac{1}{\sin \beta_2} \left[\frac{(-1)^n}{n + \frac{1}{2}} + \frac{o(1)}{(n + \frac{1}{2})^2}\right].
\]
It follows that \(\sin \beta_1 - \sin \beta_2 = \frac{o(1)}{n + \frac{1}{2}}\), i.e. \(\sin \beta_1 = \sin \beta_2\). Then, by (2.21), we have \(\ell_n(q_1, \pi, \beta_1) = \ell_n(q_2, \pi, \beta_2)\), \(n = 0, 1, 2\ldots\), and we can repeat the proof of Theorem 3 in [17] to obtain \(\beta_1 = \beta_2\) and \(q_1(x) = q_2(x)\), a.e.

In the case \(\alpha_2 \in (0, \pi)\), \(\beta_2 = 0\) from condition (B), according to (2.17) and (2.18) \(\frac{y_2(\pi, \mu_n, q_1)}{\sin \beta_1} = -\varphi'(\pi, \mu_n, \alpha_2, q_2)\) and by (2.11), (2.7), (2.12) and (2.13) we obtain
\[
\frac{1}{\sin \beta_1} \left\{\sin \sqrt{\mu_n} \pi - \cos \sqrt{\mu_n} \pi \int_0^\pi q_1(s) ds + \frac{o(1)}{\mu_n}\right\} =\\
= (-\sqrt{\mu_n} \sin \sqrt{\mu_n} \pi + O(1)) \sin \alpha_2 + \left\{\cos \sqrt{\mu_n} \pi + O\left(\frac{1}{\sqrt{\mu_n}}\right)\right\} \cos \alpha_2.
\]
Since \(\sin \beta_1 \neq 0\) and \(\sin \alpha_2 \neq 0\), the last equality is impossible (the left-hand side tends to zero, while the right-hand side does not). Thus in the case \(\alpha_1 = \pi, \beta_1 \in (0, \pi)\), Theorem 1 is also proved.

The third case is \(\alpha_1 \in (0, \pi)\), \(\beta_1 = 0\). In this case from condition (A), (2.1) and (2.4) we obtain
\[
\left(n + \frac{1}{2}\right)^2 - \frac{2}{\pi} \cot \alpha_1 + [q_1] + r_n(q_1, \alpha_1, 0) = [n + \delta_n(\alpha_2, \beta_2)]^2 + [q_2] + r_n(q_2, \alpha_2, \beta_2)
\]
From this equality it follows easily that \(\lim_{n \to \infty} \delta_n(\alpha_2, \beta_2) = \frac{1}{2}\), and therefore, either \(\alpha_2 = \pi, \beta_2 \in (0, \pi)\) (as proved above, this case is impossible), or \(\alpha_2 \in (0, \pi), \beta_2 = 0\). Similarly to the second case, we prove that \(\sin \alpha_1 = \sin \alpha_2\) and by (2.16) we obtain that \(\ell_n(q_1, \alpha_1, 0) = \ell_n(q_2, \alpha_2, 0)\). According to Theorem 4 of [17] we get \(\alpha_1 = \alpha_2\) and \(q_1(x) = q_2(x), a.e.\)

The fourth and the last case is \(\sin \alpha_1 \neq 0\) and \(\sin \beta_1 \neq 0\), i.e. \(\alpha_1, \beta_1 \in (0, \pi)\). The cases \(\alpha_2 = \pi\) or \(\beta_2 = 0\) are impossible, since they reduce to cases I, II or III. Therefore \(\alpha_2, \beta_2 \in (0, \pi)\). It follows from (A) and (2.2) that \(\lim_{n \to \infty} (\mu_n(q_1, \alpha_1, \beta_1) - n^2) = \frac{2}{\pi} (\cot \alpha_1 - \cot \beta_1) + \frac{1}{\pi} \int_0^\pi q_1(t) dt =\)
\[\lim_{n \to \infty} (\mu_n(q_2, \alpha_2, \beta_2) - n^2) = \frac{2}{\pi} \left(\text{ctg} \alpha_2 - \text{ctg} \beta_2 \right) + [q_2]. \]

Also we have by (A), (B) and (2.17)
\[\frac{\varphi(\pi, \mu_n, \alpha_1, q_1)}{\sin \beta_1} = \frac{\varphi(\pi, \mu_n, \alpha_2, q_2)}{\sin \beta_2}. \]

Then, by (2.15) we obtain
\[\frac{\varphi(\pi, \mu, \alpha_1, q_1)}{\sin \beta_1} = \frac{\varphi(\pi, \mu, \alpha_2, q_2)}{\sin \beta_2} \]
for all \(\mu \in \mathbb{C} \). Now, by (2.7), (2.10) and (2.11) for \(\mu = n^2 \) we have
\[\frac{\varphi(\pi, n^2, \alpha_1, q_1)}{\sin \beta_1} = \frac{\sin \alpha_1}{\sin \beta_1} \cdot \frac{(-1)^n + o(1)}{n} \]
\[= \frac{\sin \alpha_2}{\sin \beta_2} \cdot \frac{(-1)^n + o(1)}{n} = \frac{\varphi(\pi, n^2, \alpha_2, q_2)}{\sin \beta_2} \]
and it follows easily that \(\frac{\sin \alpha_1}{\sin \beta_1} = \frac{\sin \alpha_2}{\sin \beta_2} \).

Thus, by (2.20) we obtain
\[\ell_n(q_1, \alpha_1, \beta_1) = \ell_n(q_2, \alpha_2, \beta_2), \quad n = 0, 1, 2, \ldots, \]
and by the uniqueness theorem of [11] we have that
\(\alpha_1 = \alpha_2, \beta_1 = \beta_2 \) and \(q_1(x) = q_2(x), \text{ a.e.} \)
The proof of Theorem 1 is complete. ■

4. Proof of the Corollary

Let \(q^*(x) \equiv q(\pi - x) \). It is easily verified that (see [11])
\[\varphi(\pi - x, \mu, \alpha, q^*) \equiv \psi(x, \mu, \pi - \alpha, q) \] (4.1)
and
\[\mu_n(q, \alpha, \beta) = \mu_n(q^*, \pi - \beta, \pi - \alpha), \quad n = 0, 1, 2, \ldots. \] (4.2)

Lemma 3. For all \(n = 0, 1, 2, \ldots, \alpha \in (0, \pi] \) and \(\beta \in [0, \pi) \) the equality
\[c_n(q, \alpha, \beta) \cdot c_n(q^*, \pi - \beta, \pi - \alpha) = 1 \] (4.3)
is true.

Proof. By (4.1), (4.2) and (1.6)
\[\psi(x, \mu_n(q, \alpha, \beta, \beta, q) = \varphi(\pi - x, \mu_n(q, \alpha, \beta), \pi - \beta, q^*) \]
\[\equiv \varphi(\pi - x, \mu_n(q^*, \pi - \beta, \pi - \alpha), \pi - \beta, q^*) \]
\[\equiv c_n(q^*, \pi - \beta, \pi - \alpha) \psi(\pi - x, \mu_n(q^*, \pi - \beta, \pi - \alpha), \pi - \beta, q^*) \]
\[\equiv c_n(q^*, \pi - \beta, \pi - \alpha) \cdot c_n(q, \alpha, \beta) \cdot \psi(x, \mu_n(q, \alpha, \beta), \beta, q). \]

It follows that (4.3) holds true.

To prove the sufficiency we note that if \(c_n(q, \alpha, \beta) = (-1)^n \), then
\[c_n(q^*, \pi - \beta, \pi - \alpha) = (-1)^n \] by (4.3) and since \(\mu_n(q, \alpha, \beta) = \mu_n(q^*, \pi - \beta, \pi - \alpha) \),
then \(q(x) = q^*(x) \) and \(\alpha = \pi - \beta \) by Theorem 1.

If problem \(L(q, \alpha, \beta) \) is even, i.e. \(q(\pi - x) = q(x) \) and \(\alpha + \beta = \pi \), then \(c_n(q, \alpha, \beta) = 1 \) by (4.3). Since the roots \(\mu_n \) of function \(\chi(\mu) \) are simple, then \(\chi(\mu_n) \)
and \(\chi(\mu_{n+1}) \) have the different sign and since \(a_n > 0 \), it follows that \(c_n \) and \(c_{n+1} \)
have the different sign by $a_n = -c_n \cdot \chi(\mu_n)$ (see (2.16)). If we show that $\chi(\mu_0) < 0$, we will obtain that $c_0(q, \alpha, \beta) = 1 = (-1)^0$ and therefore $c_n(q, \alpha, \beta) = (-1)^n$.

Really, it follows from (2.14) that when μ changes from $-\infty$ to μ_0, $\chi(\mu)$ changes from $+\infty$ to 0, i.e. $\chi(\mu_0) < 0$. The proof of corollary is complete.

5. Some extensions

Following reasons, very similar to the proof of Theorem 1, we see that the following holds.

Theorem 2. Let $(\alpha_i, \beta_i, q_i) \in (0, \pi] \times [0, \pi] \times L^1_\mathbb{R}[0, \pi], i = 1, 2$. If $\mu_n(q_1, \alpha_1, \beta_1) = \mu_n(q_2, \alpha_2, \beta_2)$ and $\ell_n(q_1, \alpha_1, \beta_1) = \ell_n(q_2, \alpha_2, \beta_2)$ for all $n = 0, 1, 2, \ldots$, then $\alpha_1 = \alpha_2$, $\beta_1 = \beta_2$ and $q_1(x) = q_2(x)$, a.e.

If, following [11], we introduce the set

$$M(p, \alpha_0, \beta_0) = \{(q, \alpha, \beta) \in L^1_\mathbb{R}[0, \pi] \times (0, \pi] \times [0, \pi] : \mu_0(q, \alpha, \beta) = \mu_n(p, \alpha_0, \beta_0), n \geq 0\},$$

then we can formulate next theorem (in terms of [11]), which follows from Theorem 1 and its Corollary.

Theorem 1’. (i) The mapping

$$(\alpha, \beta, q) \in (0, \pi] \times (0, \pi] \times L^1_\mathbb{R}[0, \pi] \mapsto (\mu_n(q, \alpha, \beta), c_n(q, \alpha, \beta) n \geq 0)$$

is one to one. Equivalently, the mapping

$$(q, \alpha, \beta) \in M(p, \alpha_0, \beta_0) \mapsto (c_n(q, \alpha, \beta) n \geq 0)$$

is one to one.

(ii) The mapping

$$(q, \alpha, \beta) \in L^1_\mathbb{R}[0, \pi] \times (0, \pi] \times [0, \pi] \mapsto (\mu_n(q, \alpha, \beta); n \geq 0),$$

is one to one when restricted to the subset of even points (i.e. $\alpha + \beta = \pi$, $q(\pi - x) = q(x)$) in $L^1_\mathbb{R}[0, \pi] \times (0, \pi] \times [0, \pi]$.

If in Theorem 1’ we change $c_n(q, \alpha, \beta)$ to $\ell_n(q, \alpha, \beta)$ we obtain a proposition (call it Theorem 2’), which follows from Theorem 2 and its Corollary (see [11]): $L(q, \alpha, \beta)$ even if and only if $\ell_n(q, \alpha, \beta) = 0, n \geq 0$, and which not only joins the uniqueness theorems of [10], [11] and [17], but also extend them.

Also the connection (2.16) shows that Theorem 1 is equivalent to

Theorem 3. Let $(\alpha_i, \beta_i, q_i) \in (0, \pi] \times [0, \pi] \times L^1_\mathbb{R}[0, \pi], i = 1, 2$. If $\mu_n(q_1, \alpha_1, \beta_1) = \mu_n(q_2, \alpha_2, \beta_2)$ and $\alpha_n(q_1, \alpha_1, \beta_1) = \alpha_n(q_2, \alpha_2, \beta_2)$ for all $n = 0, 1, 2, \ldots$, then $\alpha_1 = \alpha_2$, $\beta_1 = \beta_2$ and $q_1(x) = q_2(x)$, a.e.

Of course, it is a variant of the Theorem of Marchenko [8] for finite intervals, which is usually ([9], [16], [21]) formulated for $\alpha_i, \beta_i \in (0, \pi)$, with condition

$$\frac{a_n(q_1, \alpha_1, \beta_1)}{\sin^2 \alpha_1} = \frac{a_n(q_2, \alpha_2, \beta_2)}{\sin^2 \alpha_2}$$

instead of $a_n(q_1, \alpha_1, \beta_1) = a_n(q_2, \alpha_2, \beta_2)$.
REFERENCES

(received 09.02.2008, in revised form 21.04.2008)

Yerevan State University, Department of Mathematics and Mechanics

E-mail: hartigr@yahoo.co.uk