COMPACTNESS AND WEAK COMPACTNESS OF ELEMENTARY OPERATORS ON $B(l^2)$ INDUCED BY COMPOSITION OPERATORS ON l^2

Gyan Prakash Tripathi

Abstract. In this paper we have given simple proofs of some range inclusion results of elementary operators on $B(l^2)$ induced by composition operators on l^2. By using these results we have characterized compact and weakly compact elementary operators on $B(l^2)$ induced by composition operators on l^2.

1. Introduction

Definition 1.1. Let $a = (a_1, a_2, \ldots, a_n)$ and $b = (b_1, b_2, \ldots, b_n)$ be n-tuples of elements in an algebra \mathcal{A}. The elementary operator $E_{a,b}$ on \mathcal{A} into itself associated with a and b is defined by $E_{a,b}(x) = a_1xb_1 + a_2xb_2 + \cdots + a_nxb_n$.

We denote by $M_{a,b}$ the elementary multiplication operator defined by $M_{a,b}(x) = axb$, $x \in \mathcal{A}$, $V_{a,b}(x) = axb - bxa$ for all $x \in \mathcal{A}$. For a fixed $a \in \mathcal{A}$, inner derivation δ_a is defined by $\delta_a(x) = ax - xa$. For fixed $a, b \in \mathcal{A}$, generalized derivation $\delta_{a,b}$ is defined by $\delta_{a,b}(x) = ax - xb$ for all $x \in \mathcal{A}$.

It is clear that δ_a and $\delta_{a,b}$ are elementary operators of length 2.

Definition 1.2. Let X and Y be normed linear spaces and S be the closed unit ball in X. A linear operator $T : X \to Y$ is

(i) a finite rank operator if dimension of the range of T is finite.

(ii) a compact operator if the closure of $T(S)$ is compact in Y.

(iii) a weakly compact operator if $T(S)$ is weakly compact in Y.

Definition 1.3. A Banach space X is said to have the approximation property if for every compact subset C of X and for every $\epsilon > 0$ there exists a finite rank operator $T \in B(X)$ such that $\|Tx - x\| < \epsilon$ for each $x \in C$.\medskip

AMS Subject Classification: 47B33, 47B47.

Keywords and phrases: Compactness; composition operators; elementary operators; thin operators.

Research work is supported by CSIR(award no.9/13(951)/2000-EMR-1).

227
Since every Banach space with a Schauder basis has the approximation property [1], a separable Hilbert space has approximation property.

Definition 1.4. Let l^2 be the Hilbert space of all square summable sequences of complex numbers under the standard inner product on it and ϕ be a function on \mathbb{N} into itself. We denote by χ_n, characteristic function of $\{n\}$. Let $A_n = \phi^{-1}(n)$ and let \overline{A}_n denote the number of elements in A_n. The composition operator C_ϕ on l^2 is defined by $C_\phi(f) = f \circ \phi$ for all $f \in l^2$.

A necessary and sufficient condition that a function ϕ on \mathbb{N} into itself induces a composition operator on l^2 is the set $\{A_n : n \in \mathbb{N}\}$ is bounded, see [12].

In the direction of compactness of elementary operators, first study was done by Vala [15] in 1964. He proved that “On $B(X)$ where X is a Banach space the mapping $T \mapsto ATB$ is compact if and only if A and B are compact operators”. Vala defined an element a of a normed algebra A as compact if the mapping $x \mapsto axa$ is compact. By using this notion of compactness K.Ylinen [16] proved that compact elements of C^*-algebra A form a closed two sided ideal which is the closure of the finite elements of A, i.e. those elements a, for which the map $x \mapsto axa$ is a finite rank operator. Akemann and Wright [3] obtained the necessary and sufficient condition for a C^*-algebra to admit a nonzero compact or weakly compact derivation. In 1977, Y.Ho [7] proved that derivation induced by non-scalars in $B(H)$ is non-compact. In 1979, Fong and Sourour [5] characterized the compactness of elementary operators on $B(H)$ where H is a separable Hilbert space. Precisely they showed that “An elementary operator on $B(H)$ is compact if and only if it has a representation $E(X) = \sum_{i=1}^{n} A_iXB_i$, where each A_i and each B_i is compact”.

In the same paper they conjectured that there is no nonzero compact elementary operator on Calkin algebra, which was independently affirmed by Apostol and Fialkow [2], B. Magajna [9] and by M. Mathieu [8]. M. Mathieu generalized above results on C^*-algebra. Saksman and Tylli [13] studied compact and weakly compact elementary operators for a large class of Banach spaces. Now we state some known results which are useful in our context.

Theorem 1.1. [3, Theorem 3.1] Let δ be a derivation on $B(H)$. The following are equivalent:

(i) δ is weakly compact.

(ii) The range of δ is contained in $K(H)$.

(iii) $\delta = \delta_T$ with $T \in K(H)$.

Theorem 1.2. [8, Proposition 3.2] Let $A = (A_1, A_2, \ldots, A_n)$ and $B = (B_1, B_2, \ldots, B_n)$ be n-tuples of elements in $B(H)$ and $E_{A,B}(X) = \sum_{i=1}^{n} A_iXB_i$. If the set $\{B_1, B_2, \ldots, B_n\}$ is linearly independent modulo $K(H)$, then the following are equivalent:

(a) $E_{A,B}$ is weakly compact.

(b) $A_i \in K(H)$ for all $1 \leq i \leq n$.

Theorem 1.3. [8, Corollary 3.9] A non-zero elementary operator on a prime C*-algebra \(A \) is compact if and only if there are linearly independent subsets \(\{A_1, A_2, \ldots, A_n\} \) and \(\{B_1, B_2, \ldots, B_n\} \) in \(K(A) \) such that \(E(X) = \sum_{i=1}^{n} A_i X B_i \). Here \(K(A) \) is the ideal of all compact elements in \(A \).

Now we state a result due to E. Saksman.

Theorem 1.4. [11, Proposition 5] Let \(X \) be a reflexive Banach space with approximation property. Assume that \(A \) and \(B \) are \(n \)-tuples of operators on \(X \). Then the elementary operator \(E_{A,B} \) on \(B(X) \) is weakly compact if and only if \(E_{A,B}(X) \subseteq K(X) \).

Now we state some results about composition operators on \(l^2 \), which are useful in our context.

Theorem 1.5. [6] Let \(C_\phi \) and \(C_\psi \) be two composition operators on \(l^2 \). Then \(C_\phi - C_\psi \) is a finite rank operator if and only if \(\phi(n) = \psi(n) \) for all but finitely many \(n \in \mathbb{N} \).

Theorem 1.5. [6] The difference of two composition operators \(C_\phi - C_\psi \) is compact if and only if \(C_\phi - C_\psi \) is a finite rank operator.

2. Main Results

In this section we shall characterize compact and weakly compact elementary operators on \(B(l^2) \) induced by composition operators on \(l^2 \).

Theorem 2.1. Let \(C_\phi = (C_{\phi_1}, C_{\phi_2}, \ldots, C_{\phi_n}) \) and \(C_\psi = (C_{\psi_1}, C_{\psi_2}, \ldots, C_{\psi_n}) \) be \(n \)-tuples of composition operators on \(l^2 \). The elementary operator \(E_{C_\phi, C_\psi}(X) = \sum_{i=1}^{n} C_{\phi_i} X C_{\psi_i} \) is never weakly compact, hence never compact.

First we shall prove a lemma.

Lemma 2.1. Sum of a finite number of composition operators on \(l^2 \) is not compact.

Proof. Let \(C_{\phi_1}, C_{\phi_2}, \ldots, C_{\phi_n} \) be the composition operators on \(l^2 \) and let \(M = \{n_i : \phi_i^{-1}(n_i) \text{ is nonempty}\} \). Clearly \(M \) is an infinite subset of \(\mathbb{N} \) and \(\{\chi_{n_i}\}_{n_i \in M} \) is a weakly convergent sequence of orthonormal vectors in \(l^2 \). We have

\[
(C_{\phi_1} + C_{\phi_2} + \cdots + C_{\phi_k})(\chi_{n_i}) = \chi_{\phi_1^{-1}(n_i)} + \cdots + \chi_{\phi_k^{-1}(n_i)}.
\]

It follows that

\[
\| (C_{\phi_1} + \cdots + C_{\phi_k})(\chi_{n_i}) \|^2 = \| \chi_{\phi_1^{-1}(n_i)} + \cdots + \chi_{\phi_k^{-1}(n_i)} \|^2 \geq \frac{1}{\phi^{-1}(n_i)} \geq 1
\]

for \(n_i \in M \). Therefore \(\{(C_{\phi_1} + C_{\phi_2} + \cdots + C_{\phi_k})(\chi_{n_i})\}_{n_i \in M} \) does not converge strongly to zero in \(l^2 \). Hence \((C_{\phi_1} + C_{\phi_2} + \cdots + C_{\phi_k}) \) is not compact. \(\blacksquare \)
Proof of Theorem 2.1. We have \(EC_{\phi}C_{\psi}(I) = C_{\phi_1}C_{\psi_1} + \cdots + C_{\phi_n}C_{\psi_n} \). Due to the fact that composition of two composition operators is a composition operator, by above lemma we get \(EC_{\phi}C_{\psi}(I) \notin K(l^2) \). Since \(l^2 \) has approximation property, \(EC_{\phi}C_{\psi} \) is not weakly compact by Theorem 1.4. Hence \(EC_{\phi}C_{\psi} \) is not compact. \(\blacksquare\)

Now we give simple proofs of some range inclusion results on elementary operators induced by composition operators on \(l^2 \). Here recall that an operator \(T \in B(H) \) of the form scalar plus compact is called thin.

Theorem 2.2. Let \(\delta_{C_{\phi}} \) be an inner derivation on \(B(l^2) \) defined by \(\delta_{C_{\phi}}(X) = C_{\phi}X - XC_{\phi} \). Then

(i) If \(C_{\phi} \) is a thin composition operator then \(R(\delta_{C_{\phi}}) \subseteq F(l^2) \).

(ii) Suppose \(C_{\phi} \) is not a thin composition operator on \(l^2 \) then \(R(\delta_{C_{\phi}}) \nsubseteq K(l^2) \).

Proof. (i) Let \(C_{\phi} \) be a thin composition operator on \(l^2 \). From Theorem 1.5 it follows that \(C_{\phi} = I + F_{\phi} \), where \(F_{\phi} \) is a finite rank operator on \(l^2 \). Now

\[
\delta_{C_{\phi}}(X) = C_{\phi}X - XC_{\phi} = (I + F_{\phi})X - X(I + F_{\phi})
\]

\[
= F_{\phi}X - XF_{\phi} \in F(l^2), \text{ for each } X \in B(l^2).
\]

Thus \(R(\delta_{C_{\phi}}) \subseteq F(l^2) \).

(ii) Suppose \(C_{\phi} \) is not a thin operator. Let \(M_w \) be a multiplication operator on \(l^2 \) defined by \(M_w(f) = \sum_{j=1}^{\infty} w_j f(j) \chi_j \) for each \(f \in l^2 \), where \(w \) is a weight function with \(w_j \{0, 1\} \), and we will define the sequence \(w_j \) later. We shall show that \(C_{\phi}M_w^* - M_w^*C_{\phi} \notin K(l^2) \).

Now \((C_{\phi}M_w^* - M_w^*C_{\phi})^* = -(C_{\phi}^*M_w - M_wC_{\phi}^*) \). We have

\[
(C_{\phi}^*M_w - M_wC_{\phi}^*)(\chi_j) = C_{\phi}^*M_w(\chi_j) - M_wC_{\phi}^*(\chi_j) = C_{\phi}^*(w_j \chi_j) - M_w(\chi_{\phi(j)})
\]

\[
= w_j \chi_{\phi(j)} - w_{\phi(j)} \chi_{\phi(j)} = (w_j - w_{\phi(j)}) \chi_{\phi(j)}
\]

Since \(C_{\phi} \) is not thin, \(M = \{n \in N : \phi(j) \neq j\} \) is an infinite subset of \(N \) by Theorem (1.5).

For some \(n_1 \in M \), define \(w_{n_1} = 1 \) and \(w_{\phi(n_1)} = 0 \), suppose \(\phi(n_1) = m_1 \). Now there is \(n_2 \in M - (\{n_1\} \cup \phi^{-1}(m_1)) \). Define \(w_{n_2} = 1 \) and \(w_{\phi(n_2)} = 0 \), suppose \(\phi(n_2) = m_2 \). Similarly there is an \(n_3 \in M - (\{n_1, n_2\} \cup (\bigcup_{i=1}^{k-1} \phi^{-1}(n_i))) \).

Define \(w_{n_3} = 1 \) and \(w_{\phi(n_3)} = 0 \); suppose \(\phi(n_3) = m_3 \). In this way inductively we can get \(n_k \in M - (\{n_1, n_2, \ldots, n_k\} \cup (\bigcup_{i=1}^{k-1} \phi^{-1}(n_i))) \).

Define \(w_{n_k} = 1 \) and \(w_{\phi(n_k)} = 0 \); suppose \(\phi(n_k) = m_k \). Define \(w_j = 0 \) for \(j \in N - (\{m_1, m_2, \ldots, \} \cup (\bigcup_{i=1}^{k-1} \phi^{-1}(n_i))) \). Thus \(w_j - w_{\phi(j)} = 1 \) for infinitely many \(j \in N \). Let \(M_1 = \{j \in M : w_j - w_{\phi(j)} = 1\} \). Clearly \(M_1 \) is an infinite subset of \(N \). Now we have \(\| (C_{\phi}M_w - M_wC_{\phi}^*)(\chi_j) \| \geq 1 \) for all \(j \in M_1 \). It follows that \(C_{\phi}M_w - M_wC_{\phi} \) is not compact and so \(C_{\phi}M_w^* - M_w^*C_{\phi} \) is not compact. Hence \(R(\delta_{C_{\phi}}) \nsubseteq K(l^2) \). \(\blacksquare\)

Corollary 2.1. \(R(\delta_{C_{\phi}}) \subseteq K(l^2) \) if and only if \(R(\delta_{C_{\phi}}) \subseteq F(l^2) \) if and only if \(C_{\phi} \) is thin.
THEOREM 2.3. Let C_ϕ and C_ψ be two composition operators on l^2 and δ_{C_ϕ,C_ψ} be the generalized derivation on $B(l^2)$ defined by $\delta_{C_\phi,C_\psi} = C_\phi X - XC_\psi$. Then $R(\delta_{C_\phi,C_\psi}) \subseteq F(l^2)$ if and only if C_ϕ and C_ψ are thin operators.

Proof. Let C_ϕ and C_ψ be two thin composition operators on l^2. Then $C_\phi = I + F_\phi$ and $C_\psi = I + F_\psi$ for some finite rank operator F_ϕ and F_ψ. We get $\delta_{C_\phi,C_\psi} = C_\phi X - XC_\psi \in F(l^2)$, for all $X \in B(l^2)$. Thus $R(\delta_{C_\phi,C_\psi}) \subseteq F(l^2)$.

Conversely, suppose $R(\delta_{C_\phi,C_\psi}) \subseteq F(l^2)$ i.e. $C_\phi X - XC_\psi \in F(l^2)$ for all $X \in B(l^2)$. In particular $\delta_{C_\phi,C_\psi}(I) = C_\phi - C_\psi \in F(l^2)$ i.e. $C_\phi - C_\psi = F, F \in F(l^2)$. It follows that $\delta_{C_\phi}(X) \in F(l^2)$ for all $X \in B(l^2)$ which implies that C_ϕ is thin by Corollary 2.1. Therefore $C_\psi = C_\phi - F$ is also thin. Thus both C_ϕ and C_ψ are thin operators on l^2.

By Corollary 2.1 and the above Theorem, we have the following corollary.

COROLLARY 2.2. $R(\delta_{C_\phi,C_\psi}) \subseteq K(l^2)$ if and only if C_ϕ and C_ψ are thin.

EXAMPLE 2.1. Let $A = 2I + K$ and $B = I + K$, $K \in K(l^2)$ be two thin operators. $\delta_{A,B}(I) = (2I + K)I - (I + K) = I \notin K(l^2)$.

This shows that Theorem 2.3 may not be true for general thin operators.

THEOREM 2.4. Let C_ϕ and C_ψ be two composition operators on l^2 and V_{C_ϕ,C_ψ} be an elementary operator on $B(l^2)$ defined by $V_{C_\phi,C_\psi}(X) = C_\phi XC_\psi - C_\psi XC_\phi$. Then $R(V_{C_\phi,C_\psi}) \subseteq F(l^2)$ if and only if $C_\phi - C_\psi$ is a finite rank operator.

Proof. We have $V_{C_\phi,C_\psi}(X) = C_\phi XC_\psi - C_\psi XC_\phi$. Suppose $C_\phi - C_\psi = F$, where F is a finite rank operator on l^2. Then $V_{C_\phi,C_\psi}(X) = FXC_\psi - C_\phi XF \in F(l^2)$ for all $X \in B(l^2)$. Thus $R(V_{C_\phi,C_\psi}) \subseteq F(l^2)$.

Conversely, suppose $C_\phi - C_\psi$ is not a finite rank operator, i.e. $\phi(n) \neq \psi(n)$ for infinitely many $n \in \mathbb{N}$, by Theorem 1.5. Let M_w be a multiplication operator on l^2 defined by $M_w(f) = \sum_{j=1}^{\infty} w_j f(j) \chi_j$, where w is a weight function with $w_j \{0,1\}$, and we will define the sequence w_j later. We shall show that $C_\phi^* M_w C_\psi - C_\psi^* M_w C_\phi \notin K(l^2)$.

\[
(C_\phi^* M_w C_\psi - C_\psi^* M_w C_\phi)(\chi_k) = (C_\phi^* M_w C_\psi)(\chi_k) - (C_\psi^* M_w C_\phi)(\chi_k) \\
= C_\phi^* M_w(\chi_{\phi(k)}) - C_\psi^* M_w(\chi_{\psi(k)}) = C_\phi^* (w_{\phi(k)} \chi_{\phi(k)}) - C_\psi^* (w_{\psi(k)} \chi_{\psi(k)}) \\
= w_{\psi(k)} \chi_{(\phi \circ \psi)(k)} - w_{\phi(k)} \chi_{(\psi \circ \phi)(k)}.
\]

Now

\[
\|(C_\phi^* M_w C_\psi - C_\psi^* M_w C_\phi)(\chi_k)\|^2 \\
= |w_{\psi(k)}|^2 + |w_{\phi(k)}|^2 - (w_{\psi(k)} w_{\phi(k)} + w_{\phi(k)} w_{\phi(k)}) \langle \chi_{(\phi \circ \psi)(k)}, \chi_{(\psi \circ \phi)(k)} \rangle.
\]

If $\phi \circ \psi(k) \neq \psi \circ \phi(k)$, then

\[
\|(C_\phi^* M_w C_\psi - C_\psi^* M_w C_\phi)(\chi_k)\|^2 = |w_{\psi(k)}|^2 + |w_{\phi(k)}|^2.
\]
If \(\phi \circ \psi(k) = \psi \circ \phi(k) \), then
\[
\|(C^*_\phi M_w C^*_\psi - C^*_\psi M_w C^*_\phi)(\chi_k)\| = |w(\phi(k)) - w(\psi(k))|^2.
\]
(2)

Now \(M = \{ n \in \mathbb{N} : \phi(n) \neq \psi(n) \} \) is an infinite subset of \(\mathbb{N} \). For some \(n_1 \in M \), define \(w_{\phi(n_1)} = 1 \) and \(w_{\psi(n_1)} = 0 \), suppose \(\phi(n_1) = l_1 \) and \(\psi(n_1) = m_1 \). Now there is some \(n_2 \in M - (\phi^{-1}(l_1) \cup \psi^{-1}(l_1) \cup \psi^{-1}(m_1)) \). Define \(w_{\phi(n_2)} = 1 \) and \(w_{\psi(n_2)} = 0 \), suppose \(\phi(n_2) = l_2 \) and \(\psi(n_2) = m_2 \). Now there is some
\[
n_3 \in M - (\bigcup_{i=1}^{k-1} \phi^{-1}(l_i)) \cup (\bigcup_{i=1}^{k-1} \psi^{-1}(m_i)) \cup (\bigcup_{i=1}^{k-1} \psi^{-1}(l_i)) \cup (\bigcup_{i=1}^{k-1} \psi^{-1}(m_i)).
\]

Define \(w_{\phi(n_3)} = 1 \) and \(w_{\psi(n_3)} = 0 \), suppose \(\phi(n_3) = l_3 \) and \(\psi(n_3) = m_3 \).

In this way inductively we can find
\[
n_k \in M - (\bigcup_{i=1}^{k-1} \phi^{-1}(l_i)) \cup (\bigcup_{i=1}^{k-1} \psi^{-1}(m_i)) \cup (\bigcup_{i=1}^{k-1} \psi^{-1}(l_i)) \cup (\bigcup_{i=1}^{k-1} \psi^{-1}(m_i)).
\]

Define \(w_n = 0 \) for \(n \in \mathbb{N} - (\{ l_i : i \in \mathbb{N} \}) \cup \{ m_i : i \in \mathbb{N} \} \). Clearly \(w_{\phi(n)} - w_{\psi(n)} = 1 \) for infinitely many \(n \in \mathbb{N} \), and so \(M_1 = \{ n \in M : w_{\phi(n)} - w_{\psi(n)} = 1 \} \) is an infinite subset of \(M \).

Now for \(n \in M_1 \), by equations (1) and (2), we have
\[
\|(C^*_\phi M_w C^*_\psi - C^*_\psi M_w C^*_\phi)(\chi_n)\|^2 \geq 1,
\]
which implies that \(C^*_\phi M_w C^*_\psi - C^*_\psi M_w C^*_\phi \) and so \(C^*_\phi M_w C^*_\psi - C^*_\psi M_w C^*_\phi \) is not compact on \(l^2 \).

Thus \(R(V_{C^*_\phi, C^*_\psi}) \not\subseteq F(l^2) \). Hence the proof. ■

As a consequence of the proof of Theorem 2.4, we have the following corollary.

Corollary 2.3. \(R(V_{C^*_\phi, C^*_\psi}) \subseteq K(l^2) \) if and only if \(C_{\phi} - C_{\psi} \) is compact.

In view of Theorem 1.4 and Corollaries 2.1, 2.2 and 2.3 we have the following characterization of weakly compact elementary operators on \(l^2 \).

Theorem 2.5. Let \(C_{\phi} \) and \(C_{\psi} \) be two composition operators on \(l^2 \). Then
(i) \(C_{\phi} \) is weakly compact if and only if \(C_{\phi} \) is a thin operator on \(l^2 \).
(ii) \(\delta_{C_{\phi}, C_{\psi}} \) is weakly compact if and only if \(C_{\phi} \) and \(C_{\psi} \) are thin operators on \(l^2 \).
(iii) \(V_{C_{\phi}, C_{\psi}} \) is weakly compact if and only if \(C_{\phi} - C_{\psi} \) is a compact operator on \(l^2 \).

Acknowledgements. 1. The author is grateful to Prof. Nand Lal for his helpful suggestions and discussions.

2. The author is grateful to the referee for his helpful suggestions.

References

Compactness and weak compactness of elementary operators on $B(l^2)$

(received 02.07.2008, in revised form 14.04.2009)

Department of Mathematics, SGR PG College, Dobhi, Jaunpure-222149, INDIA

E-mail: gptbhu@yahoo.com