Abstract. In this paper we present some results for φ-recurrent trans-Sasakian manifolds. We find conditions for such manifolds to be of constant curvature. Finally we give an example of a 3-dimensional φ-recurrent trans-Sasakian manifold.

1. Introduction

A class of almost contact metric manifolds known as trans-Sasakian manifolds was introduced by J. A. Oubina [6] in 1985. This class contains α-Sasakian, β-Kenmotsu and co-symplectic manifolds. An almost contact metric structure on a manifold M is called a trans-Sasakian structure if the product manifold $M \times \mathbb{R}$ belongs to the class W_4, a class of Hermitian manifolds which are closely related to a locally conformal Kähler manifolds. Trans-Sasakian manifolds were studied extensively by J. C. Marrero [5], M. M. Tripathi [8], U. C. De [2, 3, 4] and others. M. M. Tripathi [8] proved that trans-Sasakian manifolds are always generalized quasi-Sasakian.

U. C. De et al. [2] generalized the notion of local φ-symmetry and introduced the notion of φ-recurrent Sasakian manifolds. In the present paper we study φ-recurrent trans-Sasakian manifolds. In Section 3, we prove that a conformally flat φ-recurrent trans-Sasakian manifold is a manifold of constant curvature. In the same section trans-Sasakian manifolds with η-parallel Ricci-tensor are considered and we prove that the scalar curvature of such a manifold is a constant. In Section 4, it is proved that a φ-recurrent conformally flat trans-Sasakian manifold is η-Einstein. Finally we construct an example of a 3-dimensional φ-recurrent trans-Sasakian manifold. This verifies the results proved in Section 3.

2. Preliminaries

Let M be a $(2n+1)$-dimensional almost contact metric manifold with an almost contact metric structure (ϕ, ξ, η, g), where ϕ, ξ, η are tensor fields on M of types
(1,1), (1,0), (0,1) respectively and \(g \) is the Riemannian metric on \(M \) such that
\[
\begin{align*}
(a) & \quad \phi^2 = -I + \eta \otimes \xi, \\
(b) & \quad \eta(\xi) = 1, \\
(c) & \quad \phi(\xi) = 0, \\
(d) & \quad \eta \circ \phi = 0
\end{align*}
\]
(2.1)

The Riemannian metric \(g \) on \(M \) satisfies the condition
\[
\begin{align*}
g(\phi X, \phi Y) &= g(X, Y) - \eta(X)\eta(Y) \\
g(X, \phi Y) &= -g(\phi X, Y)
\end{align*}
\]
(2.2)

\(\forall X, Y \in TM \). An almost contact metric structure \((\phi, \xi, \eta, g)\) in \(M \) is called a trans-Sasakian structure \([1]\) if the product manifold \((M \times R, J, G)\) belongs to the class \(W_4 \), where \(J \) is the complex structure on \((M \times R)\) defined by
\[
J(X, \lambda \frac{dt}{dt}) = (\phi - \lambda \xi, \eta(X) \frac{dt}{dt})
\]
(2.4)

for all vector fields \(X \) on \(M \) and smooth functions \(\lambda \) on \((M \times R)\) and \(G \) is the product metric on \((M \times R)\). This may be expressed by the following condition \([1]\)
\[
(\nabla_X \phi)(Y) = \alpha(g(\phi X, Y)\xi - \eta(Y)\phi X) + \beta(g(\phi X, Y)\xi - \eta(Y)\phi X)
\]
(2.5)

where \(\alpha \) and \(\beta \) are smooth functions on \(M \).

From (2.5), we have
\[
(\nabla_X \xi) = -\alpha(\phi X) + \beta(X - \eta(X)\xi)
\]
(2.6)

\[
(\nabla_X \eta)(Y) = -\alpha(\phi X, Y) + \beta(\phi X, \phi Y).
\]
(2.7)

In a \((2n + 1)\)-dimensional trans-Sasakian manifold, from (2.5), (2.6), (2.7), we can derive \([3]\)
\[
R(X, Y)\xi = (\alpha^2 - \beta^2)(\eta(Y)X - \eta(X)Y) + 2\alpha\beta(\eta(Y)\phi X - \eta(X)\phi Y)
\]
\[
- (X\alpha)\phi Y + (Y\alpha)\phi X - (X\beta)\phi^2 Y + (Y\beta)\phi^2 X
\]
\[
S(X, \xi) = (2n(\alpha^2 - \beta^2) - \xi\beta)\eta(X) - (2n - 1)(X\beta) - (\phi X)\alpha.
\]
(2.8)

Further we have
\[
2\alpha\beta + \xi\alpha = 0.
\]
(2.10)

In a conformally flat manifold the curvature tensor \(R \) satisfies
\[
R(X, Y, Z, W) = \frac{1}{2n - 1} [S(Y, Z)g(X, W) + g(Y, Z)S(X, W) - S(X, Z)g(Y, W)
\]
\[
- g(X, Z)S(Y, W)] - \frac{r}{2n(2n - 1)}[g(Y, Z)g(X, W) - g(X, Z)g(Y, W)].
\]
(2.11)

From (2.8) we have
\[
R(\xi, X, Y, \xi) = (\alpha^2 - \beta^2 - \xi\beta)g(\phi X, \phi Y).
\]
(2.12)

Suppose \(\alpha \) and \(\beta \) are constants. Then from (2.9), (2.11), (2.12), we obtain
\[
S(X, Y) = (\frac{r}{2n} - (\alpha^2 - \beta^2))g(\phi X, \phi Y) - 2n(\alpha^2 - \beta^2)\eta(X)\eta(Y).
\]
(2.13)
Applying (2.13) in (2.11), we get

\[
R(X, Y)Z = \frac{1}{2n-1}[(\frac{r}{2n} - 2(\alpha^2 - \beta^2))(g(Y, Z)X - g(X, Z)Y) + (\frac{r}{2n} + (2n + 1))(\alpha^2 - \beta^2)\{(g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi) + (\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y)\}]. \tag{2.14}
\]

From (2.10), for constants \(\alpha\) and \(\beta\), we have

Proposition 2.1. A trans-Sasakian manifold with \(\alpha\) and \(\beta\) are constants is either \(\beta\)-Sasakian or \(\alpha\)-Kenmotsu or co-symplectic.

It is well known that \(\beta\)-Sasakian manifolds are quasi Sasakian and \(\alpha\)-Kenmotsu manifold are \(C(-\alpha^2)\) manifolds. Hence we have the following corollary.

Corollary 2.1. In a trans-Sasakian manifold \(M\) with \(\alpha\) and \(\beta\) are constants, one of the following holds.

(i) \(M\) is quasi Sasakian
(ii) \(M\) is a \(C(-\alpha^2)\) manifold
(iii) \(M\) is co-symplectic.

3. Conformally flat \(\phi\)-recurrent trans-Sasakian manifolds

Definition 3.1 A trans-Sasakian manifold is said to be \(\phi\)-recurrent if

\[
\phi^2(\nabla_W R)(X, Y)Z = A(W) R(X, Y)Z, \tag{3.1}
\]

\(\forall\ X, Y, Z, W \in TM\).

Differentiating (2.14) covariantly with respect to \(W\), we get

\[
(\nabla_W R)(X, Y)Z = \frac{1}{2n-1}[(\frac{dr(W)}{2n})(g(Y, Z)X - g(X, Z)Y) + (\frac{dr(W)}{2n})(g(Y, Z)\eta(X)\xi - g(X, Z)\eta(Y)\xi) + (\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y)] + [(\frac{r}{2n} + 3(\alpha^2 - \beta^2))
\]

\[
(g(Y, Z)(\nabla_W \eta)(X)\xi - \eta(X)(\nabla_W \eta)\xi) - g(X, Z)(\nabla_W \eta)(Y)\xi - \eta(Y)(\nabla_W \eta)\xi) + (\nabla_W \eta)(Y)\eta(Z) + \eta(Y)(\nabla_W \eta)Z - (\nabla_W \eta)(X)\eta(Z) - \eta(X)(\nabla_W \eta)(Z)]. \tag{3.2}
\]

We may assume that all vector fields \(X, Y, Z, W\) are orthogonal to \(\xi\). Then (3.2) takes the form

\[
(\nabla_W R)(X, Y)Z = \frac{1}{2n-1}[(\frac{dr(W)}{2n})(g(Y, Z)X - g(X, Z)Y) + (\frac{r}{2n} + 3(\alpha^2 - \beta^2))\{g(Y, Z)(\nabla_W \eta)(X) - g(X, Z)(\nabla_W \eta)(Y)\}]. \tag{3.3}
\]

Applying \(\phi^2\) to both sides of (3.3), we get

\[
A(W) R(X, Y)Z = \frac{1}{2n-1}[(\frac{dr(W)}{2n})(g(Y, Z)X - g(X, Z)Y)]
\]
i.e.
\[R(X, Y)Z = \frac{1}{2n(2n - 1)} \frac{d^2r(W)}{dW^2} (g(Y, Z)X - g(X, Z)Y). \]
Putting \(W = e_i \) in the above equation, where \(\{e_i\} \) is an orthonormal basis of the tangent space at any point of the manifold and taking summation over \(i \), \(1 \leq i \leq 2n + 1 \), we obtain
\[R(X, Y)Z = \lambda(g(Y, Z)X - g(X, Z)Y), \]
where \(\lambda = \left(\frac{d^2r(e_i)}{dW^2} \right) \) is a scalar. Since \(A \) is non zero, \(\lambda \) will be a constant. Therefore \(M \) is of constant curvature \(\lambda \). Thus we can state that

Theorem 3.1. A conformally flat \(\phi \)-recurrent trans-Sasakian manifold of dimension greater than 3 is a manifold of constant curvature provided \(\alpha \) and \(\beta \) are constants.

Since three dimensional Riemannian manifolds are conformally flat, we have

Corollary 3.1. A three dimensional \(\phi \)-recurrent trans-Sasakian manifold is a manifold of constant curvature.

Now from Proposition 2.1 and the above corollary, we have

Corollary 3.2. A three dimensional \(\phi \)-recurrent \(\beta \)-Sasakian manifold (or \(\alpha \)-Kenmotsu manifold or co-symplectic manifold) is a manifold of constant curvature.

By virtue of (2.1)(a) and (3.1), we have
\[-(\nabla_WR)(X, Y)Z + \eta((\nabla_WR)(X, Y)Z)\xi = A(W)R(X, Y)Z \]
from which we get
\[-g((\nabla_WR)(X, Y)Z, U) + \eta((\nabla_WR)(X, Y)Z)\eta(U) = A(W)R(X, Y, Z, U). \tag{3.4} \]
Putting \(X = U = e_i \) and summing over \(i = 1, \ldots, 2n + 1 \), we get
\[-(\nabla_WS)(Y, Z) + \sum \eta((\nabla_WR)(e_i, Y)Z)\eta(e_i) = A(W)S(Y, Z). \tag{3.5} \]
The second term of (3.5) by putting \(Z = \xi \) takes the form \(g((\nabla_WR)(e_i, Y)\xi, \xi)g(e_i, \xi) \).

Consider
\[g((\nabla_WR)(e_i, Y)\xi, \xi) = g(\nabla_WR(e_i, Y)\xi, \xi) - g(R(\nabla_WR(e_i, Y)\xi) \xi) - g(R(e_i, \nabla_WR)\xi, \xi) \tag{3.6} \]
at \(P \in M \).

Using (2.8), (2.1)(d) and \(g(X, \xi) = \eta(X) \), we obtain
\[g(R(e_i, \nabla_WR)\xi, \xi) = g((\alpha^2 - \beta^2)(\eta(\nabla_WR)e_i - \eta(e_i)(\nabla_WR)) + 2\alpha\beta\eta(\nabla_WR)\phi e_i - \eta(e_i)\phi(\nabla_WR)) + (\nabla_WR)\phi \phi \phi e_i - (e_i)(\alpha)(\phi(\nabla_WR)) - (e_i)(\beta)(\phi^2(\nabla_WR)) + (\nabla_WR)(\beta)(\phi^3) e_i = 0. \tag{3.7} \]
By virtue of \(g(R(e_i, Y)\xi, \xi) = g(R(\xi, \xi)e_i, Y) = 0 \) and (3.7), (3.6) reduce to
\[
g((\nabla WR)(e_i, Y)\xi, \xi) = g(\nablaWR(e_i, Y)\xi, \xi) - g(R(e_i, Y)\nabla W\xi, \xi). \tag{3.8}
\]
Since \((\nabla Xg) = 0 \), we have \(g((\nabla WR)(e_i, Y)\xi, \xi) + g(R(e_i, Y)\xi, \nabla W\xi) = 0 \), which implies
\[
g((\nabla WR)(e_i, Y)\xi, \xi) = -g(R(e_i, Y)\xi, \nabla W\xi) - g(R(e_i, Y)\nabla W\xi, \xi). \tag{3.9}
\]
Using (2.6) and by the skew symmetry of \(R \), we get
\[
g((\nabla WR)(e_i, Y)\xi, \xi) =
\]
\[
g(R(e_i, Y)\xi, -\alpha(\phi W) + \beta(W - \eta(W)\xi)) + g(R(e_i, Y) - \alpha(\phi W) + \beta(W - \eta(W)\xi), \xi)
\]
\[
= g(R(-\alpha(\phi W) + \beta(W - \eta(W)\xi)Y, e_i), \xi) + g(R(\xi, -\alpha(\phi W) + \beta(W - \eta(W)\xi))Y, e_i).
\]
Multiplying the above equation by \(\eta(e_i) = g(\xi, e_i) \) and summing over \(i = 1, \ldots, 2n + 1 \), we get
\[
\sum \eta((\nabla WR)(e_i, Y)Z)g(e_i, \xi) =
\]
\[
g(R(\xi, -\alpha(\phi W) + \beta(W - \eta(W)\xi))Y, e_i)g(e_i, \xi) =
\]
\[
= \{ g(R(-\alpha(\phi W) + \beta(W - \eta(W)\xi)Y, \xi))
\]
\[
+ g(R(\xi, -\alpha(\phi W) + \beta(W - \eta(W)\xi))Y, \xi) \} = 0.
\]
Replacing \(Z \) by \(\xi \) in (3.5) and using (2.9) we get
\[
-(\nabla WS)(X, \xi) = A(W)\{ 2n(\alpha^2 - \beta^2)\eta(X) \} \tag{3.10}
\]
provided \(\alpha \) and \(\beta \) are constants. Now from
\[
(\nabla XS)(Y, \xi) = \nabla X S(Y, \xi) - S(\nabla X Y, \xi) - S(Y, \nabla X \xi).
\]
Using (2.6) and (2.9), for constant \(\alpha \) and \(\beta \), we have
\[
(\nabla XS)(Y, \xi) = 2n(\alpha^2 - \beta^2)[(\nabla X \eta)(Y) + \beta \eta(X)\eta(Y)] + S(Y, \alpha \phi X - \beta X). \tag{3.11}
\]
From (3.11), (3.3) and (2.7), we obtain
\[
(\nabla XS)(Y, \xi) = 2n(\alpha^2 - \beta^2)[\beta g(X, Y) - \alpha g(X, \phi Y)] + S(Y, \alpha \phi X - \beta X). \tag{3.12}
\]
From (3.10) and (3.12), we have
\[
-A(X)\{ 2n(\alpha^2 - \beta^2)\eta(Y) \} = 2n(\alpha^2 - \beta^2)[\beta g(X, Y) - \alpha g(X, \phi Y)] + S(Y, \alpha \phi X - \beta X).
\tag{3.13}
\]
Replacing \(Y \) by \(\phi Y \) in (3.13) and using (2.2), we obtain
\[
2n(\alpha^2 - \beta^2)[\beta g(X, \phi Y) + \alpha g(X, Y) - \alpha \eta(X)\eta(Y)] + \alpha S(\phi Y, \phi X) - \beta S(\phi Y, X) = 0
\]
i.e.
\[
-\alpha S(\phi Y, \phi X) + \beta S(\phi Y, X) = 2n(\alpha^2 - \beta^2)[\beta g(X, \phi Y) + \alpha g(X, \phi Y)]. \tag{3.14}
\]
Interchanging \(Y \) and \(X \) in (3.14) and by using the skew symmetry of \(\phi \), we obtain
\[
-\alpha S(\phi X, \phi Y) = 2n\alpha (\alpha^2 - \beta^2)(g(\phi X, \phi Y)).
\] (3.15)

By skew symmetry of \(\phi \) and using (2.9), we obtain \(S(\phi X, \phi Y) = -S(\phi^2 X, Y) = S(X, Y) - 2n(\alpha^2 - \beta^2)\eta(X)\eta(Y) \). Substituting this in (3.15), we get
\[
S(X, Y) = ag(X, Y) + \eta(X)\eta(Y),
\] (3.16)
where \(a = 2n(\alpha^2 - \beta^2) \), i.e. \(M \) is \(\eta \)-Einstein. Thus we have

Theorem 3.2 A \(\phi \)-recurrent conformally flat trans-Sasakian manifold is \(\eta \)-Einstein provided \(\alpha \) and \(\beta \) are constants.

Corollary 3.3 A 3-dimensional \(\phi \)-recurrent trans-Sasakian manifold is \(\eta \)-Einstein provided \(\alpha \) and \(\beta \) are constants.

4. Trans-Sasakian manifolds with \(\eta \)-parallel Ricci tensor

Let us consider a trans-Sasakian manifold \(M \) of dimension \(2n+1 \) with \(\eta \)-parallel Ricci tensor. Replacing \(Y \) by \(\phi Y \) and \(Z \) by \(\phi Z \) in (2.13), we obtain
\[
S(\phi X, \phi Y) = \left(\frac{r}{2n} - (\alpha^2 - \beta^2) \right)(g(X, Y) - \eta(X)\eta(Y)).
\] (4.1)

Differentiating (4.1) covariantly with respect to \(X \) we obtain
\[
(\nabla_X S)(\phi Y, \phi Z) = \left(\frac{dr(X)}{2n} \right)(g(Y, Z)X - \eta(Y)\eta(Z))
- \left(\frac{r}{2n} - (\alpha^2 - \beta^2) \right)\left\{ (\nabla_X \eta)(Y)\eta(Z) + \eta(Y)(\nabla_X \eta)(Z) \right\}. \] (4.2)

Suppose the Ricci tensor is \(\eta \)-parallel. Then we obtain
\[
\left(\frac{dr(X)}{2n} \right)(g(Y, Z) - \eta(Y)\eta(Z)) = \left[(\frac{r}{2n} - (\alpha^2 - \beta^2)) \{ (\nabla_X \eta)(Y)\eta(Z) + \eta(Y)(\nabla_X \eta)(Z) \} \right].
\] (4.3)

Putting \(Y = Z = e_i \) in (4.3), where \(\{e_i\} \) is an orthonormal basis and summing over \(i = 1, \ldots, 2n+1 \), we obtain
\[
\frac{dr(X)}{2n} = \left(\frac{r}{2n} - 2(\alpha^2 - \beta^2) \right)(\nabla_X \eta)(\xi).
\] (4.4)

Since \(\eta(\xi) = 1 \), from (2.5), we have \((\nabla_X \eta)(\xi) = 0 \). Thus from (4.4), we obtain \(dr(X) = 0 \) or \(r \) is a constant. Thus we have

Theorem 4.1. In a conformally flat trans-Sasakian manifold with \(\eta \)-parallel Ricci tensor, the scalar curvature is constant provided \(\alpha \) and \(\beta \) are constants.

Corollary 4.1. A 3-dimensional trans-Sasakian manifold with \(\eta \)-parallel Ricci tensor, the scalar curvature is constant provided \(\alpha \) and \(\beta \) are constants.
5. Example of ϕ-recurrent trans-Sasakian manifolds

Consider three dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3 \setminus z \neq 0\}$, where (x, y, z) are the standard coordinates of \mathbb{R}^3. The vector fields
\[e_1 = \frac{x}{z} \frac{\partial}{\partial x}, \quad e_2 = \frac{y}{z} \frac{\partial}{\partial y}, \quad e_3 = \frac{\partial}{\partial z} \] (5.1)
are linearly independent at each point of M. Let g be the Riemannian metric defined by
\[g(e_1, e_1) = 1, \quad g(e_2, e_2) = 1, \quad g(e_3, e_3) = 1, \quad g(e_1, e_2) = 0, \quad g(e_1, e_3) = 0, \quad g(e_2, e_3) = 0. \] (5.2)
Let η be the 1-form defined by $\eta(X) = g(X, \xi)$ for any vector field X. Let ϕ be the $(1, 1)$ tensor field defined by
\[\phi(e_1) = e_2, \quad \phi(e_2) = -e_1, \quad \phi(e_3) = 0. \] (5.3)
Then by using the linearity of ϕ and g we have $\phi^2 X = -X + \eta(X) \xi$, with $\xi = e_3$.

Further $g(\phi X, \phi Y) = g(X, Y) - \eta(X) \eta(Y)$ for any vector fields X and Y. Hence for $e_3 = \xi$, the structure defines an almost contact structure on M. Let ∇ be the Levi-Civita connection with respect to the metric g, then we have
\[[e_1, e_2] = 0, \quad [e_1, e_3] = \frac{1}{z} e_1, \quad [e_2, e_3] = \frac{1}{z} e_2. \] (5.4)
The Riemannian connection ∇ of the metric g is given by
\[2g(\nabla_X Y, Z) = X g(Y, Z) + Y g(Z, X) - Z g(X, Y) \]
\[- g(X, [Y, Z]) - g(Y, [X, Z]) + g(Z, [X, Y]). \] (5.5)
Using (5.5), we have
\[2g(\nabla_{e_1} e_3, e_1) = 2g\left(\frac{1}{z} e_1, e_1\right) + 2g(e_2, e_1) = 2g\left(\frac{1}{z} e_1 + e_2, e_1\right), \]
since $g(e_1, e_2) = 0$. Thus
\[\nabla_{e_1} e_3 = \frac{1}{z} e_1 + e_2. \] (5.6)
Again by (5.5) we get,
\[2g(\nabla_{e_2} e_3, e_2) = 2g\left(\frac{1}{z} e_2, e_2\right) - 2g(e_1, e_2) = 2g\left(\frac{1}{z} e_2 - e_1, e_2\right), \]
since $g(e_1, e_2) = 0$. Therefore we have
\[\nabla_{e_2} e_3 = \frac{1}{z} e_2 - e_1. \] (5.7)
Again from (5.5) we have
\[\nabla_{e_3} e_3 = 0, \quad \nabla_{e_1} e_1 = -\frac{1}{z} e_1, \quad \nabla_{e_1} e_2 = 0, \]
\[\nabla_{e_2} e_1 = 0, \quad \nabla_{e_2} e_2 = -\frac{1}{z} e_2, \quad \nabla_{e_3} e_1 = 0, \quad \nabla_{e_3} e_2 = 0. \] (5.8)
The manifold M satisfies (2.5) with $\alpha = -1$ and $\beta = \frac{1}{2}$. Hence M is a trans-Sasakian manifold. Using the relations (5.6), (5.7) and (5.8), the non-vanishing components of the curvature tensor are computed as follows:

$$R(e_1, e_3)e_3 = \frac{1}{z^2} e_1, \quad R(e_3, e_1)e_3 = -\frac{1}{z^2} e_1,$$

$$R(e_2, e_3)e_3 = \frac{1}{z^2} e_2, \quad R(e_3, e_2)e_3 = -\frac{1}{z^2} e_2.$$

(5.9)

The vectors $\{e_1, e_2, e_3\}$ form a basis of M and so any vector X can be written as $X = a_1 e_1 + a_2 e_2 + a_3 e_3$ where $a_i \in \mathbb{R}^+$, $i = 1, 2, 3$. From (5.9), we have

$$(\nabla_X R)(e_1, e_3)e_3 = -\frac{2a_3}{z^3} e_1$$

and

$$(\nabla_X R)(e_2, e_3)e_3 = -\frac{2a_3}{z^3} e_2.$$

Applying ϕ^2 to both sides of the above equations and using (5.3), we obtain

$$\phi^2((\nabla_X R)(e_1, e_3)e_3) = A(X) R(e_1, e_3)e_3$$

and

$$\phi^2((\nabla_X R)(e_2, e_3)e_3) = A(X) R(e_2, e_3)e_3,$$

where $A(X) = \frac{2a_3}{z^3}$ is a non-vanishing 1-form. This implies that there exists a ϕ-recurrent trans-Sasakian manifold of dimension 3.

From the non-vanishing curvature components as given in (5.9), we have

$$R(e_1, e_3)e_3 = \lambda (g(e_3, e_3)e_1 - g(e_1, e_3)e_3)$$

and

$$R(e_2, e_3)e_3 = \lambda (g(e_3, e_3)e_2 - g(e_2, e_3)e_3).$$

This verifies Corollary 3.2.

REFERENCES

(received 11.11.2009; in revised form 29.11.2010)

Department of Mathematics, Central College, Bangalore University, Bangalore-560 001, India

E-mail: hgnraj@yahoo.com