A NEW CHARACTERIZATION OF SPACES WITH LOCALLY COUNTABLE sn-NETWORKS

Luong Quoc Tuyen

Abstract. In this paper we prove that a space X is with a locally countable sn-network (resp., weak base) if and only if it is a compact-covering (resp., compact-covering quotient) compact and ss-image of a metric space, if and only if it is a sequentially-quotient (resp., quotient) π- and ss-image of a metric space, which gives a new characterization of spaces with locally countable sn-networks (or weak bases).

1. Introduction

In 2002, Y. Ikeda, C. Liu and Y. Tanaka introduced the notion of σ-strong networks as a generalization of “development” in developable spaces, and considered certain quotient images of metric spaces in terms of σ-strong networks. By means of σ-strong networks, some characterizations for the quotient and compact images of metric spaces are obtained (see in [4, 18, 19], for example).

In this paper, by means of σ-strong networks, we give a new characterization of spaces with locally countable sn-networks (or weak bases). Throughout this paper, all spaces are assumed to be T_1 and regular, all maps are continuous and onto, N denotes the set of all natural numbers. Let P and Q be two families of subsets of X, and $f : X \to Y$ be a map, we denote $P \wedge Q = \{P \cap Q : P \in P, Q \in Q\}$, $P = \bigcap\{P : P \in P\}$, $P = \bigcup\{P : P \in P\}$, $st(x, P) = \bigcup\{P \in P : x \in P\}$, and $f(P) = \{f(P) : P \in P\}$. For a sequence $\{x_n\}$ converging to x and $P \subset X$, we say that $\{x_n\}$ is eventually in P if $\{x\} \bigcup\{x_n : n \geq m\} \subset P$ for some $m \in N$, and $\{x_n\}$ is frequently in P if some subsequence of $\{x_n\}$ is eventually in P.

Definition 1.1. Let X be a space and P be a subset of X.

1. P is a sequential neighborhood of x in X, if each sequence S converging to x is eventually in P.
2. P is a sequentially open subset of X, if P is a sequential neighborhood of x in X for all $x \in P$.

2010 AMS Subject Classification: 54C10, 54D65, 54E40, 54E99
Keywords and phrases: Weak base; sn-network; σ-strong network; locally countable; compact-covering; compact map; π-map.
Definition 1.2. Let \(\mathcal{P} \) be a collection of subsets of a space \(X \) and let \(K \) be a subset of \(X \). Then,

1. For each \(x \in X \), \(\mathcal{P} \) is a network at \(x \) [18], if \(x \in P \) for every \(P \in \mathcal{P} \), and if \(x \in U \) with \(U \) is open in \(X \), there exists \(P \in \mathcal{P} \) such that \(x \in P \subset U \).
2. \(\mathcal{P} \) is a network for \(X \) [18], if \(\{ P \in \mathcal{P} : x \in P \} \) is a network at \(x \) in \(X \) for all \(x \in X \).
3. \(\mathcal{P} \) is a \(cs^* \)-network for \(X \) [19], if for each sequence \(S \) converging to a point \(x \in U \) with \(U \) is open in \(X \), \(S \) is frequently in \(P \subset U \) for some \(P \in \mathcal{P} \).
4. \(\mathcal{P} \) is a \(cs \)-network for \(X \) [19], if each sequence \(S \) converging to a point \(x \in U \) is open in \(X \), \(S \) is eventually in \(P \subset U \) for some \(P \in \mathcal{P} \).
5. \(\mathcal{P} \) is a \(cfp \)-cover of \(K \) in \(X \) [13], if \(\mathcal{P} \) is a cover of \(K \) in \(X \) such that it can be precisely refined by some finite cover of \(K \) consisting of compact subsets of \(K \).
6. \(\mathcal{P} \) is a \(cfp \)-cover for \(X \) [13], if whenever \(K \) is a compact subset of \(X \), there exists a finite subfamily \(G \subset \mathcal{P} \) such that \(G \) is a \(cfp \)-cover of \(K \).
7. \(\mathcal{P} \) is locally countable, if for each \(x \in X \), there exists a neighborhood \(V \) of \(x \) such that \(V \) meets only countably many members of \(\mathcal{P} \).
8. \(\mathcal{P} \) is point-countable (resp., point-finite), if each point \(x \in X \) belongs to only countably (resp., finitely) many members of \(\mathcal{P} \).
9. \(\mathcal{P} \) is star-countable [15], if each \(P \in \mathcal{P} \) meets only countably many members of \(\mathcal{P} \).

Definition 1.3. Let \(\mathcal{P} = \bigcup \{ \mathcal{P}_x : x \in X \} \) be a family of subsets of a space \(X \) satisfying that, for every \(x \in X \), \(\mathcal{P}_x \) is a network at \(x \) in \(X \), and if \(U, V \in \mathcal{P}_x \), then \(W \subset U \cap V \) for some \(W \in \mathcal{P}_x \).

1. \(\mathcal{P} \) is a weak base for \(X \) [1], if whenever \(G \subset X \) satisfying for every \(x \in G \), there exists \(P \in \mathcal{P}_x \) with \(P \subset G \), then \(G \) is open in \(X \). Here, \(\mathcal{P}_x \) is a weak neighborhood base at \(x \) in \(X \).
2. \(\mathcal{P} \) is an \(sn \)-network for \(X \) [10], if each member of \(\mathcal{P}_x \) is a sequential neighborhood of \(x \) for all \(x \in X \). Here, \(\mathcal{P}_x \) is an \(sn \)-network at \(x \) in \(X \).

Definition 1.4. Let \(f : X \rightarrow Y \) be a map.

1. \(f \) is a sequence-covering map [16], if for every convergent sequence \(S \) in \(Y \), there exists a convergent sequence \(L \) in \(X \) such that \(f(L) = S \). Note that a sequence-covering map is a strong sequence-covering map in the sense of [9].
2. \(f \) is a compact-covering map [14], if for each compact subset \(K \) of \(Y \), there exists a compact subset \(L \) of \(X \) such that \(f(L) = K \).
3. \(f \) is a pseudo-sequence-covering map [8], if for each convergent sequence \(S \) in \(Y \), there exists a compact subset \(K \) of \(X \) such that \(f(K) = S \). Note that a pseudo-sequence-covering map is a sequence-covering map in the sense of [7].
4. \(f \) is a subsequence-covering map [12], if for each convergent sequence \(S \) in \(Y \), there exists a compact subset \(K \) of \(X \) such that \(f(K) \) is a subsequence of \(S \).
(5) f is a sequentially-quotient map [2], if for each convergent sequence S in Y, there exists a convergent sequence L in X such that $f(L)$ is a subsequence of S.

(6) f is a quotient map [3], if whenever $U \subset Y$, U is open in Y if and only if $f^{-1}(U)$ is open in X.

(7) f is an ss-map [18], if for each $y \in Y$, there exists a neighborhood U of y such that $f^{-1}(U)$ is separable in X.

(8) f is a compact map [19], if $f^{-1}(y)$ is compact in X for all $y \in Y$.

(9) f is a π-map [1], if for every $y \in Y$ and for every neighborhood U of y in Y, $d(f^{-1}(y), X - f^{-1}(U)) > 0$, where X is a metric space with a metric d.

Definition 1.5. Let X be a space. Then,

(1) X is a g-first countable space [1] (resp., an sn-first countable space [3], if there is a countable weak neighborhood base (resp., sn-network) at x in X for all $x \in X$.

(2) X is an \aleph_0-space [14], if it has a countable cs-network.

(3) X is a sequential space [19], if every sequential open subset of X is open in X.

(4) X is a Fréchet space, if for each $x \in X$, there exists a sequence in A converging to x in X.

Definition 1.6. [8] Let $\{P_n : n \in \mathbb{N}\}$ be a sequence of covers of a space X such that P_{n+1} refines P_n for every $n \in \mathbb{N}$. $\bigcup\{P_n : n \in \mathbb{N}\}$ is a σ-strong network for X, if $\{st(x, P_n) : n \in \mathbb{N}\}$ is a network at x for all $x \in X$.

Notation 1.7. Let $\bigcup\{P_n : n \in \mathbb{N}\}$ be a σ-strong network for a space X. For each $n \in \mathbb{N}$, put $P_n = \{P_\alpha : \alpha \in \Lambda_n\}$ and endow Λ_n with the discrete topology. Then,

$$M = \{\alpha = (\alpha_n) \in \prod_{n \in \mathbb{N}} \Lambda_n : \{P_\alpha\} \text{ forms a network at some point } x_\alpha \in X\}$$

is a metric space and the point x_α is unique in X for every $\alpha \in M$. Define $f : M \rightarrow X$ by $f(\alpha) = x_\alpha$. Let us call (f, M, X, P_n) a Ponomarev’s system, following [13].

For some undefined or related concepts, we refer the reader to [8, 11, 19].

2. Main results

Theorem 2.1. The following are equivalent for a space X.

(1) X is an sn-first countable space with a locally countable cs^*-network;

(2) X has a locally countable sn-network;

(3) X has a σ-strong network $\mathcal{U} = \bigcup\{\mathcal{U}_n : n \in \mathbb{N}\}$ satisfying the following:

(a) Each \mathcal{U}_n is a point-finite cfp-cover;
(b) \mathcal{U} is locally countable.

(4) X is a compact-covering compact and ss-image of a metric space;

(5) X is a pseudo-sequence-covering compact and ss-image of a metric space;

(6) X is a subsequence-covering compact and ss-image of a metric space;

(7) X is a sequentially-quotient π and ss-image of a metric space.

Proof. (1) \implies (2). Similar to the proof of (2) \implies (1) in Theorem 2.12 [3].

(2) \implies (3). Let $\mathcal{P} = \bigcup \{ P_x : x \in X \} = \{ P_\alpha : \alpha \in \Lambda \}$ be a locally countable sn-network for X, where each P_x is an sn-network at x. Since X is a regular space, we can assume that each element of \mathcal{P} is closed. Then, for each $x \in X$, there exists an open neighborhood V_x of x such that V_x meets only countably many members of \mathcal{P}. Let

$$Q = \{ P \in \mathcal{P} : P \subset V_x \text{ for some } x \in X \}.$$

Then, Q is a locally countable and star-countable network for X. By Lemma 2.1 in [15], $Q = \bigcup_{\alpha \in \Lambda} Q_\alpha$, where each Q_α is a countable subfamily of Q and $(\bigcup Q_\alpha) \cap (\bigcup Q_\beta) = \emptyset$ for all $\alpha \neq \beta$. For each $\alpha \in \Lambda$, let $Q_\alpha = \{ P_{\alpha,n} : n \in \mathbb{N} \}$, and for each $i \in \mathbb{N}$, denote $H_i = \{ P_{\alpha,i} : \alpha \in \Lambda \}$. Then, $Q = \bigcup \{ Q_i : i \in \mathbb{N} \}$. Now, for each $i \in \mathbb{N}$, let

$$A_i = \{ x \in X : H_i \cap P_x = \emptyset \}, \quad G_i = H_i \cup \{ A_i \}.$$

Then, we have

(a) $\bigcup \{ G_n : n \in \mathbb{N} \}$ is locally countable.

(b) Each G_i is point-finite.

(c) Each G_i is a cfp-cover for X. Let K be a non-empty compact subset of X. We shall show that there exists a finite subset of G_i which forms a cfp-cover of K. In fact, since X has a locally countable sn-network, K is metrizable. Note that each $\bigcup Q_\alpha$ is sequentially open in X and $(\bigcup Q_\alpha) \cap (\bigcup Q_\beta) = \emptyset$ for all $\alpha \neq \beta$, so the family $\{ \alpha \in \Lambda : K \cap (\bigcup Q_\alpha) \neq \emptyset \}$ is finite. Thus, K meets only finitely many members of G_i. Let $\Gamma_i = \{ \alpha : P_{\alpha} \in H_i, P_{\alpha} \cap K \neq \emptyset \}$. For each $\alpha \in \Gamma_i$, put $K_\alpha = P_{\alpha} \cap K$, then $K_i = K - \bigcup_{\alpha \in \Gamma_i} K_\alpha$. It is obvious that all K_α and K_i are closed subset of K, and $K = K_i \cup \bigcup_{\alpha \in \Gamma_i} K_\alpha$. Now, we only need to show $K_i \subset A_i$ for all $i \in \mathbb{N}$. Let $x \in K_i$, then there exists a sequence $\{ x_n \}$ of $K - \bigcup_{\alpha \in \Gamma_i} K_\alpha$ converging to x. If $P \in P_x \cap H_i$, then P is a sequential neighborhood of x and $P = P_\alpha$ for some $\alpha \in \Gamma_i$. Thus, $x_n \in P$ for some $m \in \mathbb{N}$. Hence, $x_n \in K_\alpha$ for some $\alpha \in \Gamma_i$, a contradiction. So, $P_x \cap H_i = \emptyset$, and $x \in A_i$. This implies that $K_i \subset A_i$ and $\{ A_i \} \cup \{ P_{\alpha} : \alpha \in \Gamma_i \}$ is a cfp-cover of K.

(d) Each $\{ \text{st}(x, G_n) : n \in \mathbb{N} \}$ is a network at x. Let $x \in U$ with U is open in X. Then, $x \in P \subset U \cap V_x$ for some $P \in P_x$, so $P \in Q$. Thus, there exists a unique $\alpha \in \Lambda$ such that $P \in Q_\alpha$. Hence, $P = P_{\alpha,j} \in H_i$ for some $j \in \mathbb{N}$. Since $P \in H_i \cap P_x$, $x \notin A_i$. Note that $P \cap P_{\alpha,j} = \emptyset$ for all $j \neq i$. Then, $\text{st}(x, G_i) = P \subset U$. Therefore, $\{ \text{st}(x, G_n) : n \in \mathbb{N} \}$ is a network at x for all $x \in X$.

Next, for each $n \in \mathbb{N}$, put $\mathcal{U}_n = \bigwedge \{ G_i : i \leq n \}$. Then, $\bigcup \{ \mathcal{U}_n : n \in \mathbb{N} \}$ is a σ-strong network and each \mathcal{U}_n is a point-finite cfp-cover for X. Now, we shall show
that \(\bigcup \{ \mathcal{U}_n : n \in \mathbb{N} \} \) is locally countable. In fact, since \(\mathcal{P} \) is locally countable, \(\mathcal{V} = (\{A_i : i \in \mathbb{N}\}) \cup \mathcal{P} \) is locally countable. Thus, \(\{\bigcap F : F \text{ is a finite subfamily of } \mathcal{V}\} \) is locally countable. Furthermore, since \(\bigcup \{ \mathcal{G}_i : i \in \mathbb{N} \} \subset \mathcal{V} \), we have

\[
\bigcup \{ \mathcal{U}_n : n \in \mathbb{N} \} \subset \left\{ \bigcap F : F \text{ is a finite subfamily of } \mathcal{V} \right\}.
\]

This implies that \(\bigcup \{ \mathcal{U}_n : n \in \mathbb{N} \} \) is locally countable. Therefore, (3) holds.

(3) \(\implies \) (4). Let \(\mathcal{U} = \bigcup \{ \mathcal{U}_n : n \in \mathbb{N} \} \) be a \(\sigma \)-strong network satisfying (3). Consider the Ponomarev’s system \((f, M, X, \mathcal{U}_n) \). Because each \(\mathcal{U}_n \) is a point-finite and locally countable \(cfp \)-cover, it follows from Lemma 2.2 [19] that \(f \) is a compact-covering and compact map. We only need to show \(f \) is an \(ss \)-map. Let \(x \in X \), since \(\mathcal{U} \) is locally countable, there exists a neighborhood \(V \) of \(x \) such that \(V \) meets only countably many members of \(\mathcal{U} \). For each \(i \in \mathbb{N} \), let \(\Delta_i = \{\alpha \in \Lambda_i : P_\alpha \cap V \neq \emptyset\} \). Then, each \(\Delta_i \) is countable. On the other hand, since \(f^{-1}(V) \subset \prod_{i \in \mathbb{N}} \Delta_i = f^{-1}(V) \) is separable in \(M \). Therefore, (4) holds.

(4) \(\implies \) (5) \(\implies \) (6). It is obvious.

(6) \(\implies \) (1). Let \(f : M \rightarrow X \) be a sequentially-quotient \(\pi \) and \(ss \)-map. It follows from Corollary 2.6 [4] that \(X \) has a \(\sigma \)-strong network \(\mathcal{G} = \bigcup \{ \mathcal{G}_n : n \in \mathbb{N} \} \), where each \(\mathcal{G}_n \) is a \(cs^* \)-cover. For each \(x \in X \), let \(\mathcal{G}_x = \{st(x, \mathcal{G}_n) : n \in \mathbb{N}\} \). Since each \(\mathcal{P}_n \) is a \(cs^* \)-cover, it implies that \(\bigcup \{ \mathcal{G}_x : x \in X \} \) is an \(sn \)-network for \(X \). Hence, \(X \) is an \(sn \)-first countable space. Now, let \(\mathcal{B} \) be a point-countable base for \(M \), since \(f \) is a sequentially-quotient and \(ss \)-map, \(f(\mathcal{B}) \) is a locally countable \(cs^* \)-network for \(X \). Therefore, (1) holds. \(\blacksquare \)

Corollary 2.2. The following are equivalent for a space \(X \).

1. \(X \) has a locally countable weak base;
2. \(X \) is a sequential space with a \(\sigma \)-strong network \(\mathcal{U} = \bigcup \{ \mathcal{U}_n : n \in \mathbb{N} \} \) satisfying the following:
 (a) Each \(\mathcal{U}_n \) is a point-finite \(cfp \)-cover;
 (b) \(\mathcal{U} \) is locally countable.
3. \(X \) is a compact-covering quotient compact and \(ss \)-image of a metric space;
4. \(X \) is a pseudo-sequence-covering quotient compact and \(ss \)-image of a metric space;
5. \(X \) is a subsequence-covering quotient compact and \(ss \)-image of a metric space;
6. \(X \) is a quotient \(\pi \) and \(ss \)-image of a metric space.

Example 2.3. Let \(C_n \) be a convergent sequence containing its limit point \(p_n \) for each \(n \in \mathbb{N} \), where \(C_m \cap C_n = \emptyset \) if \(m \neq n \). Let \(\mathbb{Q} = \{q_n : n \in \mathbb{N}\} \) be the set of all rational numbers of the real line \(\mathbb{R} \). Put \(M = (\bigoplus \{C_n : n \in \mathbb{N}\}) \oplus \mathbb{R} \) and let \(X \) be the quotient space obtained from \(M \) by identifying each \(p_n \) in \(C_n \) with \(q_n \) in \(\mathbb{R} \). Then, by the proof of Example 3.1 [6], \(X \) has a countable weak base and \(X \) is not a sequence-covering quotient and \(\pi \)-image of a metric space. Hence,

1. A space with a locally countable \(sn \)-network \(\Rightarrow \) a sequence-covering and \(\pi \)-image of a metric space.
A new characterization of spaces with locally countable sn-networks

(2) A space with a locally countable weak base \(\nRightarrow \) a sequence-covering quotient and π-image of a metric space.

Example 2.4. Using Example 3.1 [5], it is easy to see that X is Hausdorff, non-regular and X has a countable base, but it is not a sequentially-quotient and π-image of a metric space. This shows that regular properties of X can not be omitted in Theorem 2.1 and Corollary 2.2.

Example 2.5. S_ω is a Fréchet and \aleph_0-space, but it is not first countable. Thus, S_ω has a locally countable cs-network. Since S_ω is not first countable, it has not locally countable sn-network. Hence, a space with a locally countable cs-network \(\nRightarrow \) a sequentially-quotient and π-image of a metric space.

Acknowledgement. The author would like to express his thanks to the referee for his/her helpful comments and valuable suggestions.

References

(received 09.03.2011; in revised form 31.08.2011; available online 01.11.2011)

Department of Mathematics, Da Nang University, Vietnam

E-mail: luongtuyench12@yahoo.com