ON CONVERGENCE OF q-CHLODOVSKY-TYPE MKZD OPERATORS

Harun Karsli and Vijay Gupta

Abstract. In the present paper, we define a new kind of MKZD operators for functions defined on $[0, b_n]$, named q-Chlodovsky-type MKZD operators, and give some approximation properties.

1. Introduction

For a function defined on the interval $[0, 1]$, the Meyer-König and Zeller operators $M_n(f, x)$ [10] are defined as

$$M_n(f; x) = \sum_{k=0}^{\infty} m_{n,k}(x) f\left(\frac{k}{n+k}\right)$$

(1.1)

where $m_{n,k} = \binom{n+k}{k} x^k (1-x)^n$. In 1989 Guo [2] introduced the integrated Meyer-König and Zeller operators \widetilde{M}_n by the means of the operators (1.1), to approximate Lebesgue integrable functions on the interval $[0, 1]$. Such operators have been defined as

$$\widetilde{M}_n(f; x) = \sum_{k=0}^{\infty} \tilde{m}_{n,k}(x) \int_{I_k} f(t) \, dt$$

(1.2)

where $I_k = \left[\frac{k}{n+k}, \frac{k+1}{n+k+1}\right]$ and $\tilde{m}_{n,k}(x) = (n+1)\binom{n+k+1}{k} x^k (1-x)^n$. Similar results may be also found in the papers [3, 4].

Recently, Karsli [8] defined the following MKZD operators for functions defined on $[0, b_n]$, named Chlodovsky-type MKZD operators as

$$L_n(f; x) = \sum_{k=0}^{\infty} \frac{n+k}{b_n} m_{n,k}\left(\frac{x}{b_n}\right) \int_{0}^{b_n} f(t) b_{n,k}\left(\frac{t}{b_n}\right) \, dt, \quad 0 \leq x, \ t \leq b_n,$$

(1.3)

2010 AMS Subject Classification: 41A25, 41A36

Keywords and phrases: q-Chlodovsky-type MKZD operators; modulus of continuity; Peetre-K functional; Lipschitz space.
where \((b_n)\) is a positive increasing sequence with the properties
\[
\lim_{n \to \infty} b_n = \infty \quad \text{and} \quad \lim_{n \to \infty} \frac{b_n}{n} = 0
\]
and \(b_{n,k}(t) = n\binom{n+k}{k} t^k (1-t)^{n-1}\). We now deal with the \(q\)-analogue of Chlodovsky-type MKZD operators \(L_{n,q}\), defined as
\[
L_{n,q}(f;x) = \sum_{k=0}^{\infty} \frac{[n+k]_q}{b_n} m_{n,k,q} \left(\frac{x}{b_n} \right) \int_0^{b_n} q^{-k} f(t) b_{n,k,q} \left(\frac{qt}{b_n} \right) d_q t, \quad 0 \leq x \leq b_n,
\]
where
\[
m_{k,n,q}(x) = \begin{bmatrix} n+k-1 \\ k \end{bmatrix}_q x^k \prod_{s=0}^{n-1} (1-q^s x)
\]
and
\[
b_{n,k,q}(t) = [n]_q \begin{bmatrix} n+k \\ k \end{bmatrix}_q t^k \prod_{s=0}^{n-2} (1-q^s t) \quad (0 \leq t, x \leq 1),
\]
provided the \(q\)-integral and the infinite series on the r.h.s. of \((1.4)\) are well-defined.

It can be easily verified that in the case \(q = 1\) the operators defined by \((1.4)\) reduce to the Chlodovsky-type MKZD operators defined by \((1.3)\).

Actually the \(q\)-analogue of the linear positive operators was started in the last decade when Phillips [11] first introduced \(q\)-Bernstein polynomials, and later their Durrmeyer variants were studied and discussed in [5, 6]. Very recently Govil and Gupta [1] studied the approximation properties of \(q\)-MKZD operators. Here our aim is to study the \(q\)-analogue of summation-integral-type CMKZD operators. We shall prove that the operators \(L_{n,q}f\) being defined in \((1.4)\) converge to the limit \(f\).

Before getting onto the main subject, we first give definitions of \(q\)-integer, \(q\)-binomial coefficient and \(q\)-integral, which are required in this paper. For any fixed real number \(q > 0\) and non-negative integer \(r\) the \(q\)-integer of the number \(r\) is defined by
\[
[r]_q = \begin{cases}
(1-q^r)/(1-q), & q \neq 1 \\
r, & q = 1.
\end{cases}
\]
The \(q\)-factorial is defined by
\[
[r]_q! = \begin{cases}
[r]_q[r-1]_q \cdots [1]_q, & r = 1, 2, 3, \ldots \\
1, & r = 0.
\end{cases}
\]
and \(q\)-binomial coefficient is defined as
\[
\begin{bmatrix} n \\ r \end{bmatrix}_q = \frac{[n]_q!}{[r]_q ![n-r]_q!},
\]
for integers \(n \geq r \geq 0\). The \(q\)-integral is defined as (see [9])
\[
\int_0^a f(x) d_q x = (1-q) a \sum_{n=0}^{\infty} f(aq^n) q^n
\]
provided the sum converges absolutely. Note that the series on the right-hand side is guaranteed to be absolutely convergent as the function \(f \) is such that, for some \(M > 0, \alpha > -1, |f(x)| < Mx^\alpha \) in a right neighbourhood of \(x = 0 \).

Definition 1.1. A function \(f \) is \(q \)-integrable on \([0, \infty)\) if the series

\[
\int_0^\infty f(x) \, dq \, x = (1 - q) \sum_{n \in \mathbb{Z}} f(q^n) q^n
\]

converges absolutely. We use the notation

\[
(a - b)_q^n = \prod_{j=0}^{n-1} (a - q^j b).
\]

The \(q \)-analogue of Beta function (see [7]) is defined as

\[
B_q(m, n) = \int_0^1 t^{m-1} (1 - qt)^{n-1} \, dq, \quad m, n > 0.
\]

Also

\[
B_q(m, n) = [m-1]![n-1]! \frac{[m+n-1]!}{[m+n-1]!}.
\]

2. Auxiliary results

In this section we give certain results, which are necessary to prove our main theorem.

Lemma 2.1. For \(s \in \mathbb{N} \),

\[
(L_{n,q}t^s)(x) = b_n^s \sum_{k=0}^{\infty} m_{n,k,q} \left(\frac{x}{b_n} \right) \frac{[n+k]_q!}{[k]_q!} \frac{[k+s]_q!}{[k+n]_q!}.
\]

Proof. We have

\[
(L_{n,q}t^s)(x) = \sum_{k=0}^{\infty} \frac{[n+k]_q}{b_n} m_{n,k,q} \left(\frac{x}{b_n} \right) \int_0^{b_n} q^{-k} t^s b_{n,k,q} \left(\frac{qt}{b_n} \right) \, dq \, t
\]

\[
= \sum_{k=0}^{\infty} \frac{[n+k]_q}{b_n} m_{n,k,q} \left(\frac{x}{b_n} \right) \int_0^{b_n} t^s \left[\frac{n+k-1}{k} \right]_q \left(\frac{t}{b_n} \right)^k \left(1 - qt \right)^{n-1} \, dq \, t.
\]

Setting \(u = t/b_n \), we get

\[
(L_{n,q}t^s)(x) = \sum_{k=0}^{\infty} \frac{[n+k]_q}{b_n} m_{n,k,q} \left(\frac{x}{b_n} \right) b_n^{s+1} \left[\frac{n+k-1}{k} \right]_q \int_0^1 u^{k+s}(1 - qu)^{n-1} \, du
\]

\[
= \sum_{k=0}^{\infty} \frac{[n+k]_q}{b_n} m_{n,k,q} \left(\frac{x}{b_n} \right) b_n^{s+1} \left[\frac{n+k-1}{k} \right]_q B_q(k + s + 1, n)
\]
\[
= \sum_{k=0}^{\infty} k_{n,k,q} \left(\frac{x}{b_n} \right)^{n+k-1} \frac{\Gamma_q(k+s+1) \Gamma_q(n)}{(n-1)_q! [k]_q!} \sum_{k=0}^{\infty} m_{n,k,q} \left(\frac{x}{b_n} \right)^{n+k-1} \frac{[k+s]_q!}{[k+n+s]_q!}. \]

For \(s = 0,1 \) and 2 in (2.1), we get respectively

\[
(L_{n,q}) (x) = \sum_{k=0}^{\infty} m_{n,k,q} \left(\frac{x}{b_n} \right)^{n+k-1} \frac{\prod_{s=0}^{k-1} (1 - q^s \frac{x}{b_n})}{(n+k-1)_q!} \frac{[k]_q!}{[k+n+k+1]_q!} = 1,
\]

since

\[
\prod_{s=0}^{k-1} \frac{1}{\left(1 - q^s \frac{x}{b_n} \right)} = \sum_{k=0}^{\infty} \left(\frac{x}{b_n} \right)^{n+k-1} \frac{[k]_q!}{[k+n+k+1]_q!}.
\]

(2.2)

\[
(L_{n,q}) (x) = b_n \sum_{k=0}^{\infty} m_{n,k,q} \left(\frac{x}{b_n} \right)^{n+k-1} \frac{\prod_{s=0}^{k-1} (1 - q^s \frac{x}{b_n})}{(n+k-1)_q! [k]_q!} \frac{[k]_q!}{[k+n+k+1]_q!} \frac{[k+n]_q}{[k+n+k]_q} \frac{[n+k]_q}{[n+k+1]_q} = 1.
\]

(2.3)
From (2.2), (2.3) and (2.4), an easy computation gives

\[(L_{n,q}t^2)(x) = b_n^2 \sum_{k=0}^{\infty} m_{n,k,q} \left(\frac{x}{b_n} \right) \frac{[n+k]_q!}{k!} \frac{[k+2]_q!}{[k+2+n]_q!} \]

\[= b_n^2 \prod_{s=0}^{n-1} \left(1-q^s \frac{x}{b_n} \right) \sum_{k=0}^{\infty} \frac{[n+k-1]_q!}{[n-1]_q! [k]_q!} \left(\frac{x}{b_n} \right)^{k} \frac{[k+2]_q [k+1]_q}{[k+2+n]_q [k+1+n]_q} \]

\[= b_n^2 \prod_{s=0}^{n-1} \left(1-q^s \frac{x}{b_n} \right) \sum_{k=0}^{\infty} \frac{[n+k-1]_q!}{[n-1]_q! [k]_q!} \left(\frac{x}{b_n} \right)^{k} \frac{1+q+q[k]_q+2q^2[k]_q+q^3[k]^2_q}{[k+2+n]_q [k+1+n]_q} \]

\[\leq b_n^2 \prod_{s=0}^{n-1} \left(1-q^s \frac{x}{b_n} \right) \frac{1}{[n-1]_q!} \times \]

\[\sum_{k=0}^{\infty} \frac{[n+k-3]_q!}{[k]_q!} \left(\frac{x}{b_n} \right)^{k} \left(1+q+q[k]_q+2q^2[k]_q+q^3[k]^2_q \right) \]

\[= (1+q) b_n^2 \prod_{s=0}^{n-1} \left(1-q^s \frac{x}{b_n} \right) \frac{1}{[n-1]_q[n-2]_q} \sum_{k=0}^{\infty} \frac{[n+k-3]_q!}{[n-3]_q! [k]_q!} \left(\frac{x}{b_n} \right)^{k} \]

\[+ (q+2q^2) b_n^2 \prod_{s=0}^{n-1} \left(1-q^s \frac{x}{b_n} \right) \frac{1}{[n-1]_q[n-2]_q} \sum_{k=0}^{\infty} \frac{[n+k-2]_q!}{[n-2]_q! [k]_q!} \left(\frac{x}{b_n} \right)^{k+1} \]

\[+ q^3b_n^2 \prod_{s=0}^{n-1} \left(1-q^s \frac{x}{b_n} \right) \frac{1}{[n-1]_q[n-2]_q} \sum_{k=0}^{\infty} \frac{[n+k-3]_q!}{[k]_q!} \left(\frac{x}{b_n} \right)^{k} \]

\[= (1+q) b_n^2 \frac{1}{[n-1]_q[n-2]_q} + (q+2q^2) b_n^2 \frac{1}{[n-1]_q} \frac{x}{b_n} \]

\[+ q^3b_n^2 \prod_{s=0}^{n-1} \left(1-q^s \frac{x}{b_n} \right) \frac{1}{[n-1]_q[n-2]_q} \sum_{k=0}^{\infty} \frac{[n+k-2]_q!}{[k]_q!} \left(\frac{x}{b_n} \right)^{k+1} \]

\[+ q^4b_n^2 \prod_{s=0}^{n-1} \left(1-q^s \frac{x}{b_n} \right) \frac{1}{[n-1]_q[n-2]_q} \sum_{k=0}^{\infty} \frac{[n+k-1]_q!}{[k]_q!} \left(\frac{x}{b_n} \right)^{k+2} \]

\[= \frac{(1+q) b_n^2}{[n-1]_q[n-2]_q} + (q+2q^2+q^3) \frac{b_n}{[n-1]_q} x + q^4x^2. \]

(2.4)

From (2.2), (2.3) and (2.4), an easy computation gives

\[(L_{n,q}(t-x)^2)(x) \leq \frac{(1+q) b_n^2}{[n-1]_q[n-2]_q} + \frac{(q+2q^2+q^3) b_n}{[n-1]_q} x \]
functions.

Now, if we choose \(\omega \) where

\[
\lim_{n \to \infty} b_n = 0.
\]

3. Main results

Now we are ready to obtain some convergence results on \(q \)-CMKZD operators.

Theorem 3.1. Let \((q_n) \) be a sequence of real numbers such that \(0 < q_n < 1 \) and \(\lim_{n \to \infty} q_n = 1 \). If \(f \in C[0, \infty) \), we have

\[
| (L_{n,q_n} f)(x) - f(x) | \leq 2\omega(f, \sqrt{A_{n,q_n}(x)}),
\]

where \(\omega(f, \cdot) \) is the usual modulus of continuity of \(f \) in the space of continuous functions.

Proof. Using (1.4) for \(q = q_n \), we have

\[
| (L_{n,q_n} f)(x) - f(x) | = \left| \sum_{k=0}^{\infty} \frac{[n+k]}{b_n} m_{n,k,q_n} \left(\frac{x}{b_n} \right) \int_0^{b_n} q_n^{-k} f(t) b_{n,k,q_n} \left(\frac{q_n t}{b_n} \right) d_{q_n} t - f(x) \right|
\]

\[
\leq \sum_{k=0}^{\infty} \frac{[n+k]}{b_n} m_{n,k,q_n} \left(\frac{x}{b_n} \right) \int_0^{b_n} q_n^{-k} |f(t) - f(x)| b_{n,k,q_n} \left(\frac{q_n t}{b_n} \right) d_{q_n} t
\]

\[
\leq \sum_{k=0}^{\infty} \frac{[n+k]}{b_n} m_{n,k,q_n} \left(\frac{x}{b_n} \right) \int_0^{b_n} q_n^{-k} \left(\frac{|t-x|}{\delta} + 1 \right) \omega(f, \delta) b_{n,k,q_n} \left(\frac{q_n t}{b_n} \right) d_{q_n} t
\]

\[
= \omega(f, \delta) \sum_{k=0}^{\infty} \frac{[n+k]}{b_n} m_{n,k,q_n} \left(\frac{x}{b_n} \right) \int_0^{b_n} q_n^{-k} b_{n,k,q_n} \left(\frac{q_n t}{b_n} \right) d_{q_n} t
\]

\[
+ \frac{\omega(f, \delta)}{\delta} \sum_{k=0}^{\infty} \frac{[n+k]}{b_n} m_{n,k,q_n} \left(\frac{x}{b_n} \right) \int_0^{b_n} q_n^{-k} \left(\frac{|t-x|}{\delta} \right) b_{n,k,q_n} \left(\frac{q_n t}{b_n} \right) d_{q_n} t
\]

\[
\leq \omega(f, \delta) + \frac{\omega(f, \delta)}{\delta} \left((L_{n,q_n} (t-x)^2)(x) \right)^{1/2}
\]

\[
\leq \omega(f, \delta) + \frac{\omega(f, \delta)}{\delta} \left(A_{n,q_n}(x) \right)^{1/2}
\]

Now, if we choose \(\delta^2 = A_{n,q_n}(x) \), we get

\[
| (L_{n,q_n} f)(x) - f(x) | \leq 2\omega(f, \sqrt{A_{n,q_n}(x)}),
\]

and the proof of Theorem 3.1 is thus complete. \(\square \)
It is easy to see that, the right-hand side of formula (3.1) can diverge. Indeed, for \(x = \frac{b}{2} \) we cannot guarantee \(\delta \to 0 \) as \(n \to \infty \).

From Lemma 2.1 and Theorem 3.1, we can immediately give the following Bohman-Korovkin-type theorem.

Theorem 3.2. Let \((q_n)\) be a sequence of real numbers such that \(0 < q_n < 1\) and \(\lim_{n \to \infty} q_n = 1\). Then, for \(f \in C[0, \infty)\), the sequence \(L_n,q_n(f, x)\) converges uniformly to \(f(x)\) on any closed finite subinterval \([0, A]\), where \(A > 0\) being a constant.

Definition 3.3. For \(f \in C[a, b]\) and \(t > 0\), the Peetre-K Functional are defined by

\[
K(f, \delta) := \inf_{g \in C^2[a, b]} \left\{ \|f - g\|_{C[a, b]} + t \|g\|_{C^2[a, b]} \right\}.
\]

Theorem 3.4. If \(g \in C^2[0, A]\), then

\[
| (L_n,q g)(x) - g(x) | \leq A_{n,q}(x) \|g\|_{C^2[0, A]},
\]

where \(A > 0\) is a constant.

Proof. By Taylor formula with integral remainder term, we write

\[
g(t) = g(x) + (t - x)g'(x) + \int_0^{t-x} (t - x - u)^2 g''(x + u) \, du. \tag{3.2}
\]

If we apply the operator (1.4) to (3.2), we get

\[
| (L_n,q g)(x) - g(x) |
\]

\[
= \left| g'(x)(L_{n,q}(t-x))(x) + \left(L_{n,q} \left(\int_0^{t-x} (t - x - u)^2 g''(x + u) \, du \right) \right)(x) \right|
\]

\[
\leq \|g'\|_{C[0, A]} \|L_{n,q}(t-x)(x)\|
\]

\[
+ \|g''\|_{C[0, A]} \left| L_{n,q} \left(\int_0^{t-x} (t - x - u)^2 \, du \right) \right|(x).
\]

Since

\[
\int_0^{t-x} (t - x - u)^2 \, du = \frac{(t-x)^2}{2},
\]

one gets from (2.5)

\[
| (L_n,q g)(x) - g(x) | \leq \|g'\|_{C[0, A]} \{A_{n,q}(x)\}^{1/2} + \|g''\|_{C[0, A]} A_{n,q}(x).
\]

Now noting that

\[
\|g\|_{C^2[a, b]} = \|g\|_{C[a, b]} + \|g'\|_{C[a, b]} + \|g''\|_{C[a, b]},
\]

we get

\[
| (L_n,q g)(x) - g(x) | \leq A_{n,q}(x) \|g\|_{C^2[0, A]}.
\]
and this completes the proof of Theorem 3.4. ■

Now, we are ready to prove the following theorem.

Theorem 3.5. Let \((q_n) \) be a sequence of real numbers such that \(0 < q_n < 1 \) and \(\lim_{n \to \infty} q_n = 1 \). If \(f \in C([0, \infty), \mathbb{R}) \), then

\[
\| (L_{n,q_n} f) - f \|_{C[0,A]} \leq 2K(f, B_{n,q_n}),
\]

where \(B_{n,q_n} \) is the maximum value of \(A_{n,q_n}(x) \) on \([0, A], A > 0\) is a constant; namely,

\[
B_{n,q} = \frac{(1 + q) b_n^2}{\frac{n}{q(n-2)}} + \frac{(q + 2q^2 + q^3) b_n}{\left[n - 1 \right]_q} A + \left[q^4 - 2 \frac{n-1}{n+1} q + 1 \right] A^2.
\]

Proof. By the linearity property of \((L_{n,q_n}) \), we get

\[
|(L_{n,q_n} f)(x) - f(x)| = |(L_{n,q_n} f)(x) - (L_{n,q_n} g)(x) + (L_{n,q_n} g)(x) - g(x) + |g(x) - f(x)|
\]

\[
\leq \| f - g \|_{C[0,A]} \| (L_{n,q_n} - 1)(x) \| + \| f - g \|_{C[0,A]} + |(L_{n,q_n} g)(x) - g(x)|.
\]

From Theorem 3.4, one has

\[
\| (L_{n,q_n} f)(x) - f(x) \| \leq 2 \| f - g \|_{C[0,A]} A_{n,q_n}(x) \| g \|_{C^2[0,A]},
\]

and hence

\[
\| (L_{n,q_n} f) - f \|_{C[0,A]} \leq 2 \| f - g \|_{C[0,A]} + B_{n,q_n} \| g \|_{C^2[0,A]}.
\]

(3.3)

If we take the infimum on the right-hand side of (3.3) over all \(g \in C^2[0, A] \), we get

\[
\| (L_{n,q_n} f) - f \|_{C[0,A]} \leq 2K(f, B_{n,q_n}).
\]

This completes the proof. ■

Theorem 3.6. Let \((q_n) \) be a sequence of real numbers such that \(0 < q_n < 1 \) and \(\lim_{n \to \infty} q_n = 1 \). If \(f \in \text{Lip}^q_{\infty}[0, \infty) \), then for any \(A > 0 \) and \(x \in [0, A] \) the inequality

\[
|(L_{n,q_n} f)(x) - f(x)| \leq M \{ B_{n,q_n} \}^{\frac{2}{q}}
\]

holds with the constant \(M \), which is independent of \(n \) and \(B_{n,q_n} \) is as defined in Theorem 3.5.

Proof. For convenience we write \(L_{n,q_n}(f; x) \) instead of \((L_{n,q_n}) f(x) \). Note that

\[
|L_{n,q_n}(f; x) - f(x)| \leq L_{n,q_n}(\| f(t) - f(x) \|; x)
\]

\[
= \sum_{k=0}^{\infty} \frac{[n+k]_{q_n}}{b_n^{n,k,q_n}} m_{n,k,q_n} \left(\frac{x}{b_n} \right) \int_0^{b_n} q_n^k |f(t) - f(x)| b_{n,k,q_n} \left(\frac{q_bt}{b_n} \right) d_{q_n} t
\]
By Hölder inequality, we have

\[\leq M \int_0^{b_n} q_n^{-k} |t - x|^{\alpha} \sum_{k=0}^{\infty} \left[\frac{n+k}{b_n} m_{n,k,q_n} \left(\frac{x}{b_n} \right) b_{n,k,q_n} \left(\frac{q_n t}{b_n} \right) \right] d_{q_n} t. \]

If we choose \(p_1 = \frac{2}{\alpha} \) and \(p_2 = \frac{2}{2-\alpha} \), then \(\frac{1}{p_1} + \frac{1}{p_2} = 1 \). Therefore

\[|L_{n,q_n}(f;x) - f(x)| \]

\[\leq M \int_0^{b_n} \left(|t - x|^2 \sum_{k=0}^{\infty} \left[\frac{n+k}{b_n} m_{n,k,q_n} \left(\frac{x}{b_n} \right) b_{n,k,q_n} \left(\frac{q_n t}{b_n} \right) \right] \right)^{\frac{1}{p_1}} \times \]

\[\times \left\{ q_n^{-k} \sum_{k=0}^{\infty} \left[\frac{n+k}{b_n} m_{n,k,q_n} \left(\frac{x}{b_n} \right) b_{n,k,q_n} \left(\frac{q_n t}{b_n} \right) \right] \right\}^{\frac{1}{p_2}} \]

By Hölder inequality, we have

\[|L_{n,q_n}(f;x) - f(x)| \]

\[\leq M \left\{ \int_0^{b_n} q_n^{-k} |t - x|^2 \sum_{k=0}^{\infty} \left[\frac{n+k}{b_n} m_{n,k,q_n} \left(\frac{x}{b_n} \right) b_{n,k,q_n} \left(\frac{q_n t}{b_n} \right) d_{q_n} t \right] \right\}^{\frac{1}{p_1}} \times \]

\[\times \left\{ \int_0^{b_n} q_n^{-k} \sum_{k=0}^{\infty} \left[\frac{n+k}{b_n} m_{n,k,q_n} \left(\frac{x}{b_n} \right) b_{n,k,q_n} \left(\frac{q_n t}{b_n} \right) \right] \right\}^{\frac{1}{p_2}} \]

\[= M \left\{ \int_0^{b_n} q_n^{-k} |t - x|^2 \sum_{k=0}^{\infty} \left[\frac{n+k}{b_n} m_{n,k,q_n} \left(\frac{x}{b_n} \right) b_{n,k,q_n} \left(\frac{q_n t}{b_n} \right) \right] \right\}^{\frac{2}{p_1}}. \]

From (2.5) we obtain

\[|L_{n,q_n}(f;x) - f(x)| \leq M \left\{ A_{n,q_n}(x) \right\}^{\frac{2}{p_1}}. \]

This implies that for \(x \in [0, A] \)

\[|(L_{n,q_n} f)(x) - f(x)| \leq M \left\{ B_{n,q_n} \right\}^{\frac{2}{p_1}} \]

which in view of (2.5) and (2.6) tends to zero as \(n \to \infty \).

ACKNOWLEDGEMENT. The authors are thankful to the referees for their valuable remarks and suggestions.

REFERENCES

(Received 16.06.2011; in revised form 06.02.2012; available online 15.03.2012)

Abant Izzet Baysal University, Faculty of Science and Arts, Department of Mathematics, 14280 Golkoy Bolu
E-mail: karsli_h@ibu.edu.tr

School of Applied Sciences, Netaji Subhas Institute of Technology, Sector 3 Dwarka New Delhi-110075, India
E-mail: vijaygupta2001@hotmail.com