DECOMPOSITION OF AN INTEGER AS A SUM OF TWO CUBES TO A FIXED MODULUS

David Tsirekidze and Ala Avoyan

Abstract. The representation of any integer as the sum of two cubes to a fixed modulus is always possible if and only if the modulus is not divisible by seven or nine. For a positive non-prime power there is given an inductive way to find its remainders that can be represented as the sum of two cubes to a fixed modulus \(N \). Moreover, it is possible to find the components of this representation.

1. Introduction

Any odd prime number \(p \) can be written as the sum of two squares if and only if it is of the form \(p = 4k+1 \), where \(k \in \mathbb{N} \). Generally, number \(n \) can be represented as a sum of two squares if and only if in the prime factorization of \(n \), every prime of the form \(4k+3 \) has even exponent [2]. There is no such nice characterization for the sum of two cubes. In this paper we give an inductive method which allows to find the representation of a non-prime integer as a sum of two cubes to a given modulus.

Definition 1.1. For \(N \geq 2 \) let

\[
\delta(N) = \frac{\#\{n \in \{1, \ldots, N\} : n \equiv x^3 + y^3 \pmod{N} \text{ has a solution}\}}{N}.
\]

Broughan [1] proved the following theorem.

Theorem 1.1. 1. If \(7 \mid N \) and \(9 \nmid N \) then \(\delta(N) = 5/7 \);
2. If \(7 \nmid N \) and \(9 \mid N \) then \(\delta(N) = 5/9 \);
3. If \(7 \mid N \) and \(9 \mid N \) then \(\delta(N) = 25/63 \);
4. If \(7 \nmid N \) and \(9 \nmid N \) then \(\delta(N) = 1 \).

In the last case \(\delta(N) = 1 \), and therefore, in this case any integer can be represented as a sum of two cubes to a fixed modulus \(N \).

2010 Mathematics Subject Classification: 11A07, 11B50, 11D25

Keywords and phrases: Sum of two cubes; Diophantine equation.
By Theorem 1.1, for all N we can compute the number of its residues that can be decomposed as a sum of two cubes. In this paper we introduce the way to find these remainders and also their decompositions as a sum of two cubes to a fixed modulus N in case when we know the factorization of this number.

2. Main results

Theorem 2.1. Let us consider an equation $n \equiv v^3 + v^3 \pmod N$, $n \in [0, N - 1]$. Then it has solution in integers in the following congruences:

1. $7 \mid N$, $9 \nmid N$ and $n \equiv 0, 1, 2, 6 \pmod 7$;
2. $7 \nmid N$, $9 \mid N$ and $n \equiv 0, 1, 2, 7, 8 \pmod 9$;
3. $7 \mid N$, $9 \mid N$ and $n \equiv 0, 1, 2, 7, 8, 9, 16, 19, 20, 26, 27, 28, 29, 34, 35, 36, 37, 43, 44, 47, 54, 55, 56, 61, 62 \pmod{63}$;
4. $7 \mid N$, $9 \nmid N$ and $\forall n \in [0, N - 1]$.

Proof. For simplicity, we prove only the first case of the theorem. One can easily verify that cube of any integer number can have the following remainders modulo 7: 0, 1, 6. Therefore, the sum of two cubes can have remainders 0, 1, 2, 5, 6 modulo 7. The number of positive integers with these remainders is $(5/7) \cdot N$ in the interval $[0, N - 1]$. There is no other number n for which the equation has a solution. Hence, from Theorem 1.1 the first case of Theorem 2.1 is proved. Other two cases can be proved analogously.

Definition 2.1. Let us denote the set of all values of $n \in [0, N - 1]$ for which $n \equiv u^3 + v^3 \pmod N$ by $A(N)$.

Theorem 2.2. If $(N,M) = 1$, then $\delta(MN) = \delta(M) \cdot \delta(N)$.

Proof. Suppose

$$m \equiv u^3 + v^3 \pmod M, \quad m \in [0, M - 1]$$

$$n \equiv x^3 + y^3 \pmod N.$$

Let X be such that $M \mid X$ and $N \mid X - 1$. By the Chinese Remainder Theorem such an X always exists.

Let us construct X^*, A and B in the following manner

$$X^* \equiv X \cdot n - (X - 1) \cdot m \pmod{MN} \quad (3)$$

$$A = X \cdot x - (X - 1) \cdot u \quad (4)$$

$$B = X \cdot y - (X - 1) \cdot v. \quad (5)$$

We claim that $X^* \equiv A^3 + B^3 \pmod{MN}$.

Indeed,

$$X^* - (A^3 + B^3)$$

$$\equiv X \cdot n - (X - 1) \cdot m - (X^3 \cdot x^3 - (X - 1)^3 \cdot u^3 + X^3 \cdot y^3 - (X - 1)^3 \cdot v^3)$$

$$\equiv X \cdot n - (X - 1) \cdot m - (X^3(x^3 + y^3) - (X - 1)^3(u^3 + v^3))$$

$$\equiv X \cdot (n - X^2(x^3 + y^3)) + (X - 1) \cdot ((X - 1)^2(u^3 + v^3) - m) \pmod{MN}.$$
Because,
\[n - X^2(x^3 + y^3) \equiv (x^3 + y^3)(1 - X)(1 + X) \equiv 0 \pmod{N} \text{ and } X \equiv 0 \pmod{M} \]
and \((N, M) = 1\), we obtain
\[X \cdot (n - X^2(x^3 + y^3)) \equiv 0 \pmod{MN}. \]

Similarly,
\[(X - 1)^2(u^3 + v^3) - m \equiv (u^3 + v^3) \cdot ((X - 1)^2 - 1) \equiv 0 \pmod{M} \]
and \(X - 1 \equiv 0 \pmod{N}\)
which implies, as \((N, M) = 1\)
\[(X - 1) \cdot ((X - 1)^2(u^3 + v^3) - m) \equiv 0 \pmod{MN}. \]

Finally,
\[X^* - (A^3 + B^3) \equiv X \cdot (n - X^2(x^3 + y^3)) + (X - 1) \cdot ((X - 1)^2(u^3 + v^3) - m) \]
\[\equiv 0 \pmod{MN}. \]

For any \(m \in A(M)\) and any \(n \in A(N)\), there exists an \(X^* \in A(MN)\). Obviously, \(X^* \equiv n \pmod{N}\) and \(X^* \equiv m \pmod{M}\). Thus, for different pairs \((m_1, n_1)\) and \((m_2, n_2)\) we cannot obtain the same \(X^*\) (by Chinese Remainder Theorem).

Now take any element \(X^*\) from the set \(A(MN)\), \(X^* \equiv A^3 + B^3 \pmod{MN}\). Suppose the pairs \((x, y), (u, v)\) are the solutions of the following Diophantine equation [3]:
\[A = X \cdot x - (X - 1) \cdot u, \]
\[B = X \cdot y - (X - 1) \cdot v. \]

If we define
\[m \equiv (u^3 + v^3) \pmod{M} \text{ and } n \equiv (x^3 + y^3) \pmod{N}, \]
then \(X^* \equiv A^3 + B^3 \pmod{MN}\). Therefore, there is one-to-one correspondence between the elements of the set \(A(MN)\) and pairs of elements from the sets \(A(M)\) and \(A(N)\). Hence, we have proved that \(\delta(MN) = \delta(M) \cdot \delta(N)\). \[\blacksquare\]

Remark 2.1. Let us assume we are given any number \(K\) and suppose we know the representation of any element in each set \(A(1), A(2), \ldots, A(K - 1)\) as a sum of two cubes to a fixed modulus. And our task is to find the representation of the elements of \(A(K)\). Let \(K\) be a non-prime power number and \(K = M \cdot N\), where \((M, N) = 1\) and \(N, M > 1\). Suppose \(m \in A(M)\), \(n \in A(N)\) and (1),(2) hold. Solve Diophantine equation \(M \cdot q - N \cdot l = 1\), let \(X = Mq\) and construct \(X^*, A, B\) according to (3),(4),(5). As it was shown above
\[X^* \equiv A^3 + B^3 \pmod{K}. \]
Therefore \(X^* \in A(K)\) and (6) is a representation for \(X^*\) as a sum of two cubes to a fixed modulus \(K\).
3. Conclusion

This paper is an attempt to explicitly find the way to solve the equation $n \equiv a^3 + b^3 \pmod{K}$. Using inductive method that is given in this paper it is possible to construct the set $A(K)$ and represent any element of this set as a sum of two cubes to a fixed non-prime modulus K.

Acknowledgement. The authors thank the anonymous referee for valuable comments and suggestions. Also we are very grateful for Akaki Mamageishvili’s helpful discussions.

REFERENCES

[1] K.A. Broughan, *Characterizing the sum of two cubes*, J. Integer Seq. 6 (2003), Article 03.4.6, 7 pages.

(received 23.08.2011; in revised form 24.02.2012; available online 10.06.2012)

David Tsirekidze, Stanford University, USA
E-mail: david19@stanford.edu

Ala Avoyan, International School of Economics (ISET), Georgia
E-mail: a.avoyan@iset.ge