COUPLED FIXED POINT THEOREMS IN G_b-METRIC SPACES

Shaban Sedghi, Nabi Shobkolaei, Jamal Rezaei Roshan and Wasfi Shatanawi

Abstract. T. G. Bhaskar and V. Lakshmikantham [Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379–1393], V. Lakshmikantham and Lj. B. Ćirić [Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Anal. 70 (2009) 4341–4349] introduced the concept of a coupled coincidence point of a mapping F from $X \times X$ into X and a mapping g from X into X. In this paper we prove a coupled coincidence fixed point theorem in the setting of a generalized b-metric space. Three examples are presented to verify the effectiveness and applicability of our main result.

1. Introduction

Mustafa and Sims [25] introduced a new notion of generalized metric space called a G-metric space. Mustafa, Sims and others studied fixed point theorems for mappings satisfying different contractive conditions [1, 2, 6, 10, 11, 19, 22, 23, 25, 27, 28, 32, 35, 36, 39]. Abbas and Rhoades [1] obtained some common fixed point theorems for non-commuting maps without continuity satisfying different contractive conditions in the setting of generalized metric spaces. Lakshmikantham et al. in [7, 21] introduced the concept of a coupled coincidence point for a mapping F from $X \times X$ into X and a mapping g from X into X, and studied coupled fixed point theorems in partially ordered metric spaces. In [33], Sedghi et al. proved a coupled fixed point theorem for contractive mappings in complete fuzzy metric spaces. On the other hand, the concept of b-metric space was introduced by Czerwik in [13]. After that, several interesting results for the existence of fixed point for single-valued and multivalued operators in b-metric spaces have been obtained [3, 5, 8, 9, 12, 14, 15, 16, 18, 20, 30, 31, 34, 37, 38]. Pacurar [29] proved some results on sequences of almost contractions and fixed points in b-metric spaces. Recently, Hussain and Shah [17] obtained results on KKM mappings in cone b-metric spaces.

Aghajani et al., in a submitted paper [4], extended the notion of G-metric space to the concept of G_b-metric space. Very recently, Mustafa et al. [24] have obtained
some coupled coincidence point theorems for nonlinear \((\psi, \varphi)\)-weakly contractive mappings in partially ordered \(G_b\)-metric spaces.

In this paper, we prove a coupled coincidence fixed point theorem in the setting of a generalized \(b\)-metric space. First, we present some basic properties of \(G_b\)-metric spaces.

Following is the definition of generalized \(b\)-metric spaces or \(G_b\)-metric spaces.

Definition 1.1. [24] Let \(X\) be a nonempty set and \(s \geq 1\) be a given real number. Suppose that a mapping \(G : X \times X \times X \to \mathbb{R}^+\) satisfies:

\[(G_1)\] \(G(x, y, z) = 0\) if \(x = y = z\),

\[(G_2)\] \(0 < G(x, y)\) for all \(x, y \in X\) with \(x \neq y\),

\[(G_3)\] \(G(x, x, y) \leq G(x, y, z)\) for all \(x, y, z \in X\) with \(y \neq z\),

\[(G_4)\] \(G(x, y, z) = G(p\{x, y, z\})\), where \(p\) is a permutation of \(x, y, z\) (symmetry),

\[(G_5)\] \(G(x, y, z) \leq s(G(x, a, a) + G(a, y, z))\) for all \(x, y, z, a \in X\) (rectangle inequality).

Then \(G\) is called a generalized \(b\)-metric and the pair \((X, G)\) is called a generalized \(b\)-metric space or \(G_b\)-metric space.

It should be noted that the class of \(G_b\)-metric spaces is effectively larger than that of \(G\)-metric spaces given in [25]. Indeed, each \(G\)-metric space is a \(G_b\)-metric space with \(s = 1\). The following example shows that a \(G_b\)-metric on \(X\) need not be a \(G\)-metric on \(X\).

Example 1.1. [24] Let \((X, G)\) be a \(G\)-metric space, and \(G_s(x, y, z) = G^p(x, y, z)\), where \(p > 1\) is a real number. Note that \(G_s\) is a \(G_b\)-metric with \(s = 2^{p-1}\). In [24], it is proved that \((X, G_s)\) is not necessarily a \(G\)-metric space.

Example 1.2. [24] Let \(X = \mathbb{R}\) and \(d(x, y) = |x - y|^2\). We know that \((X, d)\) is a \(b\)-metric space with \(s = 2\). Let \(G(x, y, z) = d(x, y) + d(y, z) + d(z, x)\), then \((X, G)\) is not a \(G_b\)-metric space.

However, \(G(x, y, z) = \max\{d(x, y), d(y, z), d(z, x)\}\) is a \(G_b\)-metric on \(\mathbb{R}\) with \(s = 2\). Similarly, if \(d(x, y) = |x - y|^p\) is selected with \(p \geq 1\), then \(G(x, y, z) = \max\{d(x, y), d(y, z), d(z, x)\}\) is a \(G_b\)-metric on \(\mathbb{R}\) with \(s = 2^{p-1}\).

Now we present some definitions and propositions in \(G_b\)-metric spaces.

Definition 1.2. [24] A \(G_b\)-metric \(G\) is said to be symmetric if \(G(x, y, y) = G(y, x, x)\) for all \(x, y \in X\).

Definition 1.3. [24] Let \((X, G)\) be a \(G_b\)-metric space. Then, for \(x_0 \in X\), \(r > 0\), the \(G_b\)-ball with center \(x_0\) and radius \(r\) is

\[B_G(x_0, r) = \{y \in X \mid G(x_0, y, y) < r\}.\]

Definition 1.4. [24] Let \(X\) be a \(G_b\)-metric space and let \(d_G(x, y) = G(x, y, y) + G(x, x, y)\). Then \(d_G\) defines a \(b\)-metric on \(X\), which is called the \(b\)-metric associated with \(G\).
Proposition 1.2. [24] Let X be a G_b-metric space. For any $x_0 \in X$ and $r > 0$, if $y \in B_G(x_0, r)$ then there exists a $\delta > 0$ such that $B_G(y, \delta) \subseteq B_G(x_0, r)$.

From the above proposition the family of all G_b-balls

$$\Lambda = \{B_G(x, r) \mid x \in X, r > 0\}$$

is a base of a topology $\tau(G)$ on X, which is called the G_b-metric topology.

Definition 1.5. [24] Let X be a G_b-metric space. A sequence (x_n) in X is said to be:

1. G_b-Cauchy sequence if, for each $\varepsilon > 0$, there exists a positive integer n_0 such that, for all $m, n, l \geq n_0$, $G(x_n, x_m, x_l) < \varepsilon$;
2. G_b-convergent to a point $x \in X$ if, for each $\varepsilon > 0$, there exists a positive integer n_0 such that, for all $m, n \geq n_0$, $G(x_n, x_m, x) < \varepsilon$.

Using the above definitions, one can easily prove the following proposition.

Proposition 1.4. [24] Let X be a G_b-metric space and (x_n) be a sequence in X. Then the following are equivalent:

1. the sequence (x_n) is G_b-Cauchy;
2. for any $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $G(x_n, x_m, x_m) < \varepsilon$, for all $m, n \geq n_0$.

Definition 1.6. [24] A G_b-metric space X is called complete if every G_b-Cauchy sequence is G_b-convergent in X.

Mustafa and Sims proved that each G-metric function $G(x, y, z)$ is jointly continuous in all three of its variables (see [26, Proposition 8]). But in general a G_b-metric function $G(x, y, z)$ for $s > 1$ is not jointly continuous in all three of its variables. Now we recall an example of a discontinuous G_b-metric.

Example 1.3. [24] Let $X = \mathbb{N} \cup \{\infty\}$ and let $D : X \times X \to \mathbb{R}^+$ be defined by

$$D(m, n) = \begin{cases} 0, & \text{if } m = n, \\ \frac{1}{m} - \frac{1}{n}, & \text{if one of } m, n \text{ is even and the other is even or } \infty, \\ 5, & \text{if one of } m, n \text{ is odd and the other is odd (and } m \neq n) \\ \text{or } \infty, \\ 2, & \text{otherwise.} \end{cases}$$

Then it is easy to see that for all $m, n, p \in X$, we have

$$D(m, p) \leq \frac{5}{2}(D(m, n) + D(n, p)).$$

Thus, (X, D) is a b-metric space with $s = \frac{5}{2}$ (see [16, Example 2]). Let $G(x, y, z) = \max\{D(x, y), D(y, z), D(z, x)\}$. It is easy to see that G is a G_b-metric with $s = \frac{5}{2}$. In [24], it is proved that $G(x, y, z)$ is not a continuous function.
Definition 1.7. Let \((X, G)\) and \((X', G')\) be \(G_b\)-metric spaces, and let \(f : X \to X'\) be a mapping. Then \(f\) is said to be continuous at a point \(a \in X\) if and only if for every \(\varepsilon > 0\), there is \(\delta > 0\) such that \(x, y \in X\) and \(G(a, x, y) < \delta\) implies \(G'(f(a), f(x), f(y)) < \varepsilon\). A function \(f\) is continuous at \(X\) if and only if it is continuous at all \(a \in X\).

Definition 1.8. [7] Let \(X\) be a nonempty set. An element \((x, y) \in X \times X\) is called a coupled fixed point of a mapping \(F : X \times X \to X\) if \(F(x, y) = x\) and \(F(y, x) = y\).

Definition 1.9. [21] Let \(X\) be a nonempty set. An element \((x, y) \in X \times X\) is called a coupled coincidence point of mappings \(F : X \times X \to X\) and \(g : X \to X\) if \(F(x, y) = gx\) and \(F(y, x) = gy\).

Definition 1.10. [21] Let \(X\) be a nonempty set. Then we say that the mappings \(F : X \times X \to X\) and \(g : X \to X\) are commutative if \(gF(x, y) = F(gx, gy)\).

2. Common fixed point results

Let \(\Phi\) denote the class of all functions \(\phi : [0, \infty) \to [0, \infty)\) such that \(\phi\) is increasing, continuous, \(\phi(t) < \frac{t}{2}\) for all \(t > 0\) and \(\phi(0) = 0\). It is easy to see that for every \(\phi \in \Phi\) we can choose a \(0 < k < \frac{1}{2}\) such that \(\phi(t) \leq kt\).

We start our work by proving the following two crucial lemmas.

Lemma 2.1. Let \((X, G)\) be a \(G_b\)-metric space with \(s \geq 1\), and suppose that \((x_n)\) is \(G_b\)-convergent to \(x\). Then we have

\[
\frac{1}{s} G(x, y, y) \leq \liminf_{n \to \infty} G(x_n, y, y) \leq \limsup_{n \to \infty} G(x_n, y, y) \leq s G(x, y, y).
\]

In particular, if \(x = y\), then we have \(\lim_{n \to \infty} G(x_n, y, y) = 0\).

Proof. Using the rectangle inequality in \((X, G)\), it is easy to see that

\[
G(x_n, y, y) \leq s G(x_n, x, x) + s G(x, y, y),
\]

and

\[
\frac{1}{s} G(x, y, y) \leq G(x, x_n, x_n) + G(x_n, y, y).
\]

Taking the upper limit as \(n \to \infty\) in the first inequality and the lower limit as \(n \to \infty\) in the second inequality we obtain the desired result. \(\blacksquare\)

Lemma 2.2. Let \((X, G)\) be a \(G_b\)-metric space and let \(F : X \times X \to X\) and \(g : X \to X\) be two mappings such that

\[
G(F(x, y), F(u, v), F(z, w)) \leq \phi(G(gx, gu, gz)) + G(gy, gv, gw)
\]

for some \(\phi \in \Phi\) and for all \(x, y, z, u, v \in X\). Assume that \((x, y)\) is a coupled coincidence point of the mappings \(F\) and \(g\). Then

\[
F(x, y) = gx = gy = F(y, x).
\]
Proof. Since \((x, y)\) is a coupled coincidence point of the mappings \(F\) and \(g\), we have \(gx = F(x, y)\) and \(gy = F(y, x)\). Assume \(gx \neq gy\). Then by (1), we get
\[
G(gx, gy, gy) = G(F(x, y), F(y, x), F(x, y)) \leq \phi(G(gx, gy, gy) + G(gy, gx, gx)).
\]
Also by (1), we have
\[
G(gy, gx, gx) = G(F(y, x), F(x, y), F(x, y)) \leq \phi(G(gy, gx, gx) + G(gx, gy, gy)).
\]
Therefore
\[
G(gx, gy, gy) + G(gy, gx, gx) \leq 2\phi(G(gx, gy, gy) + G(gy, gx, gx)).
\]
Since \(\phi(t) < \frac{1}{4}\), we get
\[
G(gx, gy, gy) + G(gy, gx, gx) < G(gx, gy, gy) + G(gy, gx, gx),
\]
which is a contradiction. So \(gx = gy\), and hence \(F(x, y) = gx = gy = F(y, x)\).

The following is the main result of this section.

Theorem 2.1. Let \((X, G)\) be a complete \(G_b\)-metric space. Let \(F : X \times X \to X\) and \(g : X \to X\) be two mappings such that
\[
G(F(x, y), F(u, v), F(z, w)) \leq \frac{1}{s^2}\phi(G(gx, gu, gz) + G(gy, gv, gw)) \tag{2}
\]
for some \(\phi \in \Phi\) and all \(x, y, z, w, u, v \in X\). Assume that \(F\) and \(g\) satisfy the following conditions:

1. \(F(X \times X) \subseteq g(X)\),
2. \(g(X)\) is complete, and
3. \(g\) is continuous and commutes with \(F\).

Then there is a unique \(x\) in \(X\) such that \(gx = F(x, x) = x\).

Proof. Let \(x_0, y_0 \in X\). Since \(F(X \times X) \subseteq g(X)\), we can choose \(x_1, y_1 \in X\) such that \(gx_1 = F(x_0, y_0)\) and \(gy_1 = F(y_0, x_0)\). Again since \(F(X \times X) \subseteq g(X)\), we can choose \(x_2, y_2 \in X\) such that \(gx_2 = F(x_1, y_1)\) and \(gy_2 = F(y_1, x_1)\). Continuing this process, we can construct two sequences \((x_n)\) and \((y_n)\) in \(X\) such that \(gx_{n+1} = F(x_n, y_n)\) and \(gy_{n+1} = F(y_n, x_n)\). For \(n \in \mathbb{N} \cup \{0\}\), by (2) we have
\[
G(gx_{n-1}, gx_n, gx_n) = G(F(x_{n-2}, y_{n-2}), F(x_{n-1}, y_{n-1}), F(x_{n-1}, y_{n-1}))
\]
\[
\leq \frac{1}{s^2}\phi(G(gx_{n-2}, gx_{n-1}, gx_{n-1}) + G(gy_{n-2}, gy_{n-1}, gy_{n-1})).
\]
Similarly, by (2) we have
\[
G(gy_{n-1}, gy_n, gy_n) = G(F(y_{n-2}, x_{n-2}), F(y_{n-1}, x_{n-1}), F(y_{n-1}, x_{n-1}))
\]
\[
\leq \frac{1}{s^2}\phi(G(gy_{n-2}, gy_{n-1}, gy_{n-1}) + G(gx_{n-2}, gx_{n-1}, gx_{n-1})).
\]
Hence, we have that
\[a_n := G(gx_{n-1}, gx_n, gx_n) + G(gy_{n-1}, gy_n, gy_n) \]
\[\leq \frac{2}{s^2} \phi(G(gx_{n-2}, gx_{n-1}, gx_{n-1}) + G(gy_{n-2}, gy_{n-1}, gy_{n-1})) \]
\[= \frac{2}{s^2} \phi(a_{n-1}) \]
holds for all \(n \in \mathbb{N} \). Thus, we get a \(k, 0 < k < \frac{1}{2} \) such that
\[a_n \leq \frac{2}{s^2} \phi(a_{n-1}) \leq \frac{2k}{s} a_{n-1} \leq \frac{2k}{s} a_{n-1} = qa_{n-1}, \]
for \(q = \frac{2k}{s} \). Hence we have
\[a_n \leq \frac{2k}{s} a_{n-1} \leq \cdots \leq (\frac{2k}{s})^n a_0. \]
Let \(m, n \in \mathbb{N} \) with \(m > n \). By Axiom \(G_b5 \) of definition of \(G_b \)-metric spaces, we have
\[G(gx_{n-1}, gx_m, gx_m) + G(gy_{n-1}, gy_m, gy_m) \]
\[\leq s(G(gx_{n-1}, gx_n, gx_n) + G(gx_n, gx_m, gx_m)) \]
\[+ s(G(gy_{n-1}, gy_n, gy_n) + G(gy_n, gy_m, gy_m)) \]
\[= s(G(gx_{n-1}, gx_n, gx_n) + G(gy_{n-1}, gy_n, gy_n)) \]
\[+ s(G(gx_n, gx_m, gx_m) + G(gy_n, gy_m, gy_m)) \]
\[\leq \]
\[\vdots \]
\[\leq s a_n + s^2 a_{n+1} + s^3 a_{n+2} + \cdots + s^{m-n} a_{m-1} + s^{m-n} a_m \]
\[\leq sq^n a_0 + s^2 q^{n+1} a_0 + \cdots + s^{m-n} q^{m-1} a_0 + s^{m-n} q^m a_0 \]
\[\leq sq^n a_0 (1 + sq + s^2 q^2 + \cdots) \]
\[\leq sq^n a_0 \frac{1}{1 - sq} \to 0, \]
since \(sq = 2k < 1 \). Thus \((gx_n)\) and \((gy_n)\) are \(G_b \)-Cauchy in \(g(X) \). Since \(g(X) \) is complete, we get \((gx_n)\) and \((gy_n)\) are \(G_b \)-convergent to some \(x \in X \) and \(y \in X \) respectively. Since \(g \) is continuous, we have that \((ggx_n)\) is \(G_b \)-convergent to \(gx \) and \((ggyn)\) is \(G_b \)-convergent to \(gy \). Also, since \(g \) and \(F \) commute, we have
\[ggx_{n+1} = g(F(x, y)) = F(gx_n, gy_n), \]
and
\[ggy_{n+1} = g(F(y, x)) = F(gy_n, gx_n). \]
Thus
\[G(ggx_{n+1}, F(x, y), F(x, y)) = G(F(gx_n, gy_n), F(x, y), F(x, y)) \]
\[\leq \frac{1}{s^2} \phi(G(ggx_n, gx, gx) + G(ggy_n, gy, gy)). \]
Letting \(n \to \infty \), and using Lemma 2.1, we get that
\[
\frac{1}{s}G(gx, F(x, y), F(x, y)) \leq \limsup_{n \to \infty} G(F(gx_n, gy_n), F(x, y), F(x, y)) \\
\leq \limsup_{n \to \infty} \frac{1}{s^2} \phi(G(gx, gx, gx) + G(gy, gy, gy)) \\
\leq \frac{1}{s^2} \phi(s(G(gx, gx, gx) + G(gy, gy, gy))) = 0.
\]
Hence, \(gx = F(x, y) \). Similarly, we may show that \(gy = F(y, x) \). By Lemma 2.2, \((x, y)\) is a coupled fixed point of the mappings \(F \) and \(g \), i.e.,
\[
gx = F(x, y) = F(y, x) = gy.
\]
Thus, using Lemma 2.1 we have
\[
\frac{1}{s}G(x, gx, gx) \leq \limsup_{n \to \infty} G(gx, gx, gx) \\
= \limsup_{n \to \infty} G(F(x_n, y_n), F(x, y), F(x, y)) \\
\leq \limsup_{n \to \infty} \frac{1}{s^2} \phi(G(gx, gx, gx) + G(gy, gy, gy)) \\
\leq \frac{1}{s^2} \phi(s(G(gx, gx, gx) + G(gy, gy, gy))).
\]
Hence, we get
\[
G(x, gx, gx) \leq \frac{1}{s} \phi(s(G(x, gx, gx) + G(y, gy, gy))).
\]
Similarly, we may show that
\[
G(y, gy, gy) \leq \frac{1}{s} \phi(s(G(x, gx, gx) + G(y, gy, gy))).
\]
Thus,
\[
G(x, gx, gx) + G(y, gy, gy) \leq \frac{2}{s} \phi(s(G(x, gx, gx) + G(y, gy, gy))) \\
\leq 2kG(x, gx, gx) + G(y, gy, gy).
\]
Since \(2k < 1 \), the last inequality happens only if \(G(x, gx, gx) = 0 \) and \(G(y, gy, gy) = 0 \). Hence \(x = gx \) and \(y = gy \). Thus we get
\[
gx = F(x, x) = x.
\]
To prove the uniqueness, let \(z \in X \) with \(z \neq x \) such that
\[
z = gz = F(z, z).
\]
Then
\[
G(x, z, z) = G(F(x, x), F(z, z), F(z, z)) \leq \frac{1}{s^2} \phi(2G(gz, gz)) \\
< \frac{1}{s^2} 2kG(x, z, z) \leq 2kG(x, z, z).
\]
Since $2k < 1$, we get $G(x, z, z) < G(x, z, z)$, which is a contradiction. Thus, F and g have a unique common fixed point. ■

Corollary 2.1. Let (X, G) be a G_b-metric space. Let $F : X \times X \to X$ and $g : X \to X$ be two mappings such that

$$G(F(x, y), F(u, v), F(u, v)) \leq \frac{k}{s^2}(G(gx, gu, gu) + G(gy, gv, gv))$$

for all $x, y, u, v \in X$. Assume F and g satisfy the following conditions:
1. $F(X \times X) \subseteq g(X)$,
2. $g(X)$ is complete, and
3. g is continuous and commutes with F.

If $k \in (0, \frac{1}{2})$, then there is a unique $x \in X$ such that $gx = F(x, x) = x$.

Proof. Follows from Theorem 2.1 by taking $z = u, v = w$ and $\phi(t) = kt$. ■

Corollary 2.2. Let (X, G) be a complete G_b-metric space. Let $F : X \times X \to X$ be a mapping such that

$$G(F(x, y), F(u, v), F(u, v)) \leq \frac{k}{s^2}(G(x, u, u) + G(y, v, v))$$

for all $x, y, u, v \in X$. If $k \in [0, \frac{1}{2})$, then there is a unique $x \in X$ such that $F(x, x) = x$.

Remark 2.1. Since every G_b-metric is a G-metric when $s = 1$, so our results can be viewed as generalizations and extensions of corresponding results in [35] and several other comparable results.

Now, we introduce some examples for Theorem 2.1.

Example 2.1. Let $X = [0, 1]$. Define $G : X \times X \times X \to \mathbb{R}^+$ by

$$G(x, y, z) = (|x - y| + |x - z| + |y - z|)^2$$

for all $x, y, z \in X$. Then (X, G) is a complete G_b-metric space with $s = 2$, according to Example 1.1. Define a map $F : X \times X \to X$ by $F(x, y) = \frac{x}{128} + \frac{y}{256}$ for $x, y \in X$. Also, define $g : X \to X$ by $g(x) = \frac{x}{4}$ for $x \in X$ and $\phi(t) = \frac{1}{4}$ for $t \in \mathbb{R}^+$. We have
that

\[G(F(x, y), F(u, v), F(z, w)) \]
\[= (|F(x, y) - F(u, v)|^2 + |F(u, v) - F(z, w)|^2 + |F(z, w) - F(x, y)|^2) \]
\[= \left(\frac{x}{128} + \frac{y}{256} - \frac{u}{128} - \frac{v}{256} + \frac{w}{128} - \frac{z}{256} \right)^2 \]
\[\leq \left(\frac{1}{128} |x - u| + \frac{1}{256} |y - v| + \frac{1}{128} |u - z| + \frac{1}{256} |v - w| + \frac{1}{128} |z - x| \right. \]
\[+ \frac{1}{256} |w - y| \]
\[= \left(\frac{1}{32} \left(\frac{x}{4} - \frac{u}{4} + \frac{u}{4} - \frac{z}{4} + \frac{z}{4} - \frac{x}{4} \right) + \frac{1}{64} \left(\frac{y}{4} - \frac{v}{4} + \frac{v}{4} - \frac{w}{4} + \frac{w}{4} - \frac{y}{4} \right) \right)^2 \]
\[\leq \frac{2}{32} G(gx, gu, gz) + \frac{2}{64^2} G(gy, gv, gw) \]
\[\leq \frac{1}{4} G(gx, gu, gz) + G(gy, gv, gw) \]
\[\leq \frac{1}{4} \phi(G(gx, gu, gz) + G(gy, gv, gw)) \]

holds for all \(x, y, u, v, z, w \in X \). It is easy to see that \(F \) and \(g \) satisfy all the hypothesis of Theorem 2.1. Thus \(F \) and \(g \) have a unique common fixed point. Here \(F(0, 0) = g(0) = 0 \).

Example 2.2. Let \(X \) and \(G \) be as in Example 2.1. Define a map

\[F : X \times X \to X \]
by
\[F(x, y) = \frac{1}{16} x^2 + \frac{1}{16} y^2 + \frac{1}{8} \]

for \(x, y \in X \). Then \(F(X \times X) = [\frac{1}{5}, \frac{3}{4}] \). Also,

\[G(F(x, y), F(u, v), F(z, w)) \]
\[= (2|F(x, y) - F(u, v)|^2) \]
\[= \frac{1}{64} (|x^2 - u^2 + y^2 - v^2|)^2 \]
\[\leq \frac{1}{64} (|x^2 - u^2| + |y^2 - v^2|)^2 \]
\[\leq \frac{1}{32} (4|x - u|^2 + 4|y - v|^2) = \frac{1}{32} (G(x, u, u) + G(y, v, v)) \]
\[\leq \frac{1}{2} \phi(G(x, u, u) + G(y, v, v)) \]

Then by Corollary 2.2, \(F \) has a unique fixed point. Here \(x = 4 - \sqrt{15} \) is the unique fixed point of \(F \), that is, \(F(x, x) = x \).
Now we present an example for the main result in an asymmetric G_b-metric space.

Example 2.3. Let $X = \{0, 1, 2\}$ and let

$$A = \{(2, 0, 0), (0, 2, 0), (0, 0, 2)\}, \quad B = \{(2, 2, 0), (2, 0, 2), (0, 2, 2)\}$$

and $C = \{(x, x, x) : x \in X\}$.

Define $G : X^3 \to \mathbb{R}^+$ by

$$G(x, y, z) = \begin{cases} 1, & \text{if } (x, y, z) \in A \\ 3, & \text{if } (x, y, z) \in B \\ 4, & \text{if } (x, y, z) \in X^3 - (A \cup B \cup C) \\ 0, & \text{if } x = y = z. \end{cases}$$

It is easy to see that (X, G) is an asymmetric G_b-metric space with coefficient $s = \frac{3}{2}$. Also, (X, G) is complete. Indeed, for each (x_n) in X such that $G(x_n, x_m, x_m) \to 0$, then there is a $k \in \mathbb{N}$ such that for each $n \geq k$, $x_n = x_m = x$ for an $x \in X$, so $G(x_n, x_n, x) \to 0$.

Define mappings F and g by

$$F = \begin{pmatrix} (0, 0) & (0, 1) & (1, 0) & (1, 1) & (1, 2) & (2, 1) & (2, 2) & (2, 0) & (0, 2) \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix},$$

$$g = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 2 \end{pmatrix}.$$

We see that $F(X \times X) \subseteq gX$, g is continuous and commutes with F, and $g(X)$ is complete.

Define $\phi : [0, \infty) \to [0, \infty)$ by $\phi(t) = \frac{27}{4} \ln(\frac{27}{4} + 1)$. Since

$$(F(x, y), F(u, v), F(z, w)), (gx, gu, gz), (gy, gv, gw) \in A \cup B,$$

we have

$$G(F(x, y), F(u, v), F(z, w)), G(gx, gu, gz), G(gy, gv, gw) \in \{0, 1, 3\}.$$

Hence, one can easily check that the contractive condition (2) is satisfied for every $x, y, z, u, v, w \in X$.

Thus, all the conditions of Theorem 2.1 are fulfilled and F and g have a unique common fixed point. Here $F(0, 0) = g(0) = 0.$

Acknowledgement. The authors would like to thank the referees for their thorough and careful review and very useful comments that helped to improve the paper.

References

Coupled fixed point theorems in Gb-metric spaces

(received 23.09.2012; in revised form 06.11.2013; available online 15.12.2013)

Sh. Sedghi, Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
E-mail: sedghi.gh@yahoo.com, sedghi.gh@qaemshahriau.ac.ir

N. Shohkolaei, Department of Mathematics, Science and Research Branch, 14778 93855, Tehran, Iran
E-mail: nabi.shobe@yahoo.com

J. R. Roshan, Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
E-mail: jmlroshan@gmail.com, jml.roshan@qaemshahriau.ac.ir

W. Shatanawi, Department of Mathematics, Hashemite University, P.O. Box 150459, Zarqa 13115, Jordan
E-mail: swasfi@hu.edu.jo