LIGHTLIKE SUBMANIFOLDS OF INDEFINITE PARA-SASAKIAN MANIFOLDS

S.S. Shukla and Akhilesh Yadav

Abstract. In this paper, we study invariant, slant and screen slant lightlike submanifolds of indefinite para-Sasakian manifolds. We obtain necessary and sufficient conditions for existence of slant and screen slant lightlike submanifolds of indefinite para-Sasakian manifolds and also provide non-trivial examples of such submanifolds. We obtain integrability conditions of distributions D and $RadTM$ on screen slant lightlike submanifolds of indefinite para-Sasakian manifold. Further we obtain sufficient condition for induced connection on screen slant lightlike submanifolds of indefinite para-Sasakian manifold to be metric connection.

1. Introduction

A submanifold of a semi-Riemannian manifold is called a lightlike submanifold if the induced metric on it is degenerate. In [3], Duggal and Bejancu introduced the geometry of arbitrary lightlike submanifolds of semi-Riemannian manifolds. Lightlike geometry has its applications in general relativity, particularly in black hole theory, which gave impetus to study lightlike submanifolds of semi-Riemannian manifolds equipped with certain structures. Lightlike submanifolds of an indefinite Sasakian manifold have been studied by Duggal and Sahin in [5]. In 2009, Sahin [9] study screen slant lightlike submanifolds of indefinite Kaehler manifold. In [11], authors introduced the notion of an ϵ-para-Sasakian structure and gave some examples.

In this article, we study lightlike submanifolds of an ϵ-para-Sasakian manifold, which is called an indefinite para-Sasakian manifold. The paper is arranged as follows. Section 2 contains some basic results and definitions. In Section 3, we study invariant lightlike submanifolds of an indefinite para-Sasakian manifold giving some examples. Section 4 deals with slant lightlike submanifolds of an indefinite para-Sasakian manifold. In Section 5, we study screen slant lightlike submanifolds of an indefinite para-Sasakian manifold and obtain integrability conditions of distributions D and $RadTM$.

2010 Mathematics Subject Classification: 53C15, 53C40, 53C50

Keywords and phrases: Semi-Riemannian manifold; degenerate metric; radical distribution; screen distribution; screen transversal vector bundle; Gauss and Weingarten formulae; totally geodesic and totally umbilical lightlike submanifold.
2. Preliminaries

A semi-Riemannian manifold \((\overline{M}, \overline{g})\) is called an \(\epsilon\)-almost paracontact metric manifold [11] if there exists a \((1, 1)\) tensor field \(\phi\), a vector field \(V\) called the characteristic vector field and a 1-form \(\eta\), satisfying

\[
\phi^2 X = X - \eta(X)V, \quad \eta(V) = \epsilon, \quad \eta \circ \phi = 0, \quad \phi V = 0,
\]

\[
\overline{g}(\phi X, \phi Y) = \overline{g}(X, Y) - \epsilon \eta(X)\eta(Y), \quad \forall X, Y \in \Gamma(T\overline{M}),
\]

where \(\epsilon = 1\) or \(-1\). It follows that

\[
\overline{g}(V, V) = \epsilon, \quad \overline{g}(V, X) = \eta(X), \quad \overline{g}(X, \phi Y) = \overline{g}(\phi X, Y), \quad \forall X, Y \in \Gamma(T\overline{M}).
\]

Then \((\phi, V, \eta, \overline{g})\) is called an \(\epsilon\)-almost paracontact metric structure on \(\overline{M}\).

An \(\epsilon\)-almost paracontact metric structure \((\phi, V, \eta, \overline{g})\) is called an indefinite para-Sasakian structure [11] if

\[
(\nabla_X \phi)Y = -\overline{g}(\phi X, \phi Y)V - \epsilon \eta(Y)\phi^2 X, \quad \forall X, Y \in \Gamma(T\overline{M}),
\]

where \(\nabla\) is Levi-Civita connection with respect to \(\overline{g}\).

A semi-Riemannian manifold endowed with an indefinite para-Sasakian structure is called an indefinite para-Sasakian manifold. From (2.4), we get

\[
(\nabla_X V) = \phi X, \quad \forall X \in \Gamma(T\overline{M}).
\]

Let \((\overline{M}, \overline{g}, \phi, V, \eta)\) be an \(\epsilon\)-almost paracontact metric manifold. If \(\epsilon = 1\), then \(\overline{M}\) is said to be a spacelike \(\epsilon\)-almost paracontact metric manifold and if \(\epsilon = -1\), then \(\overline{M}\) is called a timelike \(\epsilon\)-almost paracontact metric manifold. In this paper we consider indefinite para-Sasakian manifold with spacelike characteristic vector field \(V\).

A submanifold \((M^m, g)\) immersed in a semi-Riemannian manifold \((\overline{M}^{m+n}, \overline{g})\) is called a lightlike submanifold [3] if the metric \(g\) induced from \(\overline{g}\) is degenerate and the radical distribution \(RadTM\) is of rank \(r\), where \(1 \leq r \leq m\). Let \(S(TM)\) be a screen distribution which is a semi-Riemannian complementary distribution of \(RadTM\) in \(TM\), that is

\[
TM = RadTM \oplus_{\text{orth}} S(TM).
\]

Now consider a screen transversal vector bundle \(S(TM^\perp)\), which is a semi-Riemannian complementary vector bundle of \(RadTM\) in \(TM^\perp\). Since for any local basis \(\{\xi_i\}\) of \(RadTM\), there exists a local null frame \(\{N_j\}\) of sections with values in the orthogonal complement of \(S(TM^\perp)\) in \([S(TM)]^\perp\) such that \(\overline{g}(\xi_i, N_j) = \delta_{ij}\) and \(\overline{g}(N_i, N_j) = 0\), it follows that there exists a lightlike transversal vector bundle \(ltr(TM)\) locally spanned by \(\{N_i\}\). Let \(tr(TM)\) be complementary (but not orthogonal) vector bundle to \(TM\) in \(T\overline{M}|_M\). Then

\[
tr(TM) = ltr(TM) \oplus_{\text{orth}} S(TM^\perp),
\]

\[
T\overline{M}|_M = TM \oplus tr(TM),
\]

\[
T\overline{M}|_M = S(TM) \oplus_{\text{orth}} [RadTM \oplus ltr(TM)] \oplus_{\text{orth}} S(TM^\perp).
\]
The following are four cases of a lightlike submanifold \((M, g, S(TM), S(TM^\perp))\):

- **Case 1.** \(r\)-lightlike if \(r < \min(m, n)\),
- **Case 2.** co-isotropic if \(r = n < m\), \(S(TM^\perp) = \{0\}\),
- **Case 3.** isotropic if \(r = m < n\), \(S(TM) = \{0\}\),
- **Case 4.** totally lightlike if \(r = m = n\), \(S(TM) = S(TM^\perp) = \{0\}\).

The Gauss and Weingarten formulae are given as

\[
\nabla_X Y = \nabla_X Y + h(X, Y), \quad \forall X, Y \in \Gamma(TM), \quad (2.6)
\]
\[
\nabla_X V = -A_V X + \nabla_X^t V, \quad \forall V \in \Gamma(tr(TM)), \quad (2.7)
\]

where \(\{\nabla_X Y, A_V X\}\) and \(\{h(X, Y), \nabla_X^t V\}\) belong to \(\Gamma(TM)\) and \(\Gamma(tr(TM))\) respectively. \(\nabla\) and \(\nabla^t\) are linear connections on \(M\) and on the vector bundle \(tr(TM)\) respectively. The second fundamental form \(h\) is a symmetric \(F(M)\)-bilinear form on \(\Gamma(TM)\) with values in \(\Gamma(tr(TM))\) and the shape operator \(A_V\) is a linear endomorphism of \(\Gamma(TM)\). From (2.6) and (2.7), we have

\[
\nabla_X Y = \nabla_X Y + h^t(X, Y) + h^s(X, Y), \quad \forall X, Y \in \Gamma(TM), \quad (2.8)
\]
\[
\nabla_X N = -A_N X + \nabla_X^t (N) + D^s(X, N), \quad \forall N \in \Gamma(ltr(TM)), \quad (2.9)
\]
\[
\nabla_X W = -A_W X + \nabla_X^t (W) + D^t(X, W), \quad \forall W \in \Gamma(S(TM^\perp)), \quad (2.10)
\]

where \(h^t(X, Y) = L(h(X, Y))\), \(h^s(X, Y) = S(h(X, Y))\), \(D^t(X, W) = L(\nabla_X W)\), \(D^s(X, N) = S(\nabla_X N)\). \(L\) and \(S\) are the projection morphisms of \(tr(TM)\) on \(ltr(TM)\) and \(S(TM^\perp)\) respectively. \(\nabla^t\) and \(\nabla^s\) are linear connections on \(ltr(TM)\) and \(S(TM^\perp)\) called the lightlike connection and screen transversal connection on \(M\) respectively. For any vector field \(X\) tangent to \(M\), we put

\[
\phi X = PX + FX, \quad (2.11)
\]

where \(PX\) and \(FX\) are tangential and transversal parts of \(\phi X\) respectively.

Now by using (2.6), (2.8)–(2.10) and metric connection \(\nabla\), we obtain

\[
\bar{g}(h^s(X, Y), W) + \bar{g}(Y, D^t(X, W)) = g(A_W X, Y),
\]
\[
\bar{g}(D^s(X, N), W) = g(N, A_W X).
\]

Denote the projection of \(TM\) on \(S(TM)\) by \(\mathcal{P}\). Then from the decomposition of the tangent bundle of a lightlike submanifold, we have

\[
\nabla_X \mathcal{P}Y = \nabla_X^s \mathcal{P}Y + h^s(X, \mathcal{P}Y), \quad \forall X, Y \in \Gamma(TM),
\]
\[
\nabla_X \xi = -A^\xi X + \nabla_X^t \xi, \quad \xi \in \Gamma(RadTM).
\]

By using above equations, we obtain

\[
\bar{g}(h^t(X, \mathcal{P}Y), \xi) = g(A^\xi X, \mathcal{P}Y),
\]
\[
\bar{g}(h^s(X, \mathcal{P}Y), N) = g(A_N X, \mathcal{P}Y),
\]
\[
\bar{g}(h^t(X, \xi), \xi) = 0, \quad A^\xi \xi = 0. \quad (2.12)
\]
It is important to note that in general \(\nabla \) is not a metric connection. Since \(\nabla \) is metric connection, by using (2.8), we get

\[
(\nabla_X g)(Y, Z) = \bar{g}(h^i(X, Y), Z) + \bar{g}(h^i(X, Z), Y).
\]

Definition 2.1. [3] A submanifold \(M \) of semi-Riemannian manifold \((\bar{M}, \bar{g}) \) is said to be totally geodesic lightlike submanifold of \(\bar{M} \) if any geodesic of \(M \), with respect to Levi-Civita connection \(\nabla \), is a geodesic of \(\bar{M} \), i.e., \(h^i = h^s = 0 \) on \(M \).

Definition 2.2. [1] A lightlike submanifold \((M, g, S(TM), S(TM^\perp)) \) of a semi-Riemannian manifold \((\bar{M}, \bar{g}) \) is minimal if \(h^s = 0 \) on \(\text{Rad}(TM) \) and \(tr(h) = 0 \), where \(\text{trace} \) is written with respect to \(g \) restricted to \(S(TM) \).

Definition 2.3. [4] A lightlike submanifold \((M, g, S(TM), S(TM^\perp)) \) of a semi-Riemannian manifold \((\bar{M}, \bar{g}) \) is said to be totally umbilical in \(\bar{M} \) if there is a smooth transversal vector field \(H \in \Gamma(tr(TM)) \) on \(M \), called the transversal curvature vector field of \(M \), such that

\[
h(X, Y) = H\bar{g}(X, Y), \quad \forall X, Y \in \Gamma(TM).
\]

From (2.8) and (2.13), it is easy to see that \(M \) is totally umbilical if and only if on each coordinate neighbourhood \(U \), there exist smooth vector fields \(H^i \in \Gamma(ltr(TM)) \) and \(H^s \in \Gamma(S(TM^\perp)) \), such that

\[
h^i(X, Y) = H^i \bar{g}(X, Y) \quad \text{and} \quad h^s(X, Y) = H^s \bar{g}(X, Y), \quad \forall X, Y \in \Gamma(TM).
\]

3. Invariant lightlike submanifolds

Definition 3.1. A lightlike submanifold \(M \), tangent to the structure vector field \(V \), of an indefinite para-Sasakian manifold \(\bar{M} \) is said to be invariant lightlike submanifold if the following condition is satisfied:

\[
\phi(\text{Rad}TM) = \text{Rad}TM \quad \text{and} \quad \phi(D) = D,
\]

where \(S(TM) = D \perp \{V\} \) and \(D \) is complementary nondegenerate distribution to \(\{V\} \) in \(S(TM) \).

From (2.4), (2.5), (2.8) and (3.1), we get

\[
h^i(X, V) = 0, \quad h^s(X, V) = 0, \quad \nabla_X V = PX,
\]

\[
h(X, \phi Y) = \phi h(X, Y) = h(\phi X, Y), \quad \forall X, Y \in \Gamma(TM).
\]

Let \((\mathbb{R}^{2m+1}_q, \bar{g}, \phi, \eta, V) \) denote the manifold \(\mathbb{R}^{2m+1}_q \) with its usual para-Sasakian structure given by

\[
\eta = \frac{1}{2}(dz - \sum_{i=1}^{m} y^i dx^i), \quad V = 2\partial z,
\]

\[
\bar{g} = \eta \otimes \eta + \frac{1}{4}(- \sum_{i=1}^{2} dx^i \otimes dx^i + dy^i \otimes dy^i + \sum_{i=2}^{m} dx^i \otimes dx^i + dy^i \otimes dy^i),
\]

\[
\phi(\sum_{i=1}^{m} (X_i \partial x_i + Y_i \partial y_i) + Z \partial z) = \sum_{i=1}^{m} (Y_i \partial x_i + X_i \partial y_i) + \sum_{i=1}^{m} Y_i y^i \partial z,
\]

where \((x^i; y^i; z)\) are the cartesian coordinates on \(\mathbb{R}^{2m+1}_q \). Now we construct some examples of invariant lightlike submanifolds of an indefinite para-Sasakian manifold.
Example 1. Let $(\mathbb{R}^7_2, \mathcal{F}, \phi, \eta, V)$ be an indefinite para-Sasakian manifold, where \mathcal{F} is of signature $(-, +, +, -, +, +, +)$ with respect to the canonical basis $\{\partial x_1, \partial x_2, \partial x_3, \partial y_1, \partial y_2, \partial y_3, \partial z\}$. Suppose M is a submanifold of \mathbb{R}^7_2 given by

$$x^1 = y^2 = u_1, \quad x^2 = y^1 = u_2, \quad x^3 = u_4, \quad y^3 = u_4, \quad z = u_5.$$

The local frame of TM is given by $\{Z_1, Z_2, Z_3, Z_4, Z_5\}$, where

$$Z_1 = 2(\partial x_1 + \partial y_2 + y^1 \partial z), \quad Z_2 = 2(\partial x_2 + \partial y_1 + y^2 \partial z),$$

$$Z_3 = 2(\partial x_3 + y^3 \partial z), \quad Z_4 = 2\partial y_3 \quad \text{and} \quad Z_5 = V = 2\partial z.$$

Hence $RadTM = span\{Z_1, Z_2\}$, $S(TM) = span\{Z_3, Z_4, V\}$ and $ltr(TM)$ is spanned by $N_1 = \partial x_1 - \partial y_2 + y^1 \partial z$, $N_2 = -\partial x_2 + \partial y_1 - y^2 \partial z$.

It follows that $\phi Z_1 = Z_2$, $\phi Z_2 = Z_1$, $\phi Z_3 = Z_4$, $\phi Z_4 = Z_3$, $\phi N_1 = N_2$ and $\phi N_2 = N_1$. Thus $\phi RadTM = RadTM$, $\phi D = D$ and $\phi ltr(TM) = ltr(TM)$. Hence M is an invariant 2-lightlike submanifold of \mathbb{R}^7_2.

Example 2. Let $(\mathbb{R}^8_2, \mathcal{F}, \phi, \eta, V)$ be an indefinite para-Sasakian manifold, where \mathcal{F} is of signature $(-, +, +, -, +, +, +, +)$ with respect to the canonical basis $\{\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial y_1, \partial y_2, \partial y_3, \partial y_4, \partial z\}$. Suppose M is a submanifold of \mathbb{R}^8_2 given by $x^1 = y^2 = u_1$, $x^2 = y^1 = u_2$, $-x^3 = y^4 = u_3$, $-x^4 = y^3 = u_4$, $z = u_5$.

The local frame of TM is given by $\{Z_1, Z_2, Z_3, Z_4, Z_5\}$, where

$$Z_1 = 2(\partial x_1 + \partial y_2 + y^1 \partial z), \quad Z_2 = 2(\partial x_2 + \partial y_1 + y^2 \partial z),$$

$$Z_3 = 2(-\partial x_3 + \partial y_4 - y^3 \partial z), \quad Z_4 = 2(-\partial x_4 + \partial y_3 - y^4 \partial z), \quad Z_5 = V = 2\partial z.$$

Hence $RadTM = span\{Z_1, Z_2\}$ and $S(TM) = span\{Z_3, Z_4, V\}$.

Now $ltr(TM)$ is spanned by $N_1 = -\partial x_1 + \partial y_2 - y^1 \partial z$, $N_2 = \partial x_2 - \partial y_1 + y^2 \partial z$ and $S(TM^\perp)$ is spanned by $W_1 = 2(\partial x_3 + \partial y_4 + y^3 \partial z)$, $W_2 = 2(\partial x_4 + \partial y_3 + y^4 \partial z)$.

It follows that $\phi Z_1 = Z_2$, $\phi Z_2 = Z_1$, $\phi Z_3 = -Z_4$, $\phi Z_4 = -Z_3$, $\phi N_1 = N_2$, $\phi N_2 = N_1$, $\phi W_1 = W_2$ and $\phi W_2 = W_1$. Thus $\phi RadTM = RadTM$, $\phi D = D$, $\phi ltr(TM) = ltr(TM)$ and $\phi S(TM^\perp) = S(TM^\perp)$. Hence M is an invariant 2-lightlike submanifold of \mathbb{R}^8_2.

Theorem 3.1. Let $(M, g, S(TM), S(TM^\perp))$ be an invariant lightlike submanifold, tangent to the structure vector field V of an indefinite para-Sasakian manifold \overline{M}. If the second fundamental forms h^l and h^s of M are parallel then M is totally geodesic.

Proof. Suppose h^l is parallel. Then $(\nabla_X h^l)(Y, V) = 0, \forall X, Y \in \Gamma(TM)$, which implies

$$\nabla_X h^l(Y, V) - h^l(\nabla_X Y, V) - h^l(Y, \nabla_X V) = 0, \quad \forall X, Y \in \Gamma(TM). \quad (3.4)$$

From (3.2) and (3.4), we get $h^l(Y, \nabla_X V) = 0, \forall X, Y \in \Gamma(TM)$. Thus from above, we have $h^l(Y, PX) = 0, \forall X, Y \in \Gamma(TM)$. Hence $h^l = 0$. Similarly $h^s = 0$. Thus M is totally geodesic.

Theorem 3.2. Let $(M, g, S(TM), S(TM^\perp))$ be a lightlike submanifold, tangent to the structure vector field V of an indefinite para-Sasakian manifold \overline{M}. If M is totally umbilical then it is totally geodesic.
Proof. Let M be a totally umbilical lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. Then, from (2.8), we have
\[\nabla_X V = \nabla_X V + h^!(X, V) + h^s(X, V), \quad \forall X \in \Gamma(TM). \] (3.5)
From (2.5), (2.11) and (3.5), we get
\[PX + FX = \nabla_X V + h^!(X, V) + h^s(X, V), \quad \forall X \in \Gamma(TM). \] (3.6)
Equating transversal parts in (3.6), we get
\[h^!(X, V) + h^s(X, V) = FX. \] (3.7)
Replacing X by V in (3.7), we get
\[h^!(V, V) + h^s(V, V) = FV. \] (3.8)
Now from (2.1), (2.11) and (3.8), we get
\[h^!(V, V) = 0 \quad \text{and} \quad h^s(V, V) = 0. \] (3.9)
From (2.14) and (3.9), we have $H^!(\overline{V}, V) = 0$ and $H^s(\overline{V}, V) = 0$.

Since V is non-null vector, we have $H^! = H^s = 0$. Thus from (2.14), we obtain $h^!(X, Y) = 0$ and $h^s(X, Y) = 0$. Hence, M is totally geodesic. \blacksquare

Theorem 3.3. Let $(M, g, S(TM), S(TM^⊥))$ be a lightlike submanifold of nullity degree two of an indefinite para-Sasakian manifold \overline{M}. Then, RadTM defines a totally geodesic foliation on M.

Proof. Let M be a lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. By definition of lightlike submanifold, RadTM defines a totally geodesic foliation if and only if $g(\nabla_X Y, Z) = 0$, $\forall X, Y \in \Gamma(\text{RadTM})$ and $Z \in \Gamma(S(TM))$.

Since $\text{rank}(\text{RadTM}) = 2$, we can write $X, Y \in \Gamma(\text{RadTM})$ as a linear combination of ξ and ϕ_ξ, that is $X = A_1 \xi + B_1 \phi_\xi$ and $Y = A_2 \xi + B_2 \phi_\xi$. Now since $\overline{\nabla}$ is a metric connection, using (2.8), we get
\[g(\nabla_X Y, Z) = X g(Y, Z) - g(Y, \nabla_X Z) \]
\[= -g(Y, \nabla_X Z) = -g(Y, h^!(X, Z)) \]
\[= -g(A_2 \xi + B_2 \phi_\xi, h^!(A_1 \xi + B_1 \phi_\xi, Z)) \]
\[= -A_1 A_2 g(\xi, h^!(\xi, Z)) - B_1 A_2 g(\phi_\xi, h^!(\phi_\xi, Z)) - B_2 A_1 g(\phi_\xi, h^!(\xi, Z)) \]
\[- B_2 A_2 g(\phi_\xi, h^!(\phi_\xi, Z)), \quad \text{for all} \ X, Y \in \text{RadTM} \ and \ Z \in \Gamma(S(TM)). \] (3.10)
From (2.12), (3.3) and (3.10), we get $g(\nabla_X Y, Z) = 0$, which completes the proof. \blacksquare

4. Slant lightlike submanifolds

At first, we state the following lemmas for later use:

Lemma 4.1. Let M be an r-lightlike submanifold of an indefinite para-Sasakian manifold \overline{M} of index $2q$ with structure vector field tangent to M. Suppose that ϕRadTM is a distribution on M such that $\text{RadTM} \cap \phi \text{RadTM} = \{0\}$.

S.S. Shukla, A. Yadav
Then $\phi \text{ltr}(TM)$ is a subbundle of the screen distribution $S(TM)$ and $\phi \text{Rad}TM \cap \phi \text{ltr}(TM) = \{0\}$.

Lemma 4.2. Let M be a q-lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}, of index $2q$ with structure vector field tangent to M. Suppose $\text{Rad}TM$ is a distribution on M such that $\text{Rad}TM \cap \phi \text{Rad}TM = \{0\}$. Then any complementary distribution to $\phi \text{ltr}(TM) \oplus \phi \text{Rad}TM$ in $S(TM)$ is Riemannian.

The proofs of Lemma 4.1 and Lemma 4.2 follow as in Lemma 3.1 and Lemma 3.2 respectively of [10], so we omit them.

Definition 4.1. Let M be a lightlike submanifold of an indefinite para-Sasakian manifold \overline{M} with structure vector field tangent to M. Then we say that M is slant lightlike submanifold of \overline{M} if the following conditions are satisfied:

(i) $\text{Rad}TM$ is a distribution on M such that $\phi \text{Rad}TM \cap \text{Rad}TM = \{0\}$,

(ii) For each non-zero vector field X tangent to D at $x \in U \subset M$, the angle $\theta(X)$ between ϕX and the vector space D_x is constant, i.e. it is independent of the choice of $x \in U \subset M$ and $X \in D_x$, where D is complementary distribution to $(\phi \text{Rad}TM \oplus \phi \text{ltr}(TM)) \perp \{V\}$ in the screen distribution $S(TM)$.

This constant angle $\theta(X)$ is called slant angle of distribution D. A slant lightlike submanifold is said to be proper if $D \neq \{0\}$ and $\theta \neq 0, \frac{\pi}{2}$.

From the above definition, we have the following decomposition

$$TM = \text{Rad}TM \perp (\phi \text{Rad}TM \oplus \phi \text{ltr}(TM)) \perp D \perp \{V\}.$$ (4.1)

From Definition 4.1, we conclude that the class of slant lightlike submanifolds does not include invariant lightlike submanifolds of an indefinite para-Sasakian manifold.

Example 1. Let $(\mathbb{R}^6, \mathcal{g}, \phi, \eta, V)$ be an indefinite para-Sasakian manifold, where \mathcal{g} is of signature $(-, +, +, +, - ,+ , +, +)$ with respect to the canonical basis $\{\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial y_1, \partial y_2, \partial y_3, \partial z\}$. Suppose M is a submanifold of \mathbb{R}^6 given by $-x^1 = y^2 = u_1, x^2 = u_2, x^3 = 0, x^4 = u_3, y^1 = u_4, y^2 = u_5 \sin \theta, y^3 = u_5 \cos \theta, z = u_6$, where $\theta \in (0, \frac{\pi}{2})$.

The local frame of TM is given by $\{Z_1, Z_2, Z_3, Z_4, Z_5, Z_6\}$, where

$Z_1 = 2(-\partial x_1 + \partial y_2 - y^1 \partial z), Z_2 = 2(\partial x_2 + y^2 \partial z), Z_3 = 2(\partial x_4 + y^4 \partial z), Z_4 = 2 \partial y_1, Z_5 = 2(\sin \theta \partial y_3 + \cos \theta \partial y_4), Z_6 = V = 2 \partial z$.

Hence $\text{Rad}TM = \text{span} \{Z_1\}$ and $S(TM) = \text{span} \{Z_2, Z_3, Z_4, Z_5, V\}$.

Now $\text{ltr}(TM)$ is spanned by $N = \partial x_1 + \partial y_2 + y^1 \partial z$ and $S(TM^\perp)$ is spanned by $W_1 = 2(\partial x_3 + y^3 \partial z), W_2 = 2(\cos \theta \partial y_3 - \sin \theta \partial y_4)$. It follows that $\phi Z_1 = 2(\partial x_2 - \partial y_1 + y^2 \partial z) = Z_2 - Z_4, \phi N = \partial x_2 + \partial y_1 + y^2 \partial z = \frac{1}{2}(Z_2 + Z_4)$ and $g(\phi Z_1, \phi N) = 1$.

Thus $\phi \text{Rad}TM$ and $\phi \text{ltr}(TM)$ are distributions on M and $D = \text{span} \{Z_3, Z_5\}$ is a slant distribution with slant angle θ. Then $TM = \text{Rad}TM \perp (\phi \text{Rad}TM \oplus \phi \text{ltr}(TM)) \perp D \perp \{V\}$. Hence M is a slant lightlike submanifold of \mathbb{R}^6.

Theorem 4.3. Let M be a lightlike submanifold of an indefinite para-Sasakian manifold \overline{M} with structure vector field tangent to M such that $\phi \text{Rad}TM \cap
RadTM = \{0\}. Then M is slant lightlike submanifold if and only if there exists a constant \(\lambda \in [0, 1] \) such that \(P^2X = \lambda(X - \eta(X)V) \), \(\forall X \in \Gamma(D) \).

Proof. Let M be a lightlike submanifold of an indefinite para-Sasakian manifold \(\mathcal{M} \). Suppose there exists a constant \(\lambda \), such that \(P^2X = \lambda(X - \eta(X)V) = \lambda \phi^2X \), \(\forall X \in \Gamma(D) \). Now

\[
\cos(\theta(X)) = \frac{g(\phi X, PX)}{|\phi X||PX|} = \frac{g(X, \phi PX)}{|\phi X||PX|} = \frac{g(X, P^2X)}{|\phi X||PX|} = \lambda \frac{g(X, \phi^2X)}{|\phi X||PX|} = \lambda \frac{g(\phi X, \phi X)}{|\phi X||PX|}.
\]

From above equation, we get

\[
\cos(\theta(X)) = \lambda \frac{|\phi X|}{|PX|}. \tag{4.2}
\]

Also \(|PX| = |\phi X| \cos(\theta(X)) \), which implies

\[
\cos(\theta(X)) = \frac{|PX|}{|\phi X|}. \tag{4.3}
\]

From (4.2) and (4.3), we get \(\cos^2(\theta(X)) = \lambda \) (constant). Hence, M is a slant lightlike submanifold.

Conversely, suppose that M is a slant lightlike submanifold. Then \(\cos^2(\theta(X)) = \lambda \), where \(\lambda \) is a constant. From (4.3), we have \(\frac{|PX|^2}{|\phi X|^2} = \lambda \). Now \(g(PX, PX) = \lambda g(\phi X, \phi X) \), which gives \(g(X, P^2X) = \lambda g(X, \phi^2X) \). Thus \(g(X, (P^2 - \lambda \phi^2)X) = 0 \). Since \(X \) is non-null vector, we have \((P^2 - \lambda \phi^2)X = 0 \). Hence, \(P^2X = \lambda \phi^2X = \lambda(X - \eta(X)V) \), \(\forall X \in \Gamma(D) \). \(\blacksquare \)

Corollary 4.4. Let M be a slant lightlike submanifold of an indefinite para-Sasakian manifold \(\mathcal{M} \) with slant angle \(\theta \). Then

\[
g(PX, PY) = \cos^2(\theta)g(X, Y) - \eta(X)\eta(Y), \quad \forall X, Y \in \Gamma(D),
\]

\[
g(FX, FY) = \sin^2(\theta)g(X, Y) - \eta(X)\eta(Y), \quad \forall X, Y \in \Gamma(D).
\]

Proof. Since \(g(PX, PY) = g(X, P^2Y) = g(X, \lambda \phi^2Y) = \lambda g(X, \phi^2Y) = \lambda g(\phi X, \phi Y) \), \(\forall X, Y \in \Gamma(D) \), we have

\[
g(PX, PY) = \cos^2(\theta)g(\phi X, \phi Y), \quad \forall X, Y \in \Gamma(D). \tag{4.4}
\]

Thus \(g(PX, PY) = \cos^2(\theta)(g(X, Y) - \eta(X)\eta(Y)), \quad \forall X, Y \in \Gamma(D) \).

From (4.4), we obtain \(g(FX, FY) = (1 - \sin^2(\theta))g(\phi X, \phi Y), \quad \forall X, Y \in \Gamma(D) \), which implies \(g(\phi X, \phi Y) - g(FX, FY) = \sin^2(\theta)g(\phi X, \phi Y), \quad \forall X, Y \in \Gamma(D) \), which gives \(g(FX, FY) = \sin^2(\theta)(g(X, Y) - \eta(X)\eta(Y)), \quad \forall X, Y \in \Gamma(D) \). This completes the proof. \(\blacksquare \)

Now, we denote the projections on \(RadTM, \phi RadTM, \phi ltr(TM) \) and \(D \) in \(TM \) by \(P_1, P_2, P_3 \) and \(P_4 \), respectively. Similarly, we denote the projections on \(ltr(TM) \) and \(S(TM^+) \) by \(Q_1 \) and \(Q_2 \), respectively. Then, we get

\[
X = P_1X + P_2X + P_3X + P_4X + \eta(X)V, \quad \forall X \in \Gamma(TM). \tag{4.5}
\]

\[
W = Q_1W + Q_2W, \quad \forall W \in \Gamma(tr(TM)). \tag{4.6}
\]
Now applying ϕ to (4.5), we have
$$\phi X = \phi P_1 X + \phi P_2 X + \phi P_3 X + fP_4 X + FP_4 X, \quad \forall X \in \Gamma(TM),$$
where $fP_4 X$ (resp. $FP_4 X$) denotes the tangential (resp. screen transversal) component of $\phi P_4 X$. Thus we get
$$\phi P_1 X \in \phi \text{Rad}TM, \quad \phi P_2 X \in \Gamma(\text{Rad}TM), \quad \phi P_3 X \in \Gamma(\text{ltr}(TM)), \quad fP_4 X \in \Gamma(D), \quad FP_4 X \in \Gamma(S(TM^\perp)).$$

Applying ϕ to (4.6), we obtain $\phi W = \phi Q_1 W + BQ_2 W + CQ_2 W$, where $BQ_2 W$ (resp. $CQ_2 W$) denote the tangential (resp. transversal) component of $\phi Q_2 W$.

Now, by using (2.4), (4.5) and (2.8)–(2.10) and equating tangential, lightlike transversal and screen transversal components, we obtain

$$-\bar{g}(\phi X, \phi Y) V - \eta(Y) \phi^2 X = \nabla_X \phi P_1 X + \nabla_X \phi P_2 X - A_{\phi P_2 X} X + \nabla_X fP_4 Y$$
$$- A_{FP_4 Y} X - \phi P_1 \nabla_X Y - \phi P_2 \nabla_X Y$$
$$- fP_4 \nabla_X Y - \phi h^i(X, Y) - Bh^s(X, Y), \quad (4.7)$$

$$h^i(X, \phi P_1 Y) + h^i(X, \phi P_2 Y) + h^i(X, fP_4 Y) = -\nabla^i_X \phi P_3 Y - D^i(X, FP_4 Y)$$
$$+ \phi P_3 \nabla_X Y,$$

$$h^s(X, \phi P_1 Y) + h^s(X, \phi P_2 Y) + h^s(X, fP_4 Y) = -D^s(X, \phi P_3 Y) - \nabla^s_X FP_4 Y$$
$$+ FP_4 \nabla_X Y - Ch^s(X, Y).$$

Theorem 4.5. Let M be a proper slant lightlike submanifold of an indefinite para-Sasakian manifold \overline{M} with structure vector field V tangent to M. Then induced connection ∇ is never a metric connection.

Proof. Suppose that the induced connection is a metric connection. Then $\nabla_X \phi P_2 Y \in \Gamma(\text{Rad}TM)$ and $h^i(X, Y) = 0$. Thus for $Y \in \phi \text{Rad}TM$ and $X \in \phi \text{ltr}(TM)$, (4.7) becomes

$$-\bar{g}(X, Y) V = \nabla_X \phi P_2 X - \phi P_1 \nabla_X Y - \phi P_2 \nabla_X Y - fP_4 \nabla_X Y - Bh^s(X, Y).$$

Since $TM = \text{Rad}TM \oplus \phi \text{Rad}TM \oplus \phi \text{ltr}(TM) \oplus D \oplus V$, from (4.8), we get

$$\phi P_1 \nabla_X Y = 0, \quad \nabla_X \phi P_2 X + \phi P_2 \nabla_X Y = 0,$$

$$\bar{g}(X, Y) V = 0, \quad fP_4 \nabla_X Y + Bh^s(X, Y) = 0. \quad (4.9)$$

Now, taking $X = \phi N$ and $Y = \phi \xi$ in (4.9), we get $\bar{g}(N, \xi) V = 0$. Thus $V = 0$, which is a contradiction. Hence M does not have a metric connection. ■

5. Screen slant lightlike submanifolds

At first, we state the following lemma for later use:

Lemma 5.1. Let M be a $2q$-lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}, of index $2q$ such that $2q < \dim(M)$ with structure vector field tangent...
to M. Then the screen distribution $S(TM)$ of lightlike submanifold M is Riemannian.

The proof of above lemma follows as in Lemma 4.1 of [10], so we omit it.

Definition 5.1. Let M be a $2q$-lightlike submanifold of an indefinite para-Sasakian manifold \overline{M} of index $2q$ such that $2q < \dim(M)$ with structure vector field tangent to M. Then we say that M is screen slant lightlike submanifold of \overline{M} if following conditions are satisfied:

(i) $\text{Rad}T M$ is invariant with respect to ϕ, i.e. $\phi(\text{Rad}T M) = \text{Rad}T M$,

(ii) For each non-zero vector field X tangent to D at $x \in U \subset M$, the angle $\theta(X)$ between ϕX and the vector space D_x is constant, i.e. it is independent of the choice of $x \in U \subset M$ and $X \in D_x$, where D is complementary nondegenerate distribution to $\{V\}$ in $S(TM)$ such that $S(TM) = D \perp \{V\}$.

This constant angle $\theta(X)$ is called the slant angle of distribution D. A screen slant lightlike submanifold is said to be proper if $D \neq \{0\}$ and $\theta \neq 0, \frac{\pi}{2}$.

From the above definition, we have the following decomposition

$$TM = \text{Rad}T M \perp D \perp \{V\}. \tag{5.1}$$

From Definitions 4.1 and 5.1, we conclude that the class of screen slant lightlike submanifolds does not include slant lightlike submanifolds of an indefinite para-Sasakian manifold and vice-versa.

Theorem 5.2. Let M be a screen slant lightlike submanifold of \overline{M}. Then M is invariant (resp. screen real) if and only if $\theta = 0$ (resp. $\theta = \frac{\pi}{2}$).

Proof of the above theorem follows from Proposition 4.1 of [10].

Example 1. Let $(\mathbb{R}^9_2, \overline{\mathcal{G}}, \phi, \eta, V)$ be an indefinite para-Sasakian manifold, where $\overline{\mathcal{G}}$ is of signature $(-, +, +, +, +, +, +)$ with respect to the canonical basis $\{\partial x_1, \partial x_2, \partial x_3, \partial x_4, \partial y_1, \partial y_2, \partial y_3, \partial y_4, \partial z\}$. Suppose M is a submanifold of \mathbb{R}^9_2 given by $x^1 = y^2 = u_1, x^2 = y^1 = u_2, x^3 = u_3 \cos \theta, x^4 = u_3 \sin \theta, y^3 = u_4 \sin \theta, y^4 = u_4 \cos \theta, z = u_5$.

The local frame of TM is given by $\{Z_1, Z_2, Z_3, Z_4, Z_5\}$, where

$Z_1 = 2(\partial x_1 + \partial y_2 + y^1 \partial z), \quad Z_2 = 2(\partial x_2 + \partial y_1 + y^2 \partial z),$

$Z_3 = 2(\cos \theta \partial x_3 + \sin \theta \partial x_4 + y^1 \cos \theta \partial z + y^4 \sin \theta \partial z),$

$Z_4 = 2(\sin \theta \partial y_3 + \cos \theta \partial y_4), \quad Z_5 = V = 2\partial z.$

Hence $\text{Rad}T M = \text{span} \{Z_1, Z_2\}$ and $S(TM) = \text{span} \{Z_3, Z_4, V\}$.

Now $ltr(TM)$ is spanned by $N_1 = -\partial x_1 + \partial y_2 - y^1 \partial z, \quad N_2 = \partial x_2 - \partial y_1 + y^2 \partial z$ and $S(TM)^\perp$ is spanned by

$W_1 = 2(- \sin \theta \partial x_3 + \cos \theta \partial x_4 - y^3 \sin \theta \partial z + y^4 \cos \theta \partial z),$

$W_2 = 2(\cos \theta \partial y_3 - \sin \theta \partial y_4).$

It follows that $\phi Z_1 = Z_2, \phi Z_2 = Z_1$, which implies that $\text{Rad}TM$ is invariant, i.e., $\phi\text{Rad}TM = \text{Rad}TM$. On other hand, we can see that $D = \text{span} \{Z_3, Z_4\}$ is a slant
distribution with slant angle 2θ. Hence M is screen slant 2-lightlike submanifold of \mathbb{R}^3.

Now, we denote the projections on $\text{Rad}TM$ and D in TM by P_1 and P_2 respectively. Similarly, we denote the projections on $\text{ltr}(TM)$ and $S(TM^\perp)$ by Q_1 and Q_2 respectively. Then, we get

$$X = P_1 X + P_2 X + \eta(X)V, \quad \forall X \in \Gamma(TM).$$

(5.2)

Now applying ϕ to (5.2), we have $\phi X = \phi P_1 X + \phi P_2 X$, which gives

$$\phi X = \phi P_1 X + fP_2 X + FP_2 X, \quad \forall X \in \Gamma(TM),$$

(5.3)

where $fP_2 X$ (resp. $FP_2 X$) denotes the tangential (resp. transversal) component of $\phi P_2 X$. Thus we get $\phi P_1 X \in \text{Rad}TM, fP_2 X \in \Gamma(D), FP_2 X \in \Gamma(S(TM^\perp))$. Also, we have

$$W = Q_1 W + Q_2 W, \quad \forall W \in \Gamma(\text{ltr}(TM)).$$

(5.4)

Applying ϕ to (5.4), we obtain

$$\phi W = \phi Q_1 W + \phi Q_2 W,$$

(5.5)

which gives

$$\phi W = \phi Q_1 W + BQ_2 W + CQ_2 W,$$

(5.6)

where $BQ_2 W$ (resp. $CQ_2 W$) denotes the tangential (resp. transversal) component of $\phi Q_2 W$.

Now, by using (2.4), (5.3), (5.6) and (2.8)–(2.10) and equating tangential, lightlike transversal and screen transversal components, we obtain

$$-\overline{g}(\phi X, \phi Y)V - \eta(Y)\phi^2 X = \nabla_X \phi P_1 Y + \nabla_X fP_2 Y - AF_{P_2} Y X$$

$$- \phi P_1 \nabla_X Y - \phi P_2 \nabla_X Y + Bh^s(X, Y),$$

(5.7)

$$h^l(X, \phi P_1 Y) + h^l(X, fP_2 Y) = \phi h^l(X, Y) - D^l(X, FP_2 Y),$$

$$h^s(X, \phi P_1 Y) + h^s(X, fP_2 Y) = Ch^s(X, Y) - \nabla_X^s FP_2 Y - FP_2 \nabla_X Y.$$

(5.8)

Theorem 5.3. Let M be a 2q-lightlike submanifold of an indefinite para-Sasakian manifold \overline{M} with structure vector field tangent to M. Then M is screen slant lightlike submanifold if and only if

(i) the lightlike transversal vector bundle $\text{ltr}(TM)$ is invariant with respect to ϕ,

(ii) there exists a constant $\lambda \in [0, 1]$ such that $P^2 X = \lambda(X - \eta(X)V), \forall X \in \Gamma(D)$.

Proof. Let M be a screen slant lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. Then its radical distribution $\text{Rad}TM$ is invariant with respect to ϕ, i.e., $\phi X = X \forall X \in \Gamma\text{Rad}TM$.

Now, for $N \in \Gamma\text{ltr}(TM)$ and $X \in \Gamma D$, using (2.3) and (5.3), we obtain

$$\overline{g}(\phi N, X) = \overline{g}(N, \phi X) = \overline{g}(N, fX + FX) = \overline{g}(N, fX) + \overline{g}(N, FX) = 0.$$

Thus ϕN does not belong to $\Gamma(D)$.

For $N \in \Gamma \ltr(TM)$ and $W \in \Gamma S(TM^\perp)$, from (2.3) and (5.6), we have
\[\bar{g}(\phi N, W) = \bar{g}(N, \phi W) = \bar{g}(N, BW + CW) = \bar{g}(N, BW) + \bar{g}(N, CW) = 0. \]
Hence we conclude that ϕN does not belong to $\Gamma S(TM^\perp)$.

Now, suppose that $\phi N \in \Gamma (\Rad TM)$. Then $\phi(\phi N) = \phi^2 N = -N + \eta(N)V \in \Gamma (ltr TM) \oplus \span \{V\}$, which contradicts that $\Rad TM$ is invariant. Hence $ltr TM$ is invariant with respect to ϕ.

Since $|PX| = |\phi X| \cos \theta(X)$, $\forall X \in \Gamma(D)$, we have
\[\cos \theta(X) = \frac{|PX|}{|\phi X|}. \quad (5.9) \]
In view of (5.9), we get
\[\cos^2 \theta(X) = \frac{|P X|^2}{|\phi X|^2} = \frac{\bar{g}(P X, P X)}{\bar{g}(\phi X, \phi X)} = \frac{\bar{g}(X, \phi^2 X)}{\bar{g}(X, \phi^2 X)} = \frac{\bar{g}(X, P^2 X)}{\bar{g}(X, P^2 X)}, \]
which gives
\[g(X, P^2 X) = \cos^2 \theta g(X, \phi^2 X). \quad (5.10) \]
Since M is screen slant lightlike submanifold, $\cos^2 \theta(X) = \lambda \text{(constant)} \in [0, 1]$.

Therefore from (5.10), we get
\[g(X, P^2 X) = \lambda g(X, \phi^2 X) = g(X, \lambda \phi^2 X), \]
which implies $g(X, (P^2 - \lambda^2)X) = 0$. Since X is non-null vector, we have $(P^2 - \lambda^2)X = 0$, which implies
\[P^2 X = \lambda \phi^2 X = \lambda (X - \eta(X)V), \quad \forall X \in \Gamma(D). \]
This proves (ii).

Conversely suppose that conditions (i) and (ii) are satisfied. We can show that $\Rad TM$ is invariant in similar way that $ltr TM$ is invariant. From (ii) we have
\[P^2 X = \lambda \phi^2 X, \quad \forall X \in \Gamma(D), \]
where $\lambda \text{(constant)} \in [0, 1]$.

Now, $\cos \theta(X) = \frac{\bar{g}(\phi X, P X)}{|\phi X||PX|} = \frac{\bar{g}(X, \phi^2 X)}{|\phi X||PX|} = \frac{\bar{g}(X, P^2 X)}{|\phi X||PX|} = \lambda \frac{\bar{g}(\phi X, \phi X)}{|\phi X||PX|}.$
From the above equation, we get
\[\cos \theta(X) = \lambda \frac{|\phi X|}{|PX|}. \quad (5.11) \]
Therefore (5.9) and (5.11) give $\cos^2 \theta(X) = \lambda \text{(constant)}$. Hence M is a screen slant lightlike submanifold. \blacksquare

Corollary 5.4 Let M be a screen slant lightlike submanifold of an indefinite para-Sasakian manifold \overline{M} with slant angle θ, then
\[g(P X, P Y) = \cos^2 \theta(g(X, Y) - \eta(X)\eta(Y)), \quad \forall X, Y \in \Gamma(D), \]
\[g(F X, F Y) = \sin^2 \theta(g(X, Y) - \eta(X)\eta(Y)), \quad \forall X, Y \in \Gamma(D). \quad (5.12) \]

The proof of above corollary follows using the steps as in proof of Corollary 3.2 of [9].

Lemma 5.5. Let M be a lightlike submanifold of an indefinite para-Sasakian manifold \overline{M}. Then we have
From (2.3), (5.15) and (5.16), we have

\[g(\nabla_X Y, V) = -\overline{g}(Y, \phi X), \quad \forall X, Y \in \Gamma(TM) - \{V\}, \]

(5.17)

From (2.5) and (5.14), we obtain

\[g([X, Y], V) = 0, \quad \forall X, Y \in \Gamma(TM) - \{V\}. \]

(5.18)

On interchanging \(M \) then from (2.8), we have

\[g(\nabla_X Y, V) = -\overline{g}(Y, \nabla_X V), \quad \forall X, Y \in \Gamma(TM) - \{V\}. \]

(5.19)

From (5.7), we have

\[g(\nabla_Y X, V) = -\overline{g}(X, \phi Y), \quad \forall X, Y \in \Gamma(TM) - \{V\}. \]

(5.20)

From (2.3), (5.18) and (5.20), we have

\[g([X, Y], V) = 0, \quad \forall X, Y \in \Gamma(TM) - \{V\}. \]

(5.21)

Proof of (i) follows from (5.17), (5.20) and (5.23).

Theorem 5.6. Let \(M \) be a screen slant lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \) with structure vector field tangent to \(M \). Then

(i) the radical distribution \(\text{Rad}TM \) is integrable if and only if

\[h^*(Y, \phi X) = h^*(X, \phi Y) \quad \text{and} \quad (\nabla_X \phi F) Y = (\nabla_Y \phi F) X, \quad \forall X, Y \in \Gamma(\text{Rad}TM), \]

(ii) the distribution \(D \) is integrable if and only if

\[P_1(\nabla_X f - \nabla_Y f) = P_1(A_F Y - A_F X), \quad \forall X, Y \in \Gamma(D). \]

Proof. Let \(M \) be a screen slant lightlike submanifold of an indefinite para-Sasakian manifold \(\overline{M} \). From (5.8), we get

\[h^*(X, \phi Y) = Ch^*(X, Y) - FP_2 \nabla_X Y, \quad \forall X, Y \in \Gamma(\text{Rad}TM). \]

(5.22)

Interchanging \(X \) and \(Y \) in (5.18), we get

\[h^*(Y, \phi X) = Ch^*(Y, X) - FP_2 \nabla_Y X, \quad \forall X, Y \in \Gamma(\text{Rad}TM). \]

(5.23)

From (5.18) and (5.19), we get

\[h^*(Y, \phi X) - h^*(X, \phi Y) = FP_2(\nabla_X Y - \nabla_Y X) = FP_2[X, Y]. \]

(5.24)

From (5.7), we have

\[\nabla_X \phi F Y - \phi F_1 \nabla_X Y - f P_2 \nabla_X Y + Bh^*(X, Y) = 0, \quad \forall X, Y \in \Gamma(\text{Rad}TM). \]

(5.25)

On interchanging \(X \) and \(Y \) in (5.21), we get

\[\nabla_Y \phi F_1 X - \phi F_1 \nabla_Y X - f P_2 \nabla_Y X + Bh^*(Y, X) = 0, \quad \forall X, Y \in \Gamma(\text{Rad}TM). \]

(5.26)

From (5.21) and (5.22), we have

\[(\nabla_X \phi F_1 Y - (\nabla_Y \phi F_1) X = f P_2([X, Y]), \quad \forall X, Y \in \Gamma(\text{Rad}TM). \]

(5.27)

Proof of (i) follows from (5.17), (5.20) and (5.23).
Now from (5.7) and (2.2), we obtain
\[\varphi(\phi X, \phi Y)V + \nabla_X fY - A_{FY}X = \phi P_1 \nabla_X Y + f P_2 \nabla_X Y - Bh^s(X, Y), \quad \forall X, Y \in \Gamma(D). \] (5.24)

Interchanging \(X \) and \(Y \) in (5.24), we have
\[\varphi(\phi Y, \phi X) V + \nabla_Y fX - A_{FX}X = \phi P_1 \nabla_Y X + f P_2 \nabla_Y X - Bh^s(X, Y), \quad \forall X, Y \in \Gamma(D). \] (5.25)

From (5.24) and (5.25), we get
\begin{align*}
\nabla_X fY - \nabla_Y fX + A_{FX}Y - A_{FY}X &= \phi P_1 \nabla_Y X - \phi P_1 \nabla_Y X + f P_2 \nabla_X Y - f P_2 \nabla_Y X \\
&= \phi P_1 [X, Y] + f P_2 [X, Y], \quad \forall X, Y \in \Gamma(D).
\end{align*}
(5.26)

The equation (5.26) implies
\[P_1(\nabla_X fY - \nabla_Y fX) + P_1(A_{FX}Y - A_{FY}X) = \phi P_1 [X, Y], \quad \forall X, Y \in \Gamma(D). \] (5.27)

Proof of (ii) follows from (5.17) and (5.27). \(\blacksquare \)

Theorem 5.7. Let \(M \) be a screen slant lightlike submanifold of an indefinite para-Sasakian manifold \(\mathcal{M} \) with structure vector field tangent to \(M \). Then \(S(TM) \) defines a totally geodesic foliation if and only if \(\nabla_X fY - A_{FY}X \) has no component in \(RadTM \), \(\forall X, Y \in \Gamma(D) \).

Proof. Let \(M \) be a screen slant lightlike submanifold of an indefinite para-Sasakian manifold \(\mathcal{M} \). From (2.2) and (2.8), we get
\[\varphi(\nabla_X Y, N) = \varphi(-\nabla_X \phi Y + \nabla_X \phi Y, \phi N), \quad \forall X, Y \in \Gamma(D) \quad \text{and} \quad N \in \text{ltr}(TM). \]

Using (2.4) in above equation, we get
\[\varphi(\nabla_X Y, N) = \varphi(\varphi(X, \phi Y)V + \eta(Y)\phi^2 X + \nabla_X \phi Y, \phi N). \] (5.28)

From (2.1) and (5.28), we obtain
\[\varphi(\nabla_X Y, N) = \varphi(\nabla_X \phi Y, \phi N), \quad \forall X, Y \in \Gamma(D) \quad \text{and} \quad N \in \text{ltr}(TM). \] (5.29)

From (2.8), (2.10), (5.3) and (5.29), we get
\[\varphi(\nabla_X Y, N) = \varphi(\nabla_X fY + h^l(X, fY) + h^s(X, fy) - A_{FY}X + \nabla_X fY + D^l(X, FY), \phi N). \]

From the above equation, we get
\[\varphi(\nabla_X Y, N) = \varphi(\nabla_X fY - A_{FY}X, \phi N), \quad \forall X, Y \in \Gamma(D) \quad \text{and} \quad N \in \text{ltr}(TM). \]

which completes the proof. \(\blacksquare \)

Theorem 5.8. Let \(M \) be a screen slant lightlike submanifold of an indefinite para-Sasakian manifold \(\mathcal{M} \) with structure vector field tangent to \(M \). If \(Bh^s(X, Y) = 0, \quad \forall X \in \Gamma(TM) \) and \(Y \in \Gamma(RadTM) \) then the induced connection \(\nabla \) is a metric connection.

Proof. Let \(M \) be a screen slant lightlike submanifold of an indefinite para-Sasakian manifold \(\mathcal{M} \). Then the induced connection \(\nabla \) on \(M \) is a metric connection if and only if \(RadTM \) is parallel distribution with respect to \(\nabla \) (3). Since
$Bh^s(X, Y) = 0$, $\forall X \in \Gamma(TM)$ and $Y \in \Gamma(RadTM)$, we have $g(Bh^s(X, Y), Z) = 0$, $\forall X, Z \in \Gamma(TM)$ and $Y \in \Gamma(RadTM)$. Thus from (5.5) and (5.6), we obtain
\[g(\phi h^s(X, Y), Z) = 0, \quad \forall X, Z \in \Gamma(TM) \quad \text{and} \quad Y \in \Gamma(RadTM). \quad (5.30) \]
Using (2.3) and (5.3) in (5.30), we get
\[g(h^s(X, Y), F\nabla^2 Z) = 0, \quad \forall X, Z \in \Gamma(TM) \quad \text{and} \quad Y \in \Gamma(RadTM). \quad (5.31) \]
Now from (2.8), we get
\[g(F\nabla^2 \nabla X Y, \phi h^s(X, Y)) = g(F\nabla^2 \nabla X Y, \nabla X \phi Y) - g(F\nabla^2 \nabla X Y, F\nabla^2 \nabla X Y), \quad \forall X \in \Gamma(TM) \quad \text{and} \quad Y \in \Gamma(RadTM). \quad (5.32) \]
Since $ltr(TM)$ is invariant, from (2.4), (5.3) and (5.32), we get
\[g(F\nabla^2 \nabla X Y, \phi h^s(X, Y)) = g(F\nabla^2 \nabla X Y, F\nabla^2 \nabla X Y). \quad (5.33) \]
From (2.8) and (5.33), we obtain
\[g(F\nabla^2 \nabla X Y, \phi h^s(X, Y)) = \sin^2 \theta g(P\nabla^2 \nabla X Y, P\nabla^2 \nabla X Y), \quad \forall X \in \Gamma(TM) \quad \text{and} \quad Y \in \Gamma(RadTM). \quad (5.34) \]
Now from (2.2) and (5.3), we have
\[g(F\nabla^2 \nabla X Y, \phi h^s(X, Y)) = g(F\nabla^2 \nabla X Y, \phi h^s(X, Y)), \quad \forall X \in \Gamma(TM) \quad \text{and} \quad Y \in \Gamma(RadTM). \quad (5.35) \]
The equations (5.30) and (5.36) imply
\[g(F\nabla^2 \nabla X Y, \phi h^s(X, Y)) = 0, \quad \forall X \in \Gamma(TM) \quad \text{and} \quad Y \in \Gamma(RadTM). \quad (5.37) \]
From (5.35) and (5.37), we get
\[\sin^2 \theta g(P\nabla^2 \nabla X Y, P\nabla^2 \nabla X Y) = 0, \quad \forall X \in \Gamma(TM) \quad \text{and} \quad Y \in \Gamma(RadTM). \]
Since M is proper screen slant lightlike submanifold and D is Riemannian, we get $P\nabla^2 \nabla X Y = 0$. Hence $\nabla^2 \nabla Y \in \Gamma(RadTM)$, i.e., radical distribution $RadTM$ is parallel, which completes the proof.

ACKNOWLEDGEMENT. Akhilesh Yadav greatfully acknowledges the financial support provided by the Council of Scientific and Industrial Research (C.S.I.R.), India.

REFERENCES
386

S.S. Shukla, A. Yadav

(received 09.04.2013; available online 01.08.2013)

S.S. Shukla, Department of Mathematics, University of Allahabad, Allahabad-211002, India
E-mail: ssbhukla.au@rediffmail.com

Akhilesh Yadav, Department of Mathematics, University of Allahabad, Allahabad-211002, India
E-mail: akhilesh_mathau@rediffmail.com