DING PROJECTIVE MODULES WITH RESPECT TO A SEMIDUALIZING MODULE

Chaoling Huang and Peihua Zhong

Abstract. In this paper, for a fixed semidualizing module C, we introduce the notion of D_C-projective modules which are the special setting of G_C-projective modules introduced by White [D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut. Algebra 2(1) (2010) 111–137]. Then we investigate the properties of D_C-projective modules and dimensions, in particular, we give descriptions of the finite D_C-projective dimensions.

1. Introduction

Auslander and Bridger in [1], introduced the notion of so-called G-dimension for finitely generated modules over commutative Noetherian rings. Enochs and Jenda defined in [4] a homological dimension, namely the Gorenstein projective dimension, $Gpd_R(-)$, for any R-module as an extension of G-dimension. Let R be any associative ring. Recall that an R-module M is said to be Gorenstein projective (for short G-projective; see [4]) if there is an exact sequence

$$0 \rightarrow \mathbf{P} \rightarrow \mathbf{P}_1 \rightarrow \mathbf{P}_0 \rightarrow \mathbf{P}^0 \rightarrow \mathbf{P}^1 \rightarrow \cdots$$

of projective modules with $M = \text{Ker}(\mathbf{P}^0 \rightarrow \mathbf{P}^1)$ such that $\text{Hom}(\mathbf{P}, \mathbf{Q})$ is exact for each projective R-module \mathbf{Q}. Such exact sequence is called a complete projective resolution. We use $\mathcal{GP}(R)$ to denote the class of all G-projective R-modules. We say that M has Gorenstein projective dimension at most n, denoted $Gpd_R(M) \leq n$, if there is a Gorenstein projective resolution, i.e., there is an exact sequence

$$0 \rightarrow G_n \rightarrow \cdots \rightarrow G_0 \rightarrow M \rightarrow 0,$$

where all G_i are G-projective R-modules, and say $Gpd_R(M) = n$ if there is not a shorter Gorenstein projective resolution.

In [3], an R-module M is called strongly Gorenstein flat if there is an exact sequence

$$0 \rightarrow \mathbf{P} \rightarrow \mathbf{P}_1 \rightarrow \mathbf{P}_0 \rightarrow \mathbf{P}^0 \rightarrow \mathbf{P}^1 \rightarrow \cdots$$

of projective modules with $M = \text{Ker}(\mathbf{P}^0 \rightarrow \mathbf{P}^1)$ such that $\text{Hom}(\mathbf{P}, \mathbf{Q})$ is exact for each flat R-module \mathbf{Q}. It is clear that strongly Gorenstein flat R-modules are

2010 Mathematics Subject Classification: 13B02, 13D05.

Keywords and phrases: semidualizing; D_C-projective module; C-projective module.

61
Gorenstein projective. But no one knows whether there is a Gorenstein projective R-module which is not strongly Gorenstein flat. Following [8, 19], the strongly Gorenstein flat R-modules are called Ding projective, since strongly Gorenstein flat R-modules are not necessarily Gorenstein flat [3, Example 2.19] and strongly Gorenstein flat R-modules were first introduced by Ding and his coauthors. In [3], the authors gave a lot of wonderful results about Ding projective R-modules over coherent rings. Mahdou and Tamekkante in [14], generalized some of these results over arbitrary associative rings. In this paper, we use $DP(R)$ to denote the class of all Ding projective R-modules.

In [7], the author initiated the study of semidualizing modules; see Definition 2.1. Over a noetherian ring R, Vasconcelos [17] studied them too. Golod [9] used these to define G_C-dimension for finitely generated modules, which is a refinement of projective dimension. Holm and Jørgensen [11] have extended this notion to arbitrary modules over a noetherian ring. Moreover, for semi-dualizing R-module C and the trivial extension of R by C: $R \ltimes C$, that is, the ring $R \oplus C$ equipped with the product: $(r, c)(r', c') = (rr', rc' + r'c)$, they considered the ring changed Gorenstein dimensions, $Gpd_{R \ltimes C} M$ and proved that M is G_C-projective R-module if and only if M is G-projective $R \ltimes C$-module [11, Theorem 2.16]. In [18], White unified and generalized treatment of this concept over any commutative rings and showed many excellent G_C-projective properties shared by G-projectives. Recall that an R-module M is called G_C-projective if there exists a complete PC-resolution of M, which means that

$$P = \cdots \to P_1 \to P_0 \to C \otimes_R P^0 \to C \otimes_R P^1 \to \cdots$$

is an exact complex such that $M \cong \text{Coker}(P_1 \to P_0)$ and each P_i and P^i is projective and such that the complex $\text{Hom}_R(P, C \otimes_R Q)$ is exact for every projective R-module Q. We use $G_C P(R)$ to denote the class of all G_C-projective R-modules.

Motivated by the above, in this paper, we define the concept of Ding projective R-modules with respect to a fixed semidualizing module C, for short, D_C-projective and show properties of D_C-projective modules and dimensions. It is organized as follows:

Section 2 is devoted to the study of the D_C-projective modules and dimensions. White proved that every module that is either projective or C-projective is G_C-projective [18, Proposition 2.6]. Moreover, we show that they are also D_C-projective, see Proposition 2.7. Further, we give homological descriptions of the D_C-projective dimension, see Proposition 2.11. And then characterize modules with the finite D_C-projective dimension as follows,

Theorem 1.1. Let M be an R-module and n be a non-negative integer. Then the following are equivalent,

1. D_C-$pd_R(M) \leq n$;
2. For some integer k with $1 \leq k \leq n$, there is an exact sequence $0 \to P_n \to \cdots \to P_1 \to P_0 \to M \to 0$ such that P_i is D_C-projective if $0 \leq i < k$ and P_j is P_C-projective if $j \geq k$.

(3) For any integer \(k \) with \(1 \leq k \leq n \), there is an exact sequence \(0 \to P_n \to \cdots \to P_1 \to P_0 \to M \to 0 \) such that \(P_i \) is \(D_C \)-projective if \(0 \leq i < k \) and \(P_j \) is \(P_C \)-projective if \(j \geq k \).

Theorem 1.2. Let \(M \) be an \(R \)-module and \(n \) be a non-negative integer. Then the following are equivalent,

1. \(D_C\text{-pd}_R(M) \leq n \);
2. For some integer \(k \) with \(0 \leq k \leq n \), there is an exact sequence \(0 \to A_n \to \cdots \to A_1 \to A_0 \to M \to 0 \) such that \(A_k \) is \(D_C \)-projective and other \(A_i \) projective or \(P_C \)-projective.

Although we do not know whether there is a \(G_C \)-projective \(R \)-module which is not \(D_C \)-projective, we think that this article gives new things. Proposition 2.7, Proposition 2.11, Proposition 2.20 and the above two theorems add a new message to \(G_C \)-projective \(R \)-modules if \(G_C \)-projective \(R \)-modules and \(D_C \)-projective \(R \)-modules happen to coincide.

Setup and notation. Throughout this paper, \(R \) denotes a commutative ring. \(C \) is a fixed semidualizing \(R \)-module. \(_RM \) denotes the category of \(R \)-modules, and \(P(R) \) and \(I(R) \) denote the class of projective and injective modules, respectively.

2. Properties of \(D_C \)-projective modules

Now we begin with recall of the definition on semidualizing \(R \)-modules.

Definition 2.1. An \(R \)-module \(C \) is semidualizing if

(a) \(C \) admits a degreewise finite projective resolution, that is, there is an exact complex \(\cdots \to P_1 \to P_0 \to C \to 0 \) with all \(P_i \) finitely generated projective \(R \)-modules,

(b) the natural homothety map \(\chi_R^C : R \to \text{Hom}_R(C, C) \) is an isomorphism, where \(\chi_R^C \) satisfies that \(\chi_R^C(r)(c) = rc \) for each \(r \in R \) and \(c \in C \), and

(c) \(\text{Ext}^{n>1}_R(C, C) = 0 \).

For any noetherian ring \(R \), a finitely generated \(R \)-module \(C \) is semidualizing if and only if \(\mathbb{R}_{\text{Hom}} R \) is in \(D(R) \), the derived category of the category of \(R \)-modules. Clearly, \(R \) is a semidualizing \(R \)-module.

Definition 2.2. The \(C \)-projective dimension of an \(R \)-module \(M \) is \(P_C\text{-pd}(M) = \inf \{ n \mid 0 \to X_n \to \cdots \to X_0 \to M \to 0 \} \) is exact with all \(X_i \) \(C \)-projective\}. The class of \(C \)-flat
modules, denoted by \mathcal{F}_C and \mathcal{F}_C-flat dimension of M, denoted by \mathcal{F}_C-$fd(M)$ are defined similarly.

Definition 2.3. An R-module M is called D_C-projective if there exists a complete PC-resolution of M, which means that

$$P = \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow C \otimes_R P^0 \rightarrow C \otimes_R P^1 \rightarrow \cdots$$

is an exact complex such that $M \cong \text{Coker}(P_1 \rightarrow P_0)$ and each P_i and P^i is projective and such that the complex $\text{Hom}_R(P, C \otimes_R Q)$ is exact for every flat R-module Q. We use $D_C\mathcal{P}(R)$ to denote the class of all D_C-projective R-modules.

For any R-module M, we say that M has D_C-projective dimension at most n, denoted D_C-$pd_R(M) \leq n$, if M has a D_C-projective resolution of length n, that is, there is an exact complex of the form $0 \rightarrow D_n \rightarrow \cdots \rightarrow D_0 \rightarrow M \rightarrow 0$, where all D_i are D_C-projective R-modules, and say D_C-$pd_R(M) = n$ if there is not a shorter D_C-projective resolution.

Remark 2.4. It is clear that $D_C\mathcal{P}(R) \subseteq G_C\mathcal{P}(R)$. When $C = R$, $D_C\mathcal{P}(R) = \mathcal{D}\mathcal{P}(R)$.

From Definition 2.3 one can obtain the following characterization of D_C-projective R-modules.

Proposition 2.5. M is D_C-projective if and only if $\text{Ext}_R^{n \geq 1}(M, C \otimes_R Q) = 0$ and there exists an exact sequence of the form:

$$X = 0 \rightarrow M \rightarrow C \otimes_R P^0 \rightarrow C \otimes_R P^1 \rightarrow \cdots$$

such that $\text{Hom}_R(X, C \otimes_R Q)$ is exact for any flat R-module Q.

Recall that White in [18] proved that for any projective P, P and $C \otimes_R P$ are G_C-projective. Moreover, we can show that P and $C \otimes_R P$ are D_C-projective. First we give the following lemma,

Lemma 2.6. Let P be a projective R-module and X be a complex. For an R-module A, if the complex $\text{Hom}_R(X, A)$ is exact, then the complex $\text{Hom}_R(P \otimes_R X, A)$ is exact. Thus, if X is a complete PC-resolution of an R-module M, then $P \otimes_R X$ is a complete PC-resolution of an R-module $P \otimes_R M$. The converses hold in case P is faithfully projective.

Proof. Since $\text{Hom}_R(P, -)$ is an exact functor, by the isomorphism of complexes given by Hom-tensor adjointness

$$\text{Hom}_R(P \otimes_R X, A) \cong \text{Hom}_R(P, \text{Hom}_R(X, A)),$$

exactness of the complex $\text{Hom}_R(X, A)$ implies that the complex $\text{Hom}_R(P \otimes_R X, A)$ is exact. The remains are trivial. ■

Proposition 2.7. (1) C and R are D_C-projective;

(2) For any projective P, P and $C \otimes_R P$ are D_C-projective.
Proof. (1) Since C is semidualizing, there is an exact sequence of the form:
$$X = \cdots \to R^{n_1} \to R^{n_0} \to C \to 0$$
with all n_i being positive integer numbers. By [18, Lemma 1.11 (b)], $\text{Hom}_R(X, C \otimes_R Q)$ is exact for any flat R-module Q. On the other hand, there is an exact sequence of the form:
$$Y = 0 \to C \to C \to C \to \cdots .$$
By tensor evaluation homomorphism; see [2, p. 11],
$$\text{Hom}_R(Y, C \otimes_R Q) \cong \text{Hom}_R(Y, C) \otimes_R Q \cong Q$$
is exact, where Q is the following exact sequence
$$\cdots \to Q \to Q \to Q \to 0 .$$
Therefore, C is D_C-projective.

It is clear that the complex $\text{Hom}_R(X, C) = 0 \to R \to C^{n_0} \to C^{n_1} \to \cdots$ is exact. Since R and all C^{n_i} are finitely generated, for any flat R-module F,
$$\text{Hom}_R(\text{Hom}_R(X, C), C \otimes_R F) \cong \text{Hom}_R(\text{Hom}_R(X, C), C) \otimes_R F \cong X \otimes_R F$$
is exact. Thus R is D_C-projective.

(2) By Lemma 2.6 and (1), for any projective P, P and $C \otimes_R P$ are D_C-projective.

Using a standard argument, we can get the following proposition.

Proposition 2.8. If X is a complete PC-resolution, and L is an R-module with $\mathcal{F}_{C\text{-}fd}(L) < \infty$, then the complex $\text{Hom}_R(X, L)$ is exact. Thus if M is D_C-projective, then $\text{Ext}^1_R(M, L) = 0$.

In [3, Lemma 2.4], the authors proved that for a D-projective R-module M, either M is projective or $\text{fd}_R(M) = \infty$. Now we generalize it as follows:

Proposition 2.9. If R-module M is D_C-projective, then either M is C-flat or $\mathcal{F}_{C\text{-}fd_R}(M) = \infty$.

Proof. Suppose that $\mathcal{F}_{C\text{-}fd_R}(M) = n$ with $1 \leq n < \infty$. We show by induction on n that M is C-flat. First assume that $n = 1$, then there is an exact sequence $0 \to X_1 \to X_0 \to M \to 0$ with X_0 and X_1 C-flat. Thus by Proposition 2.8, $\text{Ext}^1_R(M, X_1) = 0$. So the above short exact sequence is split, and M is a direct summand of X_0. By [13, Proposition 5.5], M is C-flat. Then assume that $n \geq 2$. There is a short exact sequence $0 \to K \to X \to M \to 0$ with X C-flat and $\mathcal{F}_{C\text{-}fd_R}(K) \leq n - 1$. By induction, we conclude that K is C-flat. Thus $\mathcal{F}_{C\text{-}fd_R}(M) \leq 1$. By the above discussion, M is C-flat. $

It is easy to prove the following two results using standard arguments. We leave the proofs to readers.

Proposition 2.10. The class of D_C-projective R-modules is projectively resolving and closed under direct summands.
Proposition 2.11. Let M be an R-module with D_C-pd$_R(M) < \infty$ and n be a positive integer. The following are equivalent.

(1) D_C-pd$_R(M) \leq n$.

(2) $\text{Ext}^i_R(M, L) = 0$ for all $i > n$ and all R-modules L with F_C-fd$(L) < \infty$.

(3) $\text{Ext}^i_R(M, C \otimes_R F) = 0$ for all $i > n$ and all flat R-modules F.

(4) For any exact sequence $0 \to K \to G_{n-1} \to \cdots \to G_1 \to G_0 \to M \to 0$ with all G_i D_C-projective, K_n is D_C-projective.

We give the following lemma which plays a crucial role in this paper.

Lemma 2.12. Let $0 \to A \to G_1 \to G_0 \to M \to 0$ be an exact sequence with G_0 and G_1 D_C-projective. Then there are two exact sequences $0 \to A \to C \otimes_R P \to G \to M \to 0$ with P projective and G D_C-projective and $0 \to A \to H \to Q \to M \to 0$ with Q projective and H D_C-projective.

Proof. Set $K = \text{Im}(G_1 \to G_0)$. Since G_1 is D_C-projective, there is a short exact sequence $0 \to G_1 \to C \otimes_R P \to G'_1 \to 0$ with P projective and G'_1 D_C-projective. Consider the following pushout diagram:

Then consider the following pushout diagram:
By Proposition 2.10, \(G \) is \(DC \)-projective, since \(G_0 \) and \(G_1' \) are \(DC \)-projective. Therefore, we can obtain exact sequence \(0 \to A \to C \otimes_R P \to G \to M \to 0 \). Similarly, we use pullbacks and can obtain the other exact sequence.

Theorem 2.13. Let \(M \) be an \(R \)-module and \(n \) be a non-negative integer. Then the following are equivalent,

1. \(DC \)-pd\(_R\)(\(M \)) \(\leq n \);
2. For some integer \(k \) with \(1 \leq k \leq n \), there is an exact sequence \(0 \to P_n \to \cdots \to P_1 \to P_0 \to M \to 0 \) such that \(P_i \) is \(DC \)-projective if \(0 \leq i < k \) and \(P_j \) is \(C \)-projective if \(j \geq k \).
3. For any integer \(k \) with \(1 \leq k \leq n \), there is an exact sequence \(0 \to P_n \to \cdots \to P_1 \to P_0 \to M \to 0 \) such that \(P_i \) is \(DC \)-projective if \(0 \leq i < k \) and \(P_j \) is \(C \)-projective if \(j \geq k \).

Proof. (3) \(\Rightarrow \) (2) and (2) \(\Rightarrow \) (1): It is clear.

(1) \(\Rightarrow \) (3): Let \(0 \to G_n \to \cdots \to G_1 \to G_0 \to M \to 0 \) be an exact sequence with all \(G_i \) \(DC \)-projective. We prove (3) by induction on \(n \). Let \(n = 1 \). Since \(G_1 \) is \(DC \)-projective, there is a short exact sequence \(0 \to G_1 \to P_1 \to N \to 0 \) with \(P_1 \) \(C \)-projective and \(N \) \(DC \)-projective. Consider the following pushout diagram:

\[
\begin{array}{ccc}
0 & \to & G_1 \\
\downarrow & & \downarrow \\
0 & \to & P_1
\end{array}
\quad
\begin{array}{ccc}
& & G_0 \\
& & \downarrow \\
& & M \to 0
\end{array}
\quad
\begin{array}{ccc}
& & \downarrow \\
& & \downarrow \\
& & N
\end{array}
\quad
\begin{array}{ccc}
& & \downarrow \\
& & \downarrow \\
& & 0
\end{array}
\]

By Proposition 2.10, \(D_0 \) is \(DC \)-projective, since \(G_0 \) and \(N \) are \(DC \)-projective. Now assume that \(n > 1 \). Set \(A = Ker(G_0 \to M) \), then \(DC \)-pd\(_R\)(\(A \)) \(\leq n - 1 \). By the induction hypothesis, for any integer \(k \) with \(2 \leq k \leq n \), there is an exact sequence \(0 \to P_n \to \cdots \to P_1 \to A \to 0 \) such that \(P_i \) is \(DC \)-projective if \(1 \leq i < k \) and \(P_j \) is \(C \)-projective if \(j \geq k \). Therefore, there is an exact sequence \(0 \to P_n \to \cdots \to P_1 \to G_0 \to M \to 0 \). Set \(B = Ker(P_1 \to G_0) \). For the exact sequence \(0 \to B \to P_1 \to G_0 \to M \to 0 \), by Lemma 2.16, there is an exact sequence \(0 \to B \to P'_1 \to G'_0 \to M \to 0 \) with \(P'_1 \) \(C \)-projective and \(G'_0 \) \(DC \)-projective. Therefore, we get the wanted exact sequence \(0 \to P_n \to \cdots \to P_2 \to P'_1 \to G'_0 \to M \to 0 \).

Let \(\mathcal{F} \) be a class of \(R \)-modules. A morphism \(\varphi: F \to M \) of \(\mathcal{A} \) is called an \(\mathcal{F} \)-precover of \(M \) if \(F \in \mathcal{F} \) and \(Hom(F', F) \to Hom(F', M) \to 0 \) is exact for all \(F' \in \mathcal{F} \). \(\varphi \) is called an epic \(\mathcal{F} \)-precover of \(M \) if it is an \(\mathcal{F} \)-precover and is an epimorphism. If every \(R \)-module admits an (epic) \(\mathcal{F} \)-precover, then we say \(\mathcal{F} \) is an
(epic) precovering class. M is said to have a special \mathcal{F}-precover if there is an exact sequence

$$0 \rightarrow C \rightarrow F \rightarrow M \rightarrow 0$$

with $F \in \mathcal{F}$ and $\text{Ext}^1(\mathcal{F}, C) = 0$. It is clear that M has an epic \mathcal{F}-precover if it has a special \mathcal{F}-precover. For more details about precovers, readers can refer to [5, 6, 16].

The authors in [14, Theorem 2.2] proved the following result: If M is an R-module with D-pd$_R(M) < \infty$, then M admits a special D-projective precover $\varphi : G \rightarrow M$ where pd$_R(\text{Ker}\varphi) = n - 1$ if $n > 0$ and $\text{Ker}\varphi = 0$ if $n = 0$. We can use the above theorem to generalize it to the below form,

Corollary 2.14. If M is an R-module with D_C-pd$_R(M) = n < \infty$, then M admits a special D_C-projective precover $\varphi : G \rightarrow M$ where P_C-pd$_R(\text{Ker}\varphi) \leq n - 1$ if $n > 0$ and $\text{Ker}\varphi = 0$ if $n = 0$.

Proof. If $n = 0$, it is trivial. Now assume that $n > 0$. By Theorem 2.13, there is an exact sequence $0 \rightarrow P_n \rightarrow \cdots \rightarrow P_1 \rightarrow G \rightarrow M \rightarrow 0$ such that G is D_C-projective and any P_j is P_C-projective. Then the remainder is trivial. ■

Remark 2.15. In [18, Definition 3.1], the author called a bounded G_C-projective resolution of R-module M a strict G_C-projective resolution if there is an exact sequence

$$0 \rightarrow G_n \rightarrow G_{n-1} \rightarrow \cdots \rightarrow G_1 \rightarrow G_0 \rightarrow M \rightarrow 0$$

with all G_i C-projective for $i \geq 1$ and G_0 G_C-projective. And it is proved that every R-module M of finite G_C-projective dimension always admits a strict G_C-projective resolution [18, Theorem 3.6]. Using the different method (Theorem 2.13), we can prove that the R-module M of finite D_C-projective dimension has the similar property.

Corollary 2.16. (1) Let $0 \rightarrow G_1 \rightarrow G \rightarrow M \rightarrow 0$ be a short exact sequence with G_1 and G D_C-projective and $\text{Ext}^1_R(M, F) = 0$ for any C-flat R-module F. Then M is D_C-projective.

(2) If M is an R-module with D_C-pd$_R(M) = n$, then there exists an exact sequence $0 \rightarrow M \rightarrow H \rightarrow N \rightarrow 0$ with P_C-pd$_R(H) \leq n$ and N D_C-projective.

Proof. (1) Since D_C-pd$_R(M) \leq 1$, by Corollary 2.14, there is an exact sequence $0 \rightarrow K \rightarrow G \rightarrow M \rightarrow 0$ where G is D_C-projective and K is C-projective. By the hypothesis $\text{Ext}^1_R(M, K) = 0$, the exact sequence $0 \rightarrow K \rightarrow G \rightarrow M \rightarrow 0$ is split and by Proposition 2.10, M is D_C-projective.

(2) If $n = 0$, by the definition of D_C-projective R-modules, there is an exact sequence $0 \rightarrow M \rightarrow C \otimes_R P \rightarrow K \rightarrow 0$ where P is projective and K is D_C-projective. If $n \geq 1$, by Corollary 2.14, there is an exact sequence $0 \rightarrow K \rightarrow G \rightarrow M \rightarrow 0$ with P_C-pd$_R(K) \leq n - 1$. Since G is D_C-projective, there is $0 \rightarrow G \rightarrow C \otimes_R Q \rightarrow N \rightarrow 0$ where Q is projective and N is D_C-projective. Consider the following pushout diagram:
Then $\mathcal{P}_{C,pd_R}(H) \leq n$. □

Theorem 2.17. Let M be an R-module and n be a non-negative integer. Then the following are equivalent,

1. $D_{C,pd_R}(M) \leq n$;

2. For some integer k with $0 \leq k \leq n$, there is an exact sequence $0 \rightarrow A_n \rightarrow \cdots \rightarrow A_1 \rightarrow A_0 \rightarrow M \rightarrow 0$ such that A_k is D_{C}-projective and other A_i projective or C-projective.

3. For any integer k with $0 \leq k \leq n$, there is an exact sequence $0 \rightarrow A_n \rightarrow \cdots \rightarrow A_1 \rightarrow A_0 \rightarrow M \rightarrow 0$ such that A_k is D_{C}-projective and other A_i projective or C-projective.

Proof. (3) \Rightarrow (2) and (2) \Rightarrow (1): It is clear.

(1) \Rightarrow (3): Let $0 \rightarrow G_n \rightarrow \cdots \rightarrow G_1 \rightarrow G_0 \rightarrow M \rightarrow 0$ be an exact sequence with all G_i D_{C}-projective. We prove (3) by induction on n. If $n = 1$, by Lemma 2.12, the assertion is true. Now we assume that $n \geq 2$. Set $K = \text{Ker}(G_1 \rightarrow G_0)$. For the exact sequence $0 \rightarrow K \rightarrow G_1 \rightarrow G_0 \rightarrow M \rightarrow 0$, by Lemma 2.12, we get two exact sequences $0 \rightarrow K \rightarrow G'_1 \rightarrow P_0 \rightarrow M \rightarrow 0$ with G'_1 D_{C}-projective and P_0 projective and $0 \rightarrow G_n \rightarrow \cdots \rightarrow G_2 \rightarrow G'_1 \rightarrow P_0 \rightarrow M \rightarrow 0$. Set $N = \text{Ker}(P_0 \rightarrow M)$, then $D_{C,pd_R}(N) \leq n - 1$. By the induction hypothesis, for any integer k with $1 \leq k \leq n$, there is an exact sequence $0 \rightarrow A_n \rightarrow \cdots \rightarrow A_1 \rightarrow N \rightarrow 0$ such that A_k is D_{C}-projective and other A_i are projective or C-projective. Therefore, we get the wanted exact sequence $0 \rightarrow A_n \rightarrow \cdots \rightarrow A_1 \rightarrow P_0 \rightarrow M \rightarrow 0$. Now we prove the case $k = 0$. Set $A = \text{Ker}(G_0 \rightarrow M)$, then $D_{C,pd_R}(A) \leq n - 1$. By the induction hypothesis, there is an exact sequence $0 \rightarrow B_n \rightarrow \cdots \rightarrow B_1 \rightarrow A \rightarrow 0$ such that B_1 is D_{C}-projective and other B_i projective or C-projective. So we have an exact sequence $0 \rightarrow B_n \rightarrow \cdots \rightarrow B_1 \rightarrow G_0 \rightarrow M \rightarrow 0$. Set $B = \text{Ker}(B_1 \rightarrow G_0)$. For the exact sequence $0 \rightarrow B \rightarrow B_1 \rightarrow G_0 \rightarrow M \rightarrow 0$, by Lemma 2.12, we get an exact sequence $0 \rightarrow B \rightarrow P'' \rightarrow G \rightarrow M \rightarrow 0$ with G D_{C}-projective and P'' C-projective. Hence the exact sequence $0 \rightarrow B_n \rightarrow \cdots \rightarrow B_2 \rightarrow P'' \rightarrow G \rightarrow M \rightarrow 0$ is wanted.

Let \mathcal{F} be a class of R-modules. \mathcal{F}^\perp will denote the right orthogonal class of \mathcal{F}, that is, $\mathcal{F}^\perp = \{M \mid \text{Ext}_R^1(F, M) = 0, \forall F \in \mathcal{F}\}$. Analogously, $^\perp \mathcal{F} = \{M \mid \text{Ext}_R^1(M, F) = 0, \forall F \in \mathcal{F}\}$. A cotorsion theory is a pair of classes $(\mathcal{F}, \mathcal{C})$ of
R-modules such that $\mathcal{F}^\perp = \mathcal{C}$ and $^\perp \mathcal{C} = \mathcal{F}$. A cotorsion theory $(\mathcal{F}, \mathcal{C})$ is called complete if every R-module has a special \mathcal{F}-precover and a special \mathcal{C}-preenvelope. It is called hereditary if for any exact sequence $0 \to F' \to F \to F'' \to 0$ with $F, F'' \in \mathcal{F}$ implies that $F' \in \mathcal{F}$. For more details about cotorsion theory, readers can refer to [5, 6, 16]. Let $glGpd(R) = \sup\{G_C-pd_R(M) \mid \forall M \in R \mathcal{M}\}$. We in [12, Theorem 5.1] proved that $(G_C \mathcal{P}(R), G_C \mathcal{P}(R)^\perp)$ is a complete hereditary cotorsion theory if $glGpd(R) < \infty$ and [12, Corollary 5.2] $(\mathcal{P}(R), \mathcal{P}(R)^\perp)$ is a complete hereditary cotorsion theory if $glGpd(R) < \infty$. Similarly, we prove that $(\mathcal{D}_C \mathcal{P}(R), \mathcal{D}_C \mathcal{P}(R)^\perp)$ is a complete hereditary cotorsion theory if $glDpd(R) < \infty$, where $glDpd(R) = \sup\{D_C-pd_R(M) \mid \forall M \in R \mathcal{M}\}$.

Theorem 2.18. Assume that $glDpd(R) < \infty$. Then $(\mathcal{D}_C \mathcal{P}(R), \mathcal{D}_C \mathcal{P}(R)^\perp)$ is a complete hereditary cotorsion theory.

Proof. We begin with proving that $^\perp (\mathcal{D}_C \mathcal{P}(R)^\perp) = \mathcal{D}_C \mathcal{P}(R)$. It is clear that $^\perp (\mathcal{D}_C \mathcal{P}(R)^\perp) \supseteq \mathcal{D}_C \mathcal{P}(R)$ because $Ext^1_R(A, B) = 0$ for any $A \in \mathcal{D}_C \mathcal{P}(R)$ and $B \in \mathcal{D}_C \mathcal{P}(R)^\perp$ by definition. By Corollary 2.14, there is an exact sequence $0 \to K \to G \to M \to 0$ such that G is \mathcal{D}_C-projective and $\mathcal{P}_Cpd(K) < \infty$. By Proposition 2.8, $K \in \mathcal{D}_C \mathcal{P}(R)^\perp$. So $Ext^1_R(M, K) = 0$, and then $0 \to K \to G \to M \to 0$ is split, i.e., M is a direct summand of G. By Proposition 2.10, M is \mathcal{D}_C-projective.

By Proposition 2.10, $(\mathcal{D}_C \mathcal{P}(R))$ is projectively resolving, $(\mathcal{D}_C \mathcal{P}(R)^\perp)$ is injectively resolving, so $(\mathcal{D}_C \mathcal{P}(R), \mathcal{D}_C \mathcal{P}(R)^\perp)$ is hereditary. By Corollary 2.14, $(\mathcal{D}_C \mathcal{P}(R), \mathcal{D}_C \mathcal{P}(R)^\perp)$ is complete. \blacksquare

Corollary 2.19. If $glDpd(R) = \sup\{Dpd_R(M) \mid \forall M \in R \mathcal{M}\} < \infty$, $(\mathcal{D}_C \mathcal{P}(R), \mathcal{D}_C \mathcal{P}(R)^\perp)$ is a complete hereditary cotorsion theory.

Proposition 2.20. (1) $Ext^n_R(G, M) = 0$ for all $n \geq 1$, $G \in \mathcal{D}_C \mathcal{P}(R)$ and $M \in \mathcal{D}_C \mathcal{P}(R)^\perp$.

(2) $\mathcal{P}_C = \mathcal{D}_C \mathcal{P}(R) \cap \mathcal{D}_C \mathcal{P}(R)^\perp$.

(3) If M be an R-module with $\mathcal{P}_Cpd_R(M) < \infty$, then $\mathcal{P}_Cpd_R(M) = \mathcal{D}_Cpd_R(M)$.

(4) If M be an R-module with $\mathcal{D}_Cpd_R(M) < \infty$, then $\mathcal{D}_Cpd_R(M) = \mathcal{D}_Cpd_R(M)$.

(5) If M be an R-module with $pd_R(M) < \infty$, then $pd_R(M) = \mathcal{D}_Cpd_R(M)$.

Proof. (1) For any \mathcal{D}_C-projective R-module G, there is an exact sequence

$$0 \to G' \to P_{n-1} \to \cdots \to P_1 \to P_0 \to G \to 0$$

where all P_i are projective and G' is \mathcal{D}_C-projective. So for any $M \in \mathcal{D}_C \mathcal{P}(R)^\perp$, $Ext^n_R(G, M) = Ext^n_R(G', M) = 0$.

(2) By Propositions 2.7 and 2.8, $\mathcal{P}_C \subseteq \mathcal{D}_C \mathcal{P}(R) \cap \mathcal{D}_C \mathcal{P}(R)^\perp$. Let $M \in \mathcal{D}_C \mathcal{P}(R) \cap \mathcal{D}_C \mathcal{P}^\perp$. There is a short exact sequence $0 \to M \to C \otimes_R P \to M' \to 0$ where P is projective and M' is \mathcal{D}_C-projective. So $Ext^n_R(M', M) = 0$ and
0 → M → C ⊗_R P → M′ → 0 is split. Therefore M ∈ PC and PC ⊇ DC(P(R)) ∩ DC(P(R)⁺).

(3) It is clear that PC-pdR(M) ≥ DC-pdR(M), since every C-projective R-module is DC-projective. Now we prove that PC-pdR(M) ≤ DC-pdR(M). For doing this we assume that DC-pdR(M) = n < ∞. Since PC is precovering [13, Proposition 5.10] and projectively resolving [13, Corollary 6.8], there is an exact sequence

0 → K → C ⊗_R P_{n−1} → · · · → C ⊗_R P₁ → C ⊗_R P₀ → M → 0

with K DC-projective. Since M be an R-module with PC-pdR(M) < ∞, PC-pdR(K) < ∞. By (2), K is C-projective.

(4) It is clear that GC-pdR(M) ≤ DC-pdR(M), since every DC-projective R-module is GC-projective. Now we assume that DC-pdR(M) = n < ∞. By [18, Proposition 2.1,2], it is sufficient to find a projective R-module P such that Ext^n_R(M, C ⊗_R P) ≠ 0. By Proposition 2.11, there is a flat R-module F such that Ext^n_R(M, C ⊗_R F) ≠ 0. Since PC is precovering [13, Proposition 5.10] and FC is projectively resolving [13, Corollary 6.8], there is a short exact sequence

0 → K → C ⊗_R P → C ⊗_R F → 0

where K is C-flat. By [15, Theorem 7.3], there is a long exact sequence ...

Ext^n_R(M, C ⊗_R P) → Ext^n_R(M, C ⊗_R F) → Ext^n_R(M, K) → · · · , where Ext^n+1_R(M, K) = 0. So Ext^n_R(M, C ⊗_R P) ≠ 0.

(5) It is clear that GC-pdR(M) ≤ DC-pdR(M) ≤ pdR(M). It is well-known that pdR(M) = GC-pdR(M) if pdR(M) < ∞. So pdR(M) = DC-pdR(M). □

We round off this paper with the following questions:

(1) Recall that the author in [14, Theorem 3.1] proved that for any ring R, r.glGdim(R) = r.glDdim(R). So we conjecture that glGCpd(R) = glDCpd(R), is it true?

(2) Whether is there a GC-projective R-module which is not DC-projective?

Acknowledgement. The authors wish to express their gratitude to the referee for his/her careful reading and comments which improve the presentation of this article.

References

(received 11.09.2013; in revised form 03.12.2013; available online 20.01.2014)

Chaoling Huanga, b, Peihua Zhongb

aCollege of Mathematics and Statistics, Hubei Normal University, China

bDepartment of Mathematics, Jiangxi Agricultural University, Nanchang 330045, China

\textit{E-mail:} clhuang1978@live.cn, phzhong@163.com