SOME HOMOLOGICAL PROPERTIES OF AMALGAMATION

Elham Tavasoli

Abstract. Let R and S be commutative rings, let J be an ideal of S and let $f: R \rightarrow S$ be a ring homomorphism. In this paper, we investigate some homological properties of the amalgamation of R with S along J with respect to f (denoted by $R \bowtie f J$), introduced by D’Anna and Fontana in 2007. In addition, we deal with the strongly cotorsion properties of local cohomology module of $R \bowtie f J$, when $R \bowtie f J$ is a local Noetherian ring.

1. Introduction

Throughout this paper all rings are considered commutative with identity element, and all ring homomorphisms are unital. In [7], D’Anna and Fontana considered a construction obtained involving a ring R and an ideal $I \subset R$ that was denoted by $R \bowtie I$, called amalgamated duplication, and it was defined as the following subring of $R \times R$:

$$R \bowtie I = \{ (r, r+i) \mid r \in R, i \in I \}.$$

This construction was studied from different points of view in [1, 3, 7, 10, 11, 13]. In [4], a systematic study of a new ring construction is initiated, called the “amalgamation of R with S along J with respect to f”, for a given homomorphism of rings $f: R \rightarrow S$ and ideal J of S. This construction finds its roots in a paper by J.L. Dorroh appeared in [8] and provides a general frame for studying the amalgamated duplication of a ring along an ideal. The amalgamation of R with S along J with respect to f is a subring of $R \times R$ which is defined as follows:

$$R \bowtie f J = \{ (r, f(r) + j) \mid r \in R, j \in J \}.$$

This construction is a generalization of the amalgamated duplication of a ring along an ideal and other classical constructions, such as the Nagata’s idealization are strictly related to it [4, Example 2.7 and Remark 2.8]. One of the key tools for studying $R \bowtie f J$ is based on the fact that the amalgamation can be studied in the frame of pullback constructions [4]. This point of view allows to deepen the study initiated in [4] and continued in [5] and to provide an ample description of

2010 Mathematics Subject Classification: 13H10

Keywords and phrases: amalgamation; strongly cotorsion; local cohomology.
various properties of $R \bowtie^f J$, in connection with the properties of R, J and f. In [4], necessary and sufficient conditions are provided for $R \bowtie^f J$ to inherit the properties of Noetherian ring, integral domain, and reduced ring and characterized pullbacks that can be expressed as amalgamations. In [5], they provided a complete description of the prime spectrum of $R \bowtie^f J$ and gave bounds for its dimension. In [6], the authors studied in details its prime spectrum and, when $R \bowtie^f J$ is a local Noetherian ring, some of its invariants (like the embedding dimension) and relevant properties (like Cohen-Macaulayness and Gorensteinness). Indeed, in [6, Proposition 5.7], they stated necessary and sufficient conditions for the self-injectivity of R. In connection with the strongly cotorsion properties of R, Xu in [12] introduced the terminology of strongly cotorsion modules. In [9], introduced the notion of cotorsion modules and as an special case of cotorsion modules, they stated necessary and sufficient conditions for the self-injectivity of R in [5, Proposition 5.7], they provided a complete description of the prime spectrum of $R \bowtie^f J$ in connection with the strongly cotorsion properties of $H^i_{m(R)}(R \bowtie^f J)$ in connection with the strongly cotorsion properties of $H^i_{m(R)}(R)$ and $H^i_{m(R)}(J)$, when $R \bowtie^f J$ is a local Noetherian ring. In addition, we investigate some homological properties of the amalgamation.

2. Main results

Let R and S be commutative rings with unity, let J ba an ideal of S and let $f : R \to S$ be a ring homomorphism. In the following theorem we summarize some properties of $R \bowtie^f J$ from [4] and [6].

Theorem 2.1. Let R and S be commutative rings, let J ba an ideal of S and let $f : R \to S$ be a ring homomorphism. The following statements hold.

(i) There exists the natural ring homomorphism $\varphi : R \to R \bowtie^f J$ defined by $\varphi(r) = (r, f(r))$, for all $r \in R$. The map φ is an embedding, making $R \bowtie^f J$ a ring extension of R. Furthermore, R has $(R \bowtie^f J)$-module structure by the natural projection $p_R : R \bowtie^f J \to R$.

(ii) $R \bowtie^f J$ is isomorphic as an R-module to $R \oplus J$.

(iii) $R \bowtie^f J$ is a local ring if and only if R is a local ring and $J \subseteq J(S)$, where $J(S)$ is the Jacobson radical of S. In particular, if m is the unique maximal ideal of R, then $m \bowtie^f J = \{(m, f(m) + j) \mid m \in m, j \in J\}$ is the unique maximal ideal of $R \bowtie^f J$.

(iv) Let (R, m) be a local ring and let $J \subseteq J(S)$ be finitely generated as an R-module. Then $\dim R = \dim(R \bowtie^f J) = \dim_R(R \bowtie^f J)$.

(v) Let (R, m) be a local ring and let $J \subseteq J(S)$ be finitely generated as an R-module. Then $R \bowtie^f J$ is a Cohen-Macaulay ring if and only if it is a Cohen-Macaulay R-module if and only if J is a maximal Cohen-Macaulay module.

(vi) Let $R \bowtie^f J$ be a local ring, where R is a Cohen-Macaulay ring. Assume that $f(R) + J$ satisfies Serre’s condition (S_1) such that $\dim(f(R) + J) = \dim R$, and suppose that $J \neq 0$ such that $f^{-1}(J)$ is a regular ideal of R. Then the following conditions are equivalent:

(a) $R \bowtie^f J$ is Gorenstein.
(b) \(f(R) + J \) is a Cohen-Macaulay ring, \(J \) is a canonical module of \(f(R) + J \) and \(f^{-1}(J) \) is a canonical module of \(R \).

Note that Theorem 2.1(vi) provides the necessary and sufficient conditions of self-injectivity of the ring \(R \bowtie^f J \). As a nice generalization of injectivity for modules, Enochs in [9] introduced the notion of cotorsion modules. An \(R \)-module \(M \) is called a cotorsion module if \(\text{Ext}_1^R(F, M) = 0 \) for all flat \(R \)-modules \(F \). Furthermore, as an special case of cotorsion modules Xu in [12] introduced the terminology of strongly cotorsion modules. An \(R \)-module \(M \) is called a strongly cotorsion module if \(\text{Ext}_1^R(F, M) = 0 \) for all \(R \)-modules \(F \) with finite flat dimension. One can easily show that if \(M \) is a strongly cotorsion \(R \)-module, then \(\text{Ext}_i^R(F, M) = 0 \) for all \(i \geq 1 \) and all \(R \)-modules \(F \) with finite flat dimension. In the following theorem we investigate the strongly cotorsion properties of \(H^{\dim R}_m(R \bowtie^f J) \) in connection with the strongly cotorsion properties of \(H^{\dim R}_m(R) \) and \(H^{\dim R}_m(J) \), when \(R \bowtie^f J \) is a local Noetherian ring.

Theorem 2.2. We preserve the assumptions of Theorem 2.1, and moreover we assume that \((R, \mathfrak{m}) \) is a Noetherian local ring with dimension \(d \) and \(0 \neq J \subseteq J(S) \) is an ideal such that \(J \) is a finitely generated \(R \)-module. Then \(H^{d}_{\mathfrak{m} \bowtie^f J}(R \bowtie^f J) \) is a strongly cotorsion \(R \)-module if and only if \(H^{d}_{\mathfrak{m}}(R) \) and \(H^{d}_{\mathfrak{m}}(J) \) are strongly cotorsion \(R \)-modules.

Proof. By Theorem 2.1(iv), \(R \) and \(R \bowtie^f J \) have the same dimension \(d \) and \(R \bowtie^f J \) is a local ring with maximal ideal \(\mathfrak{m}_0 = \mathfrak{m} \bowtie^f J \). Then we have the following \(R \)-isomorphisms:

\[
H^{d}_{\mathfrak{m}_0}(R \bowtie^f J) \cong H^{d}_{\mathfrak{m}}(R) \bowtie^f J \cong H^{d}_{\mathfrak{m}}(R \bowtie J) \cong H^{d}_{\mathfrak{m}}(R) \oplus H^{d}_{\mathfrak{m}}(J).
\]

The first isomorphism follows from [2, Theorem 4.2.1] and the second one follows from Theorem 2.1(ii). Now assume that \(H^{d}_{\mathfrak{m}_0}(R \bowtie^f J) \) is a strongly cotorsion \(R \)-module. Therefore, for any \(R \)-module \(F \) with finite flat dimension we have

\[
0 = \text{Ext}_1^R(F, H^d_{\mathfrak{m}_0}(R \bowtie^f J)) \cong \text{Ext}_1^R(F, H^d_{\mathfrak{m}}(R) \bowtie J) \cong \text{Ext}_1^R(F, H^d_{\mathfrak{m}}(R)) \oplus \text{Ext}_1^R(F, H^d_{\mathfrak{m}}(J)).
\]

Hence, \(\text{Ext}_1^R(F, H^d_{\mathfrak{m}}(J)) = \text{Ext}_1^R(F, H^d_{\mathfrak{m}}(R)) = 0 \) for any \(R \)-module \(F \) with finite flat dimension and this implies that \(H^d_{\mathfrak{m}}(R) \) and \(H^d_{\mathfrak{m}}(J) \) are strongly cotorsion \(R \)-modules. The converse can be proven in a similar way.

Let \(R \) be a ring and let \(I \) be an ideal of \(R \). The amalgamated duplication of \(R \) along \(I \), denoted by \(R \bowtie I \), is the special case of \(R \bowtie^f I \) where \(f : R \to R \) is an identity homomorphism, see [7]. Note that if \((R, \mathfrak{m}) \) is a Noetherian local ring of dimension \(d \), then \(R \bowtie I \) is a Noetherian local ring with maximal ideal \(\mathfrak{m} \bowtie I = \{(m, m + i) \mid m \in \mathfrak{m}, i \in I\} \) of dimension \(d \), see [7, Corollary 3.3 and Theorem 3.5]. Therefore we have the following result.

Corollary 2.3. Let \((R, \mathfrak{m}) \) be a Noetherian local ring of dimension \(d \) and let \(0 \neq I \) be an ideal of \(R \). Then \(H^{d}_{\mathfrak{m} \bowtie I}(R \bowtie I) \) is a strongly cotorsion \(R \)-module if and only if \(H^{d}_{\mathfrak{m}}(R) \) and \(H^{d}_{\mathfrak{m}}(I) \) are strongly cotorsion \(R \)-modules.
In the sequel we investigate some homological properties of the amalgamation.

Proposition 2.4. Let \(f : R \to S \) be a ring homomorphism and let \(J \) be a non-zero ideal of \(S \) which is a flat \(R \)-module. Then the following statements hold for any \(R \)-module \(M \).

(i) \(\text{fd}_R(M) = \text{fd}_{R \otimes_R J}(M \otimes_R (R \otimes_R J)) \).

(ii) \(\text{pd}_R(M) = \text{pd}_{R \otimes_R J}(M \otimes_R (R \otimes_R J)) \).

Proof. By Theorem 2.1(ii), the \(R \)-module \(R \otimes_R J \) is faithfully flat since \(J \) is flat as an \(R \)-module. First, suppose that \(\text{fd}_R(M) \leq n \) (resp. \(\text{pd}_R(M) \leq n \)) and pick an \(n \)-step flat (resp. projective) resolution of \(M \) over \(R \) as follows:

\[
(*) : 0 \to F_n \to F_{n-1} \to \cdots \to F_0 \to M \to 0.
\]

Applying the functor \(- \otimes_R (R \otimes_R J) \) to \((*)\), we obtain the exact sequence of \((R \otimes_R J)\)-modules:

\[
0 \to F_n \otimes_R (R \otimes_R J) \to \cdots \to F_0 \otimes_R (R \otimes_R J) \to M \otimes_R (R \otimes_R J) \to 0.
\]

Thus, \(\text{fd}_{R \otimes_R J}(M \otimes_R (R \otimes_R J)) \leq n \) (resp. \(\text{pd}_{R \otimes_R J}(M \otimes_R (R \otimes_R J)) \leq n \)). Conversely, suppose that \(\text{fd}_{R \otimes_R J}(M \otimes_R (R \otimes_R J)) \leq n \) (resp. \(\text{pd}_{R \otimes_R J}(M \otimes_R (R \otimes_R J)) \leq n \)). Since \(R \otimes_R J \) is a flat \(R \)-module, we conclude that for any \(R \)-module \(N \) and each \(i \geq 1 \) we have:

\[
(1) : \text{Tor}^R_i(M, N \otimes_R (R \otimes_R J)) \cong \text{Tor}^R_{i+1}(M \otimes_R (R \otimes_R J), N \otimes_R (R \otimes_R J))
\]

\[
(2) : \text{Ext}^R_i(M, N \otimes_R (R \otimes_R J)) \cong \text{Ext}^R_{i+1}(M \otimes_R (R \otimes_R J), N \otimes_R (R \otimes_R J))
\]

Furthermore, \(\text{Tor}^R_i(M, N) \) and \(\text{Ext}^R_i(M, N) \) are direct summands of \(\text{Tor}^R_i(M, N \otimes_R (R \otimes_R J)) \) and \(\text{Ext}^R_i(M, N \otimes_R (R \otimes_R J)) \) respectively. Then, we conclude that \(\text{fd}_R(M) \leq n \) (resp. \(\text{pd}_R(M) \leq n \)).

Proposition 2.5. Let \(f : R \to S \) be a ring homomorphism and let \(J \) be a non-zero ideal of \(S \) which is a flat \(R \)-module. Then the following statements hold for every \(R \)-module \(M \).

(i) \(\text{id}_R(M) = \text{id}_R(M \otimes_R (R \otimes R J)) \)

(ii) \(\text{fd}_R(M) = \text{fd}_R(M \otimes_R (R \otimes R J)) \)

Proof. Note that \(R \otimes R J \) is a faithfully flat \(R \)-module. (i) follows from [13, Corollary 2.9] and (ii) follows from [13, Corollary 2.11].

Corollary 2.6. We preserve the assumptions of Proposition 2.5. For every \(R \)-module \(M \), we have

\[
\text{fd}_R(M) = \text{fd}_{R \otimes_R J}(M \otimes_R (R \otimes_R J)) = \text{fd}_R(M \otimes_R (R \otimes_R J)).
\]

Proof. By Proposition 2.4, we have \(\text{fd}_R(M) = \text{fd}_{R \otimes_R J}(M \otimes_R (R \otimes_R J)) \), and by Proposition 2.5, \(\text{fd}_R(M) = \text{fd}_R(M \otimes_R (R \otimes_R J)) \).

Proposition 2.7. Let \(f : R \to S \) be a ring homomorphism and let \(J \) be a non-zero ideal of \(S \). Then the following statements hold.

...
If M is a (faithfully) injective R-module, then $\operatorname{Hom}_R(R \bowtie_f J, M)$ is a (faithfully) injective $(R \bowtie_f J)$-module.

(ii) Every injective $(R \bowtie_f J)$-module is a direct summand of the R-module $\operatorname{Hom}_R(R \bowtie_f J, M)$, where M is an injective R-module.

Proof. (i) The following sequence of $(R \bowtie_f J)$-isomorphisms makes clear that if M is a (faithfully) injective R-module, then $\operatorname{Hom}_R(R \bowtie_f J, M)$ is a (faithfully) injective $(R \bowtie_f J)$-module.

$$\operatorname{Hom}_{R \bowtie_f J}(-, \operatorname{Hom}_R(R \bowtie_f J, M)) \cong \operatorname{Hom}_R((R \bowtie_f J) \otimes_{R \bowtie_f J} -, M) \cong \operatorname{Hom}_R(-, M).$$

Note that in the above sequence, the first isomorphism follows from Hom-tensor adjointness, and the second isomorphism is induced by tensor cancellation.

(ii) Let E be an injective $(R \bowtie_f J)$-module. It is enough to show that E is embedded into an R-module of the form $\operatorname{Hom}_R(R \bowtie_f J, M)$ where M is an injective R-module. Consider E as an R-module and embed it into an injective R-module M. Then use isomorphisms in part (i), to convert the monomorphism of R-modules $E \hookrightarrow M$ to a monomorphism of $(R \bowtie_f J)$-modules $E \hookrightarrow \operatorname{Hom}_R(R \bowtie_f J, M)$.

REFERENCES

(received 20.01.2016; in revised form 25.05.2016; available online 27.06.2016)

Department of Mathematics, East Tehran Branch, Islamic Azad University, Tehran, Iran

E-mail: elhamtavasoli@ipm.ir