ON RELATIVE GORENSTEIN HOMOLOGICAL DIMENSIONS WITH RESPECT TO A DUALIZING MODULE

Maryam Salimi

Abstract. Let R be a commutative Noetherian ring. The aim of this paper is studying the properties of relative Gorenstein modules with respect to a dualizing module. It is shown that every quotient of an injective module is G_C-injective, where C is a dualizing R-module with $\text{id}_R(C) \leq 1$. We also prove that if C is a dualizing module for a local integral domain, then every G_C-injective R-module is divisible. In addition, we give a characterization of dualizing modules via relative Gorenstein homological dimensions with respect to a semidualizing module.

1. Introduction

Throughout this paper R is a commutative ring and all modules are unital. The notion of a “semidualizing module” is one of the most central notion in the relative homological algebra. This notion was first introduced by Foxby [6]. Then Vasconcelos [16] and Golod [7] rediscovered these modules using different terminology for different purposes. This notion has been investigated by many authors from different points of view; see for example [1, 4, 8, 14].

Among various research areas on semidualizing modules, one basically focuses on extending the “absolute” classical notion of homological algebra to the “relative” setting with respect to a semidualizing module. For instance, this has been done for the classical and Gorenstein homological dimensions mainly through the works of Golod [7], Holm and Jørgensen [8] and White [17], and (co)homological theories have been extended to the relative setting with respect to a semidualizing module mainly through the works of Takahashi and White [14], Salimi, Tavasoli, Yassemi [11] and Salimi et al. [10].

Following this idea, the present paper aims at studying the properties of relative Gorenstein modules with respect to a dualizing module which actually strengthens the classical results. In particular, in Proposition 3.6, it is shown that every quotient of an injective module is G_C-injective, where C is a dualizing R-module.
with \(\text{id}_R(C) \leq 1 \). We also prove that if \(C \) is a dualizing module for an integral domain, then every \(G_C \)-injective \(R \)-module is divisible, see Proposition 3.7. In addition, Theorem 3.10 is investigated whether the relative Gorenstein homological dimensions with respect to a semidualizing module have the ability to detect when a semidualizing module is dualizing. Finally, we prove that the \(G_C \)-projective dimension of a finitely generated \(R \)-module is closely related to its depth, see Theorem 3.12.

2. Preliminaries

Throughout this paper \(R \) is a commutative Noetherian ring and \(\mathcal{M}(R) \) denotes the category of \(R \)-modules. We use the term “subcategory” to mean a “full, additive subcategory \(\mathcal{X} \subseteq \mathcal{M}(R) \) such that, for all \(R \)-modules \(M \) and \(N \), if \(M \cong N \) and \(M \in \mathcal{X} \), then \(N \in \mathcal{X} \).” Write \(\mathcal{P}(R) \), \(\mathcal{I}(R) \) and \(\mathcal{F}(R) \) for the subcategories of all projective, injective and flat \(R \)-modules, respectively.

An \(R \)-complex is a sequence
\[
X = \cdots \xrightarrow{\partial_{n+1}^X} X_n \xrightarrow{\partial_n^X} X_{n-1} \xrightarrow{\partial_{n-1}^X} \cdots
\]
of \(R \)-modules and \(R \)-homomorphisms such that \(\partial_{n+1}^X \partial_n^X = 0 \) for each integer \(n \).

Definition 2.1. Let \(\mathcal{X} \) be a class of \(R \)-modules and let \(M \) be an \(R \)-module. An \(\mathcal{X} \)-resolution of \(M \) is a complex of \(R \)-modules in \(\mathcal{X} \) of the form
\[
X = \cdots \xrightarrow{\partial_{n+1}^X} X_n \xrightarrow{\partial_n^X} X_{n-1} \xrightarrow{\partial_{n-1}^X} \cdots
\]
such that \(H_0(X) \cong M \) and \(H_n(X) = 0 \) for \(n \geq 1 \). The \(\mathcal{X} \)-projective dimension of \(M \) is the quantity
\[
\mathcal{X} \text{-pd}_R(M) = \inf \{ \sup \{ n \mid X_n \neq 0 \} \mid X \text{ is an } \mathcal{X} \text{-resolution of } M \}.
\]
In particular, \(\mathcal{X} \text{-pd}_R(0) = -\infty \). The modules of \(\mathcal{X} \)-projective dimension zero are the non-zero modules in \(\mathcal{X} \).

Dually, an \(\mathcal{X} \)-coresolution of \(M \) is a complex of \(R \)-modules in \(\mathcal{X} \) of the form
\[
X = \cdots \xleftarrow{\partial_{n+1}^X} X_n \xrightarrow{\partial_n^X} X_{n-1} \xleftarrow{\partial_{n-1}^X} \cdots
\]
such that \(H_0(X) \cong M \) and \(H_n(X) = 0 \) for \(n \leq -1 \). The \(\mathcal{X} \)-injective dimension of \(M \) is the quantity
\[
\mathcal{X} \text{-id}_R(M) = \inf \{ \sup \{ n \mid X_n \neq 0 \} \mid X \text{ is an } \mathcal{X} \text{-coresolution of } M \}.
\]
In particular, \(\mathcal{X} \text{-id}_R(0) = -\infty \). The modules of \(\mathcal{X} \)-injective dimension zero are the non-zero modules in \(\mathcal{X} \).

When \(\mathcal{X} \) is the class of projective \(R \)-modules we write \(\text{pd}_R(M) \) for the associated homological dimension and call it the projective dimension of \(M \). Similarly, the injective dimension and flat dimension of \(M \) are denoted \(\text{id}_R(M) \) and \(\text{fd}_R(M) \) respectively.
The notion of semidualizing modules, defined next, goes back at least to Vasconcelos [16], but was rediscovered by others.

Definition 2.2. A finitely generated R-module C is called **semidualizing** if the natural homothety homomorphism $\chi_C^R : R \to \text{Hom}_R(C, C)$ is an isomorphism and $\text{Ext}^1_R(C, C) = 0$. An R-module D is called **dualizing** if it is semidualizing and has finite injective dimension.

Fact 2.3 A free R-module of rank 1 is semidualizing, and indeed this is the only semidualizing module over a Gorenstein local ring.

For a semidualizing R-module C, we set

- $\mathcal{P}_C(R) = \{ P \otimes_R C \mid P \text{ is a projective } R\text{-module}\}$,
- $\mathcal{F}_C(R) = \{ F \otimes_R C \mid F \text{ is a flat } R\text{-module}\}$,
- $\mathcal{I}_C(R) = \{ \text{Hom}_R(C, I) \mid I \text{ is an injective } R\text{-module}\}$.

The R-modules in $\mathcal{P}_C(R)$, $\mathcal{F}_C(R)$ and $\mathcal{I}_C(R)$ are called C-projective, C-flat and C-injective, respectively.

The next definition is due to Holm and Jørgensen [8].

Definition 2.4. Let C be a semidualizing R-module. A **complete \mathcal{I}_C-resolution** is a complex Y of R-modules satisfying the following:

(i) Y is exact and $\text{Hom}_R(I, Y)$ is exact for each $I \in \mathcal{I}_C(R)$, and
(ii) $Y_i \in \mathcal{I}_C(R)$ for all $i \geq 0$ and Y_i is injective for all $i < 0$.

An R-module M is **G_C-injective** if there exists a complete \mathcal{I}_C-resolution Y such that $M \cong \text{coker}(\partial_Y^n)$; in this case Y is a **complete \mathcal{I}_C-resolution** of M. The class of all G_C-injective R-modules is denoted by $\mathcal{GI}_C(R)$. In the case $C = R$, we use the more common terminology “complete injective resolution” and “Gorenstein injective module” and the notation $\mathcal{GI}(R)$.

A **complete \mathcal{P}_C-resolution** is a complex X of R-modules such that:

(i) X is exact and $\text{Hom}_R(X, P)$ is exact for each $P \in \mathcal{P}_C(R)$, and
(ii) X_i is projective for all $i \geq 0$ and $X_i \in \mathcal{P}_C(R)$ for all $i < 0$.

An R-module M is **G_C-projective** if there exists a complete \mathcal{P}_C-resolution X such that $M \cong \text{coker}(\partial_X^n)$; in this case X is a **complete \mathcal{P}_C-resolution** of M. The class of all G_C-projective R-modules is denoted by $\mathcal{GP}_C(R)$. In the case $C = R$, we use the more common terminology “complete projective resolution” and “Gorenstein projective module” and the notation $\mathcal{GP}(R)$.

A **complete \mathcal{F}_C-resolution** is a complex Z of R-modules such that:

(i) Z is exact and $Z \otimes_R I$ is exact for each $I \in \mathcal{I}_C(R)$, and
(ii) Z_i is flat for all $i \geq 0$ and $Z_i \in \mathcal{F}_C(R)$ for all $i < 0$.

An R-module M is **G_C-flat** if there exists a complete \mathcal{F}_C-resolution Z such that $M \cong \text{coker}(\partial_Z^n)$; in this case Z is a **complete \mathcal{F}_C-resolution** of M. The class of all
On relative Gorenstein homological dimensions

121

G_C-flat R-modules is denoted by $\mathcal{G}_C(R)$. In the case $C = R$, we use the more
common terminology “complete flat resolution” and “Gorenstein flat module” and
the notation \mathcal{G}_R.

3. Main results

In [10, Proposition 5.2] and [14, Theorem 2.11], the authors demonstrated a
strong connection between the classical homological dimensions and relative homo-
logical dimensions with respect to a semidualizing R-module which are collected in
the following.

Fact 3.1. Let C be a semidualizing R-module, and let M be an R-module.
Then the following statements hold.
(i) \mathcal{P}_C-$\text{pd}_R(M) = \text{pd}_R(\text{Hom}_R(C, M))$.
(ii) \mathcal{P}_C-$\text{pd}_R(C \otimes_R M) = \text{pd}_R(M)$.
(iii) \mathcal{I}_C-$\text{id}_R(M) = \text{id}_R(C \otimes_R M)$.
(iv) \mathcal{I}_C-$\text{id}_R(\text{Hom}_R(C, M)) = \text{id}_R(M)$.
(v) \mathcal{F}_C-$\text{pd}_R(M) = \text{fd}_R(\text{Hom}_R(C, M))$.
(vi) \mathcal{F}_C-$\text{pd}_R(C \otimes_R M) = \text{fd}_R(M)$.
(vii) \mathcal{F}_C-$\text{pd}_R(M) \leq \mathcal{P}_C$-$\text{pd}_R(M)$.

In [15, Proposition 2.4 and Corollary 2.5], Tang showed that in the case C is a
dualizing R-module, the connection between the classical homological dimensions
and relative homological dimensions with respect to C is more closed as follows.

Fact 3.2. Let C be a dualizing R-module with $\text{id}_R(C) \leq n$, and let M be an
R-module. Then the following statements hold.
(i) \mathcal{F}_C-$\text{pd}_R(M) < \infty \Rightarrow \mathcal{P}_C$-$\text{pd}_R(M) \leq n$.
(ii) \mathcal{I}_C-$\text{id}_R(M) \leq n \Leftrightarrow \mathcal{I}_C$-$\text{id}_R(M) < \infty \Leftrightarrow \text{fd}_R(M) < \infty \Leftrightarrow \text{id}_R(M) \leq n$.
(iii) \mathcal{F}_C-$\text{pd}_R(M) \leq n \Leftrightarrow \mathcal{F}_C$-$\text{pd}_R(M) < \infty \Leftrightarrow \text{id}_R(M) < \infty \Leftrightarrow \text{id}_R(M) \leq n$.

Using Facts 3.1 and 3.2 we have the following result.

Proposition 3.3. Let C be a dualizing R-module with $\text{id}_R(C) \leq n$, and let M be an
R-module. Then
(i) \mathcal{I}_C-$\text{id}_R(M) < \infty \Rightarrow \text{pd}_R(M) \leq n$.
(ii) $\text{pd}_R(M) < \infty \Rightarrow \mathcal{I}_C$-$\text{id}_R(M) \leq n$.
(iii) \mathcal{P}_C-$\text{pd}_R(M) < \infty \Rightarrow \text{id}_R(M) \leq n$.
(iv) $\text{id}_R(M) < \infty \Rightarrow \mathcal{P}_C$-$\text{pd}_R(M) \leq n$.

Proof. We just prove (i) and (ii).
(i) Let \mathcal{I}_C-$\text{id}_R(M) < \infty$. Then Fact 3.2 implies that $\text{fd}_R(M) \leq n$. By Fact
3.1, \mathcal{F}_C-$\text{pd}_R(C \otimes_R M) \leq n$, and another use of Fact 3.2 implies that \mathcal{P}_C-$\text{pd}_R(C \otimes_R M) \leq n$. Now the assertion follows from Fact 3.1.
(ii) Since $\text{pd}_R(M) < \infty$, we have $\text{fd}_R(M) < \infty$ and the assertion follows from
Fact 3.2.
In the sequel, we show that if C is a dualizing R-module, then the class of G_C-injective R-modules has nice properties as well as the class of Gorenstein modules over Gorenstein rings.

Theorem 3.4. Let C be a dualizing R-module with $\text{id}_R(C) = n \geq 1$ and let G be an R-module. Then G is G_C-injective if and only if there exists an exact sequence

$$G_{n-1} \rightarrow \cdots \rightarrow G_1 \rightarrow G_0 \rightarrow G \rightarrow 0,$$

where G_{n-1}, \ldots, G_0 are G_C-injective R-modules.

Proof. The forward implication holds by definition. For the reverse implication, we just prove the case $n = 1$. By assumption there exists a short exact sequence (\ast): $0 \rightarrow K \rightarrow G_0 \rightarrow G \rightarrow 0$ where G_0 is an G_C-injective R-module and K is an R-module. Let L be an R-module with $\mathcal{T}_C-\text{id}_R(L) < \infty$. Then $\text{pd}_R(L) \leq 1$, by Proposition 3.3. By applying the functor $\text{Hom}_R(L, -)$ on the exact sequence (\ast), we get that $\text{Ext}^i_R(L, G) \cong \text{Ext}^{i+1}_R(L, K)$ for all $i \geq 1$. Note that $\text{Ext}^{i+1}_R(L, K) = 0$ for all $i \geq 1$, since $\text{pd}_R(L) \leq 1$. So, the assertion follows from the dual of [17, Proposition 2.12].

It is known that $\mathcal{I}_C(R) \subseteq G\mathcal{I}_C(R)$ and $\mathcal{I}(R) \subseteq G\mathcal{I}_C(R)$. So we have the following result.

Corollary 3.5. Let C be a dualizing R-module with $\text{id}_R(C) = n \geq 1$ and let G be an R-module. Then the following statements hold.

(i) G is G_C-injective if and only if there exists an exact sequence

$$\text{Hom}_R(C, E_{n-1}) \rightarrow \cdots \rightarrow \text{Hom}_R(C, E_1) \rightarrow \text{Hom}_R(C, E_0) \rightarrow G \rightarrow 0,$$

where E_{n-1}, \ldots, E_0 are injective R-modules.

(ii) If there exists an exact sequence

$$E_{n-1} \rightarrow \cdots \rightarrow E_1 \rightarrow E_0 \rightarrow G \rightarrow 0,$$

where E_{n-1}, \ldots, E_0 are injective R-modules, then G is G_C-injective.

Note that the dual of Theorem 3.4 and Corollary 3.5 hold too.

Proposition 3.6. Let C be a dualizing R-module with $\text{id}_R(C) \leq 1$. Then every quotient of an injective module is G_C-injective.

Proof. Let (\ast): $0 \rightarrow M \rightarrow E \rightarrow E/M \rightarrow 0$ be a short exact sequence of R-modules such that E is injective. Let L be an R-module such that $\text{pd}_R(L) < \infty$. Using Proposition 3.3, we conclude that $\text{pd}_R(L) \leq 1$. By applying the functor $\text{Hom}_R(L, -)$ on the sequence (\ast), we have the following long exact sequence

$$0 \rightarrow \text{Hom}_R(L, M) \rightarrow \text{Hom}_R(L, E) \rightarrow \text{Hom}_R(L, E/M) \rightarrow \cdots.$$

Therefore we get $\text{Ext}^i_R(L, E/M) \cong \text{Ext}^{i+1}_R(L, M) = 0$ for all $i \geq 1$. By dual of [17, Proposition 2.12] and Proposition 3.3, we get the assertion.■
It is known that over an integral domain R, every injective R-module is divisible. In [2, Lemma 5], it is shown that over local Gorenstein integral domain R of Krull dimension at most one, an R-module is Gorenstein injective if and only if it is divisible. In the following proposition we prove the relative counterpart of this result.

Proposition 3.7. Let R be an integral domain and let C be a dualizing R-module. Then every G_C-injective R-module is divisible.

Proof. Let M be a G_C-injective R-module and let $0 \neq r \in R$. Then $\text{pd}_R(R/rR) \leq 1$. By dual of [17, Proposition 2.12] and Proposition 3.3, we have $\text{Ext}^1_R(R/rR, M) = 0$. Hence $M \xrightarrow{r} M \rightarrow 0$ is exact and therefore M is divisible. $lacksquare$

It is known that in local regular rings, every module has finite homological dimensions. In [12, Corollary 3.2], it is shown that the I_C-injective dimension and \mathcal{P}_C-projective dimension have the ability to detect the regularity of R, where C is a semidualizing R-module. In addition, finiteness of Gorenstein homological dimensions characterizes Gorenstein local rings as follows.

Theorem 3.8. [5, Theorem 2.19 and Corollary 3.23] Let (R, \mathfrak{m}, k) be a local ring. Then the following statements are equivalent:

(i) R is Gorenstein.

(ii) $\text{Gpd}_R(M) < \infty$ for all R-modules M.

(iii) $\text{Gpd}_R(k) < \infty$.

(iv) $\text{Gid}_R(M) < \infty$ for all R-modules M.

(v) $\text{Gid}_R(k) < \infty$.

In the following theorem, we show that the relative Gorenstein homological dimensions with respect to a semidualizing module have also the ability to detect when a semidualizing module is dualizing. First, we recall the notion of trivial extension of the ring R by an R-module. If M is an R-module, then the direct sum $R \oplus M$ can be equipped with the product:

$$(a, m)(a', m') = (aa', am' + a'm),$$

where $a, a' \in R$ and $m, m' \in M$. This turns $R \oplus M$ into a ring which is called the trivial extension of R by M and denoted $R \ltimes M$. There are canonical ring homomorphisms $R \xrightarrow{=} R \ltimes M$, which enable us to view R-modules as $(R \ltimes M)$-modules and vice versa.

Let C be a semidualizing module. In [8], it is shown that the three G_C-dimensions always agree with the changed ring dimensions as follows.

Fact 3.9. [8, Theorem 2.16] Let C be a semidualizing R-module. The following statements hold for every R-module M.

(i) $\mathcal{G}I_C \dashv \text{id}_R(M) = \text{Gid}_{R \ltimes C}(M)$.

(ii) $\mathcal{G}\mathcal{P}_C \dashv \text{pd}_R(M) = \text{Gpd}_{R \ltimes C}(M)$.

(iii) $\mathcal{G}\mathcal{F}_C \dashv \text{pd}_R(M) = \text{Gfd}_{R \ltimes C}(M)$.
For an R-module M, Reiten and Foxby in [6] and [9] proved that $R \ltimes M$ is Gorenstein if and only if R is Cohen-Macaulay and M is a dualizing module. Now Theorem 3.8 and Fact 3.9 imply the following result.

Proposition 3.10. Let (R, \mathfrak{m}, k) be a local ring and let C be a semidualizing R-module. Then the following statements are equivalent:

(i) C is dualizing.

(ii) $\mathcal{G}C \cdot \text{pd}_R(M) < \infty$ for all R-modules M.

(iii) $\mathcal{G}C \cdot \text{id}_R(k) < \infty$.

(iv) $\mathcal{G}\mathcal{T}_C \cdot \text{id}_R(M) < \infty$ for all R-modules M.

(v) $\mathcal{G}\mathcal{T}_C \cdot \text{id}_R(k) < \infty$.

The projective dimension of a finitely generated R-module is closely related to its depth. This is captured by the Auslander-Buchsbaum Formula [3, Theorem 1.3.3], which states that for every finitely generated R-module M of finite projective dimension there is an equality $\text{pd}_R(M) = \text{depth} R - \text{depth}_R M$. The Gorenstein counterpart actually strengthens the classical result; this is a recurring theme in Gorenstein homological algebra as follows.

Theorem 3.11. [5, Theorem 1.25 and Proposition 2.16] Let R be a local ring and let M be a finitely generated R-module with finite Gorenstein projective dimension. Then

$$\text{Gpd}_R(M) = \text{depth} R - \text{depth}_R M.$$

In the following theorem, we show that the G_C-projective dimension of a finitely generated R-module is also closely related to its depth.

Theorem 3.12. Let C be a semidualizing module for local ring R and let M be a finitely generated R-module with finite G_C-projective dimension. Then

$$\mathcal{G}C \cdot \text{pd}_R(M) = \text{depth} R - \text{depth}_R M.$$

Proof. By Fact 3.9, we have $\mathcal{G}C \cdot \text{pd}_R(M) = \text{Gpd}_{R \ltimes C}(M)$ and Theorem 3.11 implies that $\mathcal{G}C \cdot \text{pd}_R(M) = \text{depth}(R \ltimes C) - \text{depth}_{R \ltimes C}(M)$. Note that by [3, Exercise 1.2.26], $\text{depth}_{R \ltimes C}(M) = \text{depth}_R M$ and by [13, Theorem 2.2.6], $\text{depth}(R \ltimes C) = \text{min}\{\text{depth} R, \text{depth}_R C\} = \text{depth} R$, which implies the assertion.

Proposition 3.13. Let R be a local ring and let C be a dualizing R-module. If M is a finitely generated R-module, then M is G_C-projective if and only if M is maximal Cohen-Macaulay.

Proof. Note that R is Cohen-Macaulay, since R has a finitely generated module of finite injective dimension. For the forward implication, $0 = \mathcal{G}C \cdot \text{pd}_R(M) = \text{depth} R - \text{depth}_R M$. So, $\text{depth}_R M = \text{depth} R = \dim R$ which implies that M is maximal Cohen-Macaulay. For the reverse implication, we have $\mathcal{G}C \cdot \text{pd}_R(M) < \infty$ by Proposition 3.10. Now the assertion follows from Theorem 3.12.

On relative Gorenstein homological dimensions

REFERENCES

(Received 14.07.2016; in revised form 15.01.2017; available online 26.01.2017)

Department of Mathematics, East Tehran Branch, Islamic Azad University, Tehran, Iran
E-mail: maryamsalimi@ipm.ir