GENERALIZED EIGENVECTOR EXPANSION
FOR WEAKLY PERTURBED DISCRETE OPERATORS

M. Dostanić

Abstract. In this paper we consider the expansion theorem in generalized eigenvectors of the operator $A = L + T$, where L is a discrete, positive selfadjoint operator in a separable Hilbert space, and T is a closed operator which is subordinated to L in a certain sense.

Let \mathcal{H} be a separable Hilbert space over \mathbb{C} and let L be a discrete, positive selfadjoint operator on \mathcal{H}. Vector $x \neq 0$ is a generalized eigenvector (for the eigenvalue λ) if for some $k \geq 1$ $(\lambda - L)^k x = 0$. Denote by $N(\cdot)$ the eigenvalue distribution function of L. Let $\mathcal{D}(L)$ and $\mathcal{D}(T)$ denote the domain of the operators L and T, respectively.

In this paper we consider the expansion theorem for the operator $A = L + T$, where T is a closed operator which is subordinated to L in a certain sense.

In the case when T is a bounded operator, $L = L^*$ is a discrete operator and $\lambda_{n+1}(L) - \lambda_n(L) \to \infty$ $(n \to \infty)$ the problem was solved in [3].

Theorem 1. Suppose that T is a closed operator on \mathcal{H}, $L = L^*$ is a positive discrete operator, $\mathcal{D}(L) \subset \mathcal{D}(T)$, $A = L + T$,
$$||Tx|| \leq C||L^0 x||, \quad x \in \mathcal{D}(L),$$
and numbers α and β satisfy one of the following two conditions:

a) $0 < \beta < 1$, $0 < \alpha < \frac{2}{3}(1 - \beta)$ and $N(t) = C_0 t^\alpha (1 + o(1))$ ($t \to +\infty$);

b) $0 < \beta < 1$, $0 < \alpha < 1 - \beta$ and $N(t) = C_0 t^\alpha (1 + O(t^{-\delta}))$, $\alpha < \delta < 1$ ($t \to +\infty$).

Then for every $f \in \mathcal{D}(L)$ we have
$$f = \sum_{k=1}^{\infty} \left(\sum_{s=1}^{n_k} c_{ks} x_{ks} \right),$$
where x_{ks} are generalized eigenvectors of A and $c_{ks} \in \mathbb{C}$.

Proof. Suppose that $\{e_n\}_{n=1}^{\infty}$ is the system of eigenvectors of L ($Le_n = \lambda_n e_n$). Since $L = L^*$, $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis of \mathcal{H}. Then
$$(L - \lambda)^{-1} = \sum_{n=1}^{\infty} \frac{\langle \cdot, e_n \rangle e_n}{\lambda_n - \lambda}.$$
and

\[T(L - \lambda)^{-1} = \sum_{n=1}^{\infty} \frac{\langle \cdot, e_n \rangle T e_n}{\lambda_n - \lambda}. \]

From (1) and (3), applying Cauchy’s inequality, we conclude that

\[\|T(L - \lambda)^{-1}\| \leq C^{1/2} \left(\sum_{n=1}^{\infty} \frac{\lambda_n^{2\beta}}{|\lambda - \lambda_n|^2} \right)^{1/2}. \]

By the following Lemma, the righthandside of this inequality tends to zero if \(\lambda \) belongs to a certain sequence of circles with radii tending to infinity.

Lemma. If either of the conditions a) and b) of the Theorem 1 is satisfied, then there exists a sequence of circles \(\Gamma_k = \{ \lambda : |\lambda| = r_k \} \), \(\lim_{k \to \infty} r_k = \infty \), such that

\[\lim_{k \to \infty} \max_{\lambda \in \Gamma_k} \left(\sum_{n=1}^{\infty} \frac{\lambda_n^{2\beta}}{|\lambda - \lambda_n|^2} \right) = 0. \]

Since \(\lim_{n \to \infty} \max_{\lambda \in \Gamma_k} ||T(\lambda - L)^{-1}|| = 0 \) (follows from (4) and the Lemma), it follows from \((\lambda - A)^{-1} = (\lambda - L)^{-1}(I - T(\lambda - L)^{-1})^{-1} \) that the operator \(A \) is discrete and

\[\lim_{k \to \infty} \max_{\lambda \in \Gamma_k} ||(\lambda - A)^{-1}|| = 0. \]

From (6) and Naymark’s theorem [4] we obtain the relation (2), for all \(f \in D(L) \), where \(z_{ks} \), \(s = 1, 2, \ldots, n_k \), are the generalized eigenvectors corresponding to eigenvalues lying in the ring \(\{ \lambda : r_k < |\lambda| < r_{k+1} \} \).

Remark. In the case when in each interval \(I \) of the fixed length \(l \) the number of eigenvalues \(\lambda \) of \(A \) with property \(\Re \lambda \in I \) is uniformly bounded, the Riesz basis property of the generalized eigenvectors system was proved in [1] (under some additional conditions).

Proof of the Lemma. Case a). It follows from \(N(t) = C_0 t^a (1 + o(1)) \) that \(\lambda_n = C_0 t^{-1/a} n^{1/a} (1 + o(1)) \). Let \(q \) be a real number such that

\[0 < \alpha q < C_0^{-1/a}. \]

Denote by \(S \) the set of natural numbers \(n \) such that \(\lambda_{n+1} - \lambda_n \geq q n^{1/a-1} \). Suppose that \(S \) is finite, i.e. \(S = \{n_1, n_2, \ldots, n_s \} \). Then we have \(\lambda_{n+1} - \lambda_n < q n^{1/a-1} \) for all \(n > n_s + 1 \) and

\[\lambda_{n+1} - \lambda_{n+1} < q \sum_{n=n_s+1}^{N} n^{1/a-1} < q \int_{n_s+1}^{N+1} x^{1/a-1} dx = \alpha q [(N+1)^{1/a} - (n_s+1)^{1/a}], \]

i.e.

\[\frac{\lambda_{n+1} - \lambda_{n+1}}{N^{1/a}} \leq \alpha q \frac{(N+1)^{1/a} - (n_s+1)^{1/a}}{N^{1/a}} \]

for each \(N > n_s \). When \(N \to \infty \) we obtain \(C_0^{-1/a} \leq \alpha q \), i.e. a contradiction with (7). So, it follows that \(S \) is an infinite set.
Let $\Gamma_\nu = \{ \lambda : |\lambda| = r_\nu = \frac{1}{2}(\lambda_{n+1} + \lambda_n) \}$. We will prove now the relation (5). If $\lambda \in \Gamma_k$, then

$$
\sum_{\nu=1}^{\infty} \frac{\lambda_{n+1}^2}{(r_k - \lambda_{n+1})^2} \leq \sum_{\nu=1}^{\infty} \frac{\lambda_{n+1}^2}{(r_k - \lambda_{n+1})^2} + \sum_{\nu=n+1}^{\infty} \frac{\lambda_{n+1}^2}{(r_k - \lambda_{n+1})^2} + \frac{\lambda_{n+1}^2}{(r_k - \lambda_{n+1})^2}.
$$

As we have $0 < \alpha < \frac{2}{3}(1 - \beta)$, by direct computation we get

$$
\lim_{k \to \infty} \left[\frac{\lambda_{n+1}^2}{(r_k - \lambda_{n+1})^2} + \frac{\lambda_{n+1}^2}{(r_k - \lambda_{n+1})^2} \right] = 0. \quad (8)
$$

Since the function $\varphi(x) = x^\beta/(r_k - x)$ is nondecreasing on $[0,r_k)$, we obtain

$$
\sum_{\nu=1}^{\infty} \frac{\lambda_{n+1}^2}{(r_k - \lambda_{n+1})^2} \leq \text{const.} \cdot n_k \frac{\lambda_{n+1}^2}{(r_k - \lambda_{n+1})^2} \leq \frac{\text{const}}{n_k^{\frac{2}{3} - \frac{\alpha}{2}}} \to 0 \quad (k \to \infty). \quad (9)
$$

Since

$$
\sum_{\nu=n_k+1}^{\infty} \frac{\lambda_{n+1}^2}{(r_k - \lambda_{n+1})^2} = \int_{\lambda_{n+1}}^{\infty} \frac{\varphi(t)}{(r_k - t)^2} dN(t)
$$

it is enough to prove that

$$
\lim_{k \to \infty} \int_{\lambda_{n+1}}^{\infty} \frac{\varphi(t)}{(r_k - t)^2} dt = 0. \quad (10)
$$

The function $G(x) = \int_{x}^\infty [(\beta - 1)u - \beta]/(u - 1)^3 du \quad (x > 1)$ has the following asymptotic behavior in the neighborhood of $x = 1$: $G(x) \sim \frac{2}{x(1 - x)^2}$. Then

$$
\int_{\lambda_{n+1}}^{\infty} \frac{\varphi(t)}{(r_k - t)^2} dt = 2r_k^{\alpha+2\beta-2}G(c_k) \sim \frac{r_k^{\alpha+2\beta}}{(\lambda_{n+1} - r_k)} \to 0 \quad (k \to \infty),
$$

where $c_k = \lambda_{n+1}/r_k \quad (\alpha > 1)$. From (8), (9) and (10) we obtain (5).

Case b). It follows from b) that

$$
\lambda_n = C_0^{-1/\alpha} n^{1/\alpha} (1 + O(n^{-\delta/\alpha})). \quad (11)
$$

Let $\mu_n = C_0^{-1/\alpha} n^{1/\alpha}$ and $\Gamma_n = \{ \lambda : |\lambda| = r_n = \frac{1}{2}(\mu_n + \mu_{n+1}) \}$. From (11) we get

$$
\sup_{n,p} \left| \frac{\lambda_{n+p} - \mu_{n+p}}{r_n - \lambda_n} \right| < \infty. \quad (12)
$$
If $\lambda \in \Gamma_n$, then from (12) we obtain

$$\sum_{\nu=1}^{\infty} \frac{\lambda_{\nu}^{2\beta}}{|\lambda - \lambda_{\nu}|^2} \leq \text{const} \sum_{\nu=1}^{\infty} \frac{\mu_{\nu}^{2\beta}}{(\tau_n - \mu_{\nu})^2}$$

As in the case a) it can be proved that

$$\sum_{\nu=1}^{\infty} \frac{\mu_{\nu}^{2\beta}}{(\tau_n - \mu_{\nu})^2} \to 0 \quad (n \to \infty)$$

for $0 < \alpha < 1 - \beta$. The Lemma is proved. ■

Example. Suppose m, n, and r are integers, $m \geq 1$, $n \geq 2$, $0 < r < m$, Ω is a bounded domain in \mathbb{R}^n with sufficiently smooth boundary, L is a formal selfadjoint elliptic differential expression

$$L = (-1)^{m/2} \sum_{|k|=m} a_k(x)D^k$$

with smooth coefficients and T is a linear differential expression

$$T = \sum_{|k| \leq r} b_k(x)D^k$$

with smooth complex functions b_k. Let $A : \mathcal{D}(A) \to L^2(\Omega)$ ($\mathcal{D}(A) = W^m_2 \cup \overset{n}{\wedge} W^{m/2}_2$) be a differential operator defined by $A = L + T$. Then we get

Theorem 2. If $n/m < \frac{2}{3}(1 - r/m)$, the for $f \in \mathcal{D}(A)$ the expansion theorem in generalized eigenvectors of the operator A holds.

Proof. The statement of the theorem is obtained from Theorem 1 for $\alpha = n/m$, $\beta = r/m$ (see [2]). ■

References

(received 21 06 1963)