TOTALIZATION OF THE MONTGOMERY IDENTITY

Branko Sarić and Esad Jakupović

Abstract. The aim of this note is to define the total value of the Riemann integral that can be used to generalize the well-known Montgomery identity.

AMS Mathematics Subject Classification (2010): 26A42, 26A15

Key words and phrases: The total Riemann integral; the Montgomery identity

1. Introduction

Let \([a, b]\) be some compact interval in \(\mathbb{R}\). It is an old result that for any function \(F : [a, b] \mapsto \mathbb{R}\), which is differentiable on \([a, b]\), and its derivative \(f\) is Riemann integrable on \([a, b]\), the Montgomery identity holds (see [1])

\[
F(t) = \frac{1}{b-a} \int_a^b F(x) \, dx + \int_a^b P(t, x) f(x) \, dx,
\]

where the Peano kernel \(P(t, x)\) is as follows

\[
P(t, x) = \begin{cases}
\frac{x-a}{b-a}, & a \leq x < t \\
\frac{x-b}{b-a}, & t < x \leq b
\end{cases}.
\]

The aim of this note is to define the total value of the Riemann integral that can be used to extend the above mentioned result to any real-valued function \(F\) defined and differentiable on \([a, b] \setminus E\), where \(E\) is a certain subset of \([a, b]\) at whose points \(F\) can take values \(\pm \infty\) or not be defined at all. Unless otherwise stated in what follows, we assume that the endpoints of \([a, b]\) do not belong to \(E\). Now, define point functions \(F_{ex} : [a, b] \mapsto \mathbb{R}\) and \(D_{ex}F : [a, b] \mapsto \mathbb{R}\) by extending \(F\) and its derivative \(f\) from \([a, b] \setminus E\) to \(E\) by \(F_{ex}(x) = 0\) and \(D_{ex}F(x) = 0\) for \(x \in E\) (see [3]), so that

\[
F_{ex}(x) = \begin{cases}
F(x), & x \in [a, b] \setminus E \\
0, & x \in E
\end{cases}
\]

and

\[
D_{ex}F(x) = \begin{cases}
f(x), & x \in [a, b] \setminus E \\
0, & x \in E
\end{cases}.
\]
2. Preliminaries

A partition \(P[a,b] \) of \([a,b] \in \mathbb{R}\) is a finite set (collection) of interval-point pairs \(\{([a_i, b_i], x_i) \mid i = 1, \ldots, \nu \} \), such that the subintervals \([a_i, b_i]\) are non-overlapping, \(\bigcup_{i \leq \nu} [a_i, b_i] = [a, b] \) and \(x_i \in [a_i, b_i] \). The points \(\{x_i\}_{i \leq \nu} \) are the tags of \(P[a,b] \). \([1]\). It is evident that a given partition of \([a,b]\) can be tagged in infinitely many ways by choosing different points as tags. If \(E \) is a subset of \([a,b]\), then the restriction of \(P[a,b] \) to \(E \) is a finite collection of \(\{([a_i, b_i], x_i) \in P[a,b] \mid a_i, b_i \} \) such that each pair of sets \([a_i, b_i]\) and \(E \) intersects in at least one point and all \(x_i \) are tagged in \(E \). In symbols, \(P[a,b]|_E = \{([a_i, b_i], x_i) \in P[a,b] \mid a_i, b_i \cap E \neq \emptyset \text{ and } x_i \in E\} \). Let \(\mathcal{P}[a,b] \) be the family of all partitions \(P[a,b] \) of \([a,b]\). Given \(\delta : [a,b] \mapsto \mathbb{R}_+ \), named a gauge, a point-interval pair \(([a_i, b_i], x_i) \) is called \(\delta \)-fine if \([a_i, b_i] \subseteq (x_i - \delta(x_i), x_i + \delta(x_i))\).

The collection \(\mathcal{I}(a,b) \) is the family of compact subintervals \(I \) of \([a,b]\). The Lebesgue measure of the interval \(I \) is denoted by \(|I|\). Any real-valued function defined on \(\mathcal{I}(a,b) \) is an interval function. For a function \(f : [a,b] \mapsto \mathbb{R} \), the associated interval function of \(f \) is an interval function \(F : \mathcal{I}(a,b) \mapsto \mathbb{R} \), again denoted by \(f \). If \(f \equiv 0 \) on \([a,b]\) then its associated interval function is trivial. The function \(f \) is said to be a null function on \([a,b]\) if the set \(\{x \in [a,b] \mid f(x) \neq 0\} \) is a set of Lebesgue measure zero, see Definition 2.4 in \([2]\).

In what follows we will use the following notations: \(F(I) = F(v) - F(u) \), where \(u \) and \(v \) are the endpoints of \(I \),

\[
\Xi_f(P[a,b]) = \sum_{i \leq \nu} f(x_i) \cdot [a_i, b_i]][\text{ and } \Sigma \varphi_f(P[a,b]) = \sum_{i \leq \nu} \varphi([a_i, b_i]) \cdot F([a_i, b_i])].
\]

\textbf{Definition 2.1.} For \(E \subseteq [a,b] \) let \(D_{e,x}F(x) : [a,b] \mapsto \mathbb{R} \) be defined by \((13)\).

Then, the point function \(f \) is said to be Riemann integrable to a real number \(A \) on \([a,b]\) if for every \(\varepsilon > 0 \) there exists a gauge \(\delta_\varepsilon \equiv \delta_\varepsilon = \inf \{\delta(x) \mid x \in [a,b]\} > 0 \), such that \(|\Xi_{D_{e,x}F}(P[a,b]) - A| < \varepsilon \), whenever \(P[a,b]|_E \subset P[a,b] \) and \(P[a,b] \in \mathcal{P}[a,b] \) is a \(\delta_\varepsilon \)-fine partition. In symbols, \(A = \varphi P_j^b a f(x) \, dx \).

\textbf{Definition 2.2.} Let \(\varphi : \mathcal{I}(a,b) \mapsto \mathbb{R} \) and \(E \subseteq [a,b] \). A function \(f : [a,b] \mapsto \mathbb{R} \) is the limit of \(\varphi \) on \([a,b]\) \(\setminus E \) if for every \(\varepsilon > 0 \) there exists a gauge \(\delta_\varepsilon \equiv \delta_\varepsilon \), such that

\[
|\varphi([a_i, b_i]) - f(x_i)| < \varepsilon,
\]

whenever \(([a_i, b_i], x_i) \in P[a,b] \setminus P[a,b]|_E \) and \(P[a,b] \in \mathcal{P}[a,b] \) is a \(\delta_\varepsilon \)-fine partition.

3. Main results

For a given pair of real-valued point functions \(f \) and \(g \) with the primitives \(F \) and \(G \), respectively, let \(E \subset [a,b] \) be a set of points, of Lebesgue measure zero,
at which they can take values $\pm \infty$ or not be defined at all and $\Delta \phi : I ([a,b]) \mapsto \mathbb{R}$ be an interval function defined by
\begin{equation}
(3.1) \quad \Delta \phi (I) = D_{ex} (FG)(I) - (\varphi (I) D_{ex} G(I) + \gamma (I) D_{ex} F(I)),
\end{equation}
where $D_{ex} (FG)(I)$ denotes an interval function associated with the product of the point functions $D_{ex} F$ and $D_{ex} G$, $\varphi (I) = F_{ex} (I) / |I|$ and $\gamma (I) = G_{ex} (I) / |I|$.

Given $\varepsilon > 0$, we can define a set Γ_ε as follows
\begin{equation}
(3.2) \quad \Gamma_\varepsilon = \{(x, I) \mid x \in [a,b] \text{ is a point of } I \text{ and } |\Delta \phi (I)| < \varepsilon\}.
\end{equation}

From the collection of all δ_ε-fine point-interval pairs $(x, I) \in \Gamma_\varepsilon$, a subset of $[a,b]$ may be obtained, as follows.

Definition 3.1. The set $\{x \in [a,b] \mid$ for every $\varepsilon > 0$ there exists a δ_ε-fine $(x, I) \in \Gamma_\varepsilon\}$ denoted by $(vp)_\Delta \phi [a,b]$ is said to be the null set of $\Delta \phi$ on $[a,b]$.

Definition 3.2. The set $[a,b] \setminus (vp)_\Delta \phi [a,b]$ denoted by $(vs)_\Delta \phi [a,b]$ is said to be the residual set of $\Delta \phi$ on $[a,b]$.

Accordingly, we are now in a position to define the notion of a residue of an interval function $F : I ([a,b]) \mapsto \mathbb{R}$ at $x \in [a,b]$.

Definition 3.3. An interval function $F : I ([a,b]) \mapsto \mathbb{R}$ is said to have a residue at $x \in [a,b]$ with residual value $R (x)$ if for every $\varepsilon > 0$ there exists a gauge $\delta_\varepsilon \equiv \delta_\varepsilon$, such that
\begin{equation}
(3.3) \quad |F (I) - R (x)| < \varepsilon,
\end{equation}
whenever (x, I) is a δ_ε-fine point-interval pair and x is a point of $I \in I ([a,b])$.

A real-valued point function R, which is the limit of F on $[a,b]$, is called a residual function of F on $[a,b]$.

Definition 3.4. For $F : I ([a,b]) \mapsto \mathbb{R}$ let $E \subset [a,b]$ be its residual set. Then, the residual function R of F is said to be basically summable ($BS \delta_e$) on E with the sum $R \in \mathbb{R}$, if for every $\varepsilon > 0$ there exists a gauge $\delta_\varepsilon \equiv \delta_\varepsilon$, such that $|\Sigma_F (P [a,b] |_E) - R| < \varepsilon$, whenever $P [a,b] |_E \subset P [a,b]$ and $P [a,b] \in \mathcal{P} [a,b]$ is a δ_ε-fine partition. The residual function R of F is $BS \delta_e$ on E if E can be written as a countable union of sets on each of which F is $BS \delta_e$. In symbols, $R = \sum_{x \in E} R (x)$.

Remark 3.5. By Definition 5.11 in [2], if $\Re = 0$ above, then F has negligible variation on E. However, if there is a set $E \subset [a,b]$ of variation zero, then F does not satisfy the variational Strong Lusin condition on $[a,b]$. Here E is of variation zero if, given $\varepsilon > 0$ there is a gauge $\delta_\varepsilon \equiv \delta_\varepsilon$ such that $|\Sigma_I (P [a,b] |_E)| < \varepsilon$, whenever $P [a,b] |_E \subset P [a,b]$ and $P [a,b] \in \mathcal{P} [a,b]$ is δ_ε-fine partition, [3]; on which R of F is $BS \delta_e$ with $\Re \neq 0$. On the other hand, since for every $\varepsilon > 0$ there exists a gauge δ_ε such that $|F (I)| < \varepsilon$, whenever (x, I) is a δ_ε-fine point-interval pair tagged in $(vp)_F [a,b]$ and x is a point of $I \in I ([a,b])$, it follows
immediately that $\mathcal{R} (x) \equiv 0$ on $(vp)_F [a, b]$. In addition, for a given pair of functions F and \mathcal{R}, if F is an additive function, and \mathcal{R} vanishes identically on the whole interval $[a, b]$, then $F ([a, b]) = \sum_{x \in [a, b]} \mathcal{R} (x)$. So, if $F_{ex} : [a, b] \mapsto \mathbb{R}$ is the primitive defined by (1.3), then using the Newton-Leibniz formula we may obtain that for any compact interval $I \subset [a, b] \setminus E$

$$\sum_{x \in I} \mathcal{R} (x) = F (I) = \int_I f \, dx.$$

Therefore, if $E \subset [a, b]$ is a set of points of Lebesgue measure zero at which a real-valued function F can take values $\pm \infty$ or not be defined at all and, in addition, E is the residual set of the interval function $F_{ex} : \mathcal{I} ([a, b]) \mapsto \mathbb{R}$ associated to the point function $F_{ex} : [a, b] \mapsto \mathbb{R}$ ($E = (vs)_{F_{ex}} [a, b]$), then we can divide the infinite sum of all values of the null function \mathcal{R} as a residual function of F_{ex} on $[a, b]$ into two sums $\sum_{x \in (vp)_{F_{ex}} [a, b]} \mathcal{R} (x) = vp \int_a^b f \, dx$ and $\sum_{x \in E} \mathcal{R} (x)$, so that

$$F ([a, b]) = \sum_{x \in [a, b]} \mathcal{R} (x) = vp \int_a^b f \, dx + \sum_{x \in E} \mathcal{R} (x).$$

In what follows, we will prove the lemma that gives us this result explicitly. Clearly, if $vp \int_a^b f \, dx$ does not exist, then the right-hand side of the previous equation is reduced to the so-called indeterminate expression $\infty - \infty$ that actually have, in this situation, the real numerical value of $F ([a, b])$.

Now, we are in a position to define the total value (vt) of the Riemann integral of a real-valued function f with the primitive F (f is the limit of the interval function $\varphi : \mathcal{I} ([a, b]) \mapsto \mathbb{R}$ on $[a, b] \setminus E$, defined by $\varphi (I) = F_{ex} (I) / |I|$, where E be a non-empty subset of $[a, b]$ of Lebesgue measure zero), [3].

Definition 3.6. For a compact interval $[a, b] \in \mathbb{R}$ let $E_f \subset [a, b]$ and $E_g \subset [a, b]$ be non-empty sets of Lebesgue measure zero, such that $E_f \cap E_g = \emptyset$. In addition, let $D_{ex} F : [a, b] \mapsto \mathbb{R}$ and $D_{ex} G : [a, b] \mapsto \mathbb{R}$ be defined according to (1.3) via any pair of real-valued functions f and g, with their primitives F and G, respectively, each of which is the limit of the corresponding interval function $\varphi (I) = F_{ex} (I) / |I|$ or $\gamma (I) = G_{ex} (I) / |I|$ on the corresponding set of points $[a, b] \setminus E_f$ or $[a, b] \setminus E_g$, respectively. The function f is said to be totally Riemann integrable, with respect to $dG = gdx$, to a real number \Im on $[a, b]$, if for every $\varepsilon > 0$ there exists a gauge $\delta_\varepsilon \equiv \delta_\varepsilon$, such that $|\Sigma_{\varphi G_{ex}} (P [a, b]) - \Im| < \varepsilon$, whenever $P [a, b] |_{E_f \cup E_g} \subset P [a, b]$ and $P [a, b] \in \mathcal{P} [a, b]$ is a δ_ε-fine partition. In symbols, $\Im = vt \int_a^b f \, dG$.

Clearly, if $G = x$, then $vt \int_a^b f \, dx = F ([a, b])$, that is,

$$vt \int_a^b f \, dx = vp \int_a^b f \, dx + \sum_{x \in E_f} \mathcal{R} (x).$$

Our main result reads as follows.
exists a gauge ξ if P such that

$$\forall \xi > 0 \text{ there exists a gauge } \xi \text{ on } [a, b] $$

above. The constant function

$$\phi$$

Proof. Let P be a non-empty subset of $[a, b]$ and ϕ be a non-empty subset of $[a, b]$ such that ϕ is Riemann integrable on $[a, b]$ and

$$f \text{ is Riemann integrable on } [a, b]$$

then f is Riemann integrable on $[a, b]$ and

$$\phi$$

In addition, ϕ is Riemann integrable on $[a, b]$ and

$$f$$

Before starting with the proof we give the following lemma.

Lemma 3.8. Let E be a non-empty subset of $[a, b]$. If a function f with primitive F (both are extended from $[a, b] \setminus E$ to $[a, b]$ by $D_{ex} F : [a, b] \mapsto \mathbb{R}$ and $F_{ex} : [a, b] \mapsto \mathbb{R}$, respectively) is totally Riemann integrable to the real number \exists on $[a, b]$ and the null function R, as a residual function of $F_{ex} : \mathcal{I}([a, b]) \mapsto \mathbb{R}$ on $[a, b]$, is basically summable (BS_{δ_e}) to the sum R on E, then f is Riemann integrable on $[a, b]$ and

$$\phi$$

$$f$$

Proof. Given $\varepsilon > 0$ we will construct a gauge for f as follows. Since f is the limit of ϕ on $[a, b] \setminus E$ it follows from Definition that for every $\varepsilon > 0$ there exists a gauge $\delta^*_\varepsilon \equiv \delta^*_{\varepsilon}$ on $[a, b]$ such that

$$f \text{ is Riemann integrable on } [a, b]$$

In addition, f is totally Riemann integrable to the real number \exists on $[a, b]$, so that for every $\varepsilon > 0$ there exists a gauge $\delta^*_\varepsilon \equiv \delta^*_{\varepsilon}$ on $[a, b]$ such that

$$\phi$$

choose a gauge $\delta^*_\varepsilon \equiv \delta^*_{\varepsilon}$ as required in Definition above. The constant function $\delta^*_\varepsilon(x) \equiv \delta^*_\varepsilon = \min \left(\delta^*_{\varepsilon} \right)$ is a gauge on $[a, b]$.

We now let $P[a, b] = \{(x_i, [a_i, b_i]) \mid i = 1, ..., \nu \}$ be a δ^*_ε-fine partition of $[a, b]$ such that $P[a, b] \setminus E \subset P[a, b]$. It is readily seen that (remember $D_{ex} F(x) = 0$ if $x \in E$)
\[\leq |\Xi_f (P[a,b] \setminus P[a,b]|_E) - (\Sigma_{F_{\varepsilon}} P[a,b] - \Sigma_{F_{\varepsilon}} P[a,b]|_E)| + \\
+ |[\Sigma_{F_{\varepsilon}} P[a,b] - \exists]| + |\Sigma_{F_{\varepsilon}} (P[a,b]|_E) - \Re| < (|[a,b]| + 2) \varepsilon . \]

Therefore, \(f \) is Riemann integrable on \([a,b]\) and

\[\nu P \int_a^b f \, dx = \exists - \Re. \]

Remark 3.9. For an illustration of (3.7) we consider the Heaviside unit function defined by

\[F(x) = \begin{cases} 0, & \text{if } x \leq 0 \\
1, & \text{otherwise} \end{cases} . \]

Since \(\Sigma_{F} (P[a,b]) \equiv 1 \), whenever \(P[a,b] \in \mathcal{P}[a,b] \), it follows from Definition 3.6 that \(\nu P \int_a^b f \, dx = 1 \), where

\[f(x) = \begin{cases} +\infty, & \text{if } x = 0 \\
0, & \text{otherwise} \end{cases} \]

is the derivative of \(F \) and \([a,b]\) is a compact interval within which is the null point. In addition, \(\nu P \int_a^b f \, dx = 0 \), so that \(\Re(0) = 1 \).

Let \([a,b]\) be as above. Consider the real-valued function \(F(x) = 1/x \) that is differentiable to \(f(x) = -\left(1/x^2\right) \) at all but the exceptional set \(\{0\} \) of \([a,b]\). In spite of the fact that \(f \) is not integrable (in the sense of the generalized Riemann integrals) on \([a,b]\), it follows from Definition 3.6 that \(\nu P \int_a^b f \, dx = (a-b)/(ab) \).

The residual function \(\Re \) of \(F \) is not defined at the point \(x = 0 \), that is

\[\Re(x) = \begin{cases} +\infty, & \text{if } x = 0 \\
0, & \text{otherwise} \end{cases} . \]

Now, \(\nu P \int_a^b f \, dx \) is reduced to the so-called indeterminate expression \(\infty - \infty \) (here \(\nu P \int_a^b f \, dx = -\infty \)) that actually have, in this situation, the real numerical value of \((a-b)/(ab)\).

Let \(C : [0,1] \rightarrow \mathbb{R} \) be the Cantor function, [2]. Its derivative \(c \) is not defined on the Cantor set \(\mathcal{C} \). Since the Riemann integral of \(c \) (\(c_{\varepsilon} \) vanishes identically on \([0,1]\)) is equal to zero on \([0,1]\) (\(\nu P \int_0^1 c \, dx = 0 \)), it follows from Definition 5.1 and (3.7) that

\[\Re = \nu P \int_0^1 c \, dx = C([a,b]) = 1, \]

where \(\Re = \sum_{x \in \mathcal{C}} \Re(x) \). So, the sum of the changes in the value of \(C \) over \(\mathcal{C} \) is reduced to the so-called indeterminate expression \(\infty \cdot 0 \) (the residue function \(\Re \) of \(C \) vanishes identically on \([0,1]\) because \(C \) is continuous on \([0,1]\)), that actually have, in this situation, the real numerical value of 1 (it means that \(C \) is not absolutely continuous and has no negligible variation on \(\mathcal{C} \)). Let’s prove it once more. For the Cantor function with the total length of 2 on \([0,1]\) the
Totalization of the Montgomery identity

83

total length of all line segments contained within \([0, 1] \setminus C\), on each of which \(C\) is constant, is as follows

\[
\frac{1}{2} \sum_{n=1}^{+\infty} \left(\frac{2}{3}\right)^n = \frac{1}{2} (3 - 1) = 1.
\]

Hence, the sum of the changes in the value of \(C\) over \(C\), is equal to \(2 - 1\), meaning that \(\sum_{x \in C} R(x) = 1\).

We now turn to the proof of Theorem 3.7.

Proof. Fix some \(\varepsilon > 0\). By Definition 3.1, there exists a constant gauge \(\delta_\varepsilon^* (x) = \delta_\varepsilon^*\) such that \(|\Sigma_{\Delta \phi}(P [a, b] \setminus P [a, b] |E)| < \varepsilon\), whenever \(P [a, b] |E \subset P [a, b]\) and \(P [a, b] \in \mathcal{P} [a, b]\) is a \(\delta_\varepsilon\)-fine partition. If \(\delta_\varepsilon (x) \equiv \delta_\varepsilon^* = \min (\delta_\varepsilon^*, \delta_\varepsilon^*),\) where \(\delta_\varepsilon^*\) is a gauge as required in Definition 3.4, then \(|\Sigma_{\Delta \phi}(P [a, b]) - \mathcal{R}| < 2\varepsilon\), whenever \(P [a, b] |E \subset P [a, b]\) and \(P [a, b] \in \mathcal{P} [a, b]\) is a \(\delta_\varepsilon\)-fine partition. Therefore, it follows from Definition 3.6 that \(d\phi\) being the limit of \(\Delta \phi\) is totally Riemann integrable on \([a, b]\) and

\[
vt \int_a^b d\phi = \mathcal{R}.
\]

Finally, based on the result of Lemma 3.8.

\[
vp \int_a^b d\phi = 0.
\]

Remark 3.10. It is easy to see that the total Riemann integral has the linearity property. Hence, if \(\Delta \phi\) has negligible variation on \(E\), then

\[
vt \int_a^b d\phi = 0,
\]

that is,

\[
(3.9) \quad vt \int_a^b (fg) = vt \int_a^b gdf + vt \int_a^b fdg.
\]

Let \(f\) be the Peano kernel \(P (t, x)\) defined by (1.2) and let \(F\) be a real-valued function with the primitive \(F\). The corresponding interval function \(\Delta \phi\), defined by (3.1) for this pair of functions, has negligible variation on \(E \cup \{t\}\), where \(E \subset (a, b) \setminus \{t\}\), as the residual set of \(F\), is a set of points of Lebesgue measure zero, at which \(F\) can take values \(\pm \infty\) or not be defined at all. Since \(vt \int_a^b d(PF) = P (t, b) F (b) - P (t, a) F (a) = 0\) it follows that

\[
vt \int_a^b FdP + vt \int_a^b PdF = 0.
\]

By Definitions 3.4 and 3.6.
\[vt \int_a^b F dP = \frac{1}{b-a} vt \int_a^b F dx - F(t), \]
taking into consideration the fact that the residue of the interval function \((FP)_{ex}(I)\) at the point \(t\) is \(-F(t)\). Hence,

\[(3.10) \quad F(t) = \frac{1}{b-a} vt \int_a^b F dx + vt \int_a^b P dF,\]

that represents totalization of the Montgomery identity \([\|1\|]\).

Acknowledgement

The first author’s research is supported by the Ministry of Science, Technology and Development, Republic of Serbia (Project ON 174024).

References

Received by the editors May 26, 2014