NOTES ON PSEUDO-SEQUENCE-COVERING MAPS

Luong Quoc Tuyen

Abstract. In this paper, we prove that each sequentially-quotient and boundary-compact map on g-metrizable spaces is pseudo-sequence-covering, and each finite subsequence-covering (or 1-sequentially-quotient) map on snf-countable spaces is pseudo-sequence-covering.

AMS Mathematics Subject Classification (2010): 54C10, 54D65, 54E40, 54E99

Key words and phrases: g-metrizable, snf-countable, strongly g-developable, sequentially-quotient, 1-sequentially-quotient, pseudo-sequence-covering, finite subsequence-covering, compact map, boundary-compact map.

1. Introduction

Pseudo-sequence-covering maps and sequentially-quotient maps play an important role in the study of images of metric spaces. It is well known that every pseudo-sequence-covering on metric spaces is sequentially-quotient. But none of these implications can be reversed. In 2005, S. Lin proved that each sequentially-quotient and compact map on metric spaces is pseudo-sequence-covering, and there exists a sequentially-quotient π-map on metric spaces is not pseudo-sequence-covering (\cite{16}). After that, F. C. Lin and S. Lin proved each sequentially-quotient and boundary-compact map on metric spaces is pseudo-sequence-covering (\cite{12}). Recently, the authors proved that if X is an open image of metric spaces, then each sequentially-quotient and boundary-compact map on X is pseudo-sequence-covering (\cite{13}).

In this paper, we prove that each sequentially-quotient and boundary-compact map on g-metrizable spaces is pseudo-sequence-covering, and each finite subsequence-covering (or 1-sequentially-quotient) map on snf-countable spaces is pseudo-sequence-covering.

Throughout this paper, all spaces are assumed to be Hausdorff, all maps are continuous and onto, \mathbb{N} denotes the set of all natural numbers. Let \mathcal{P} be a collection of subsets of X, we denote $\bigcup \mathcal{P} = \bigcup \{P : P \in \mathcal{P}\}$.

Definition 1.1. Let X be a space, $\{x_n\} \subset X$ and $P \subset X$.

1. $\{x_n\}$ is called eventually in P, if $\{x_n\}$ converges to x, and there exists $m \in \mathbb{N}$ such that $\{x\} \bigcup \{x_n : n \geq m\} \subset P$.

\footnote{Department of Mathematics, Da Nang University of Education, Viet Nam, e-mail: luongtuyench12@yahoo.com}
2. \(\{x_n\} \) is called frequently in \(P \), if some subsequence of \(\{x_n\} \) is eventually in \(P \).

3. \(P \) is called a sequential neighborhood of \(x \) in \(X \), if whenever \(\{x_n\} \) is a sequence converging to \(x \) in \(X \), then \(\{x_n\} \) is eventually in \(P \).

Definition 1.2. Let \(\mathcal{P} = \bigcup\{\mathcal{P}_x : x \in X\} \) be a cover of a space \(X \). Assume that \(\mathcal{P} \) satisfies the following (a) and (b) for every \(x \in X \).

(a) \(\mathcal{P}_x \) is a network at \(x \).
(b) If \(P_1, P_2 \in \mathcal{P}_x \), then there exists \(P \in \mathcal{P}_x \) such that \(P \subset P_1 \cap P_2 \).

1. \(\mathcal{P} \) is a weak base of \(X \), if for \(G \subseteq X \), \(G \) is open in \(X \) if and only if for every \(x \in G \), there exists \(P \in \mathcal{P}_x \) such that \(P \subseteq G \); \(\mathcal{P}_x \) is said to be a weak neighborhood base at \(x \) in \(X \).

2. \(\mathcal{P} \) is an sn-network for \(X \), if each element of \(\mathcal{P}_x \) is a sequential neighborhood of \(x \) for all \(x \in X \); \(\mathcal{P}_x \) is said to be an sn-network at \(x \) in \(X \).

Definition 1.3. Let \(X \) be a space. Then,

1. \(X \) is \(gf \)-countable (resp., snf-countable \(\mathbb{N} \)), if \(X \) has a weak base (resp., sn-network) \(\mathcal{P} = \bigcup\{\mathcal{P}_x : x \in X\} \) such that each \(\mathcal{P}_x \) is countable.

2. \(X \) is \(g \)-metrizable \(\mathbb{R} \), if \(X \) is regular and has a \(\sigma \)-locally finite weak base.

3. \(X \) is sequential \(\mathbb{I} \), if whenever \(A \) is a non closed subset of \(X \), then there is a sequence in \(A \) converging to a point not in \(A \).

4. \(X \) is strongly \(g \)-developable \(\mathbb{M} \), if \(X \) is sequential has a \(\sigma \)-locally finite strong network consisting of cs-covers.

Remark 1.4.

1. Each strongly \(g \)-developable space is \(g \)-metrizable.

2. A space \(X \) is \(gf \)-countable if and only if it is sequential and snf-countable.

Definition 1.5. Let \(f : X \to Y \) be a map.

1. \(f \) is a compact map \(\mathbb{E} \), if each \(f^{-1}(y) \) is compact in \(X \).

2. \(f \) is a boundary-compact map \(\mathbb{E} \), if each \(\partial f^{-1}(y) \) is compact in \(X \).

3. \(f \) is a pseudo-sequence-covering map \(\mathbb{U} \), if for each convergent sequence \(L \) in \(Y \), there is a compact subset \(K \) in \(X \) such that \(f(K) = \overline{L} \).

4. \(f \) is a sequentially-quotient map \(\mathbb{E} \), if whenever \(\{y_n\} \) is a convergent sequence in \(Y \), there is a convergent sequence \(\{x_k\} \) in \(X \) with each \(x_k \in f^{-1}(y_{n_k}) \).

5. \(f \) is a finite subsequence-covering map \(\mathbb{U} \), if for each \(y \in Y \), there is a finite subset \(F \) of \(f^{-1}(y) \) such that for any sequence \(S \) converging to \(y \) in \(Y \), there is a sequence \(L \) converging to some \(x \in F \) in \(X \) and \(f(L) \) is a subsequence of \(S \).
6. \(f \) is a \(1\)-sequentially-quotient map \([1]\), if for each \(y \in Y \), there exists \(x_y \in f^{-1}(y) \) such that whenever \(\{y_n\} \) is a sequence converging to \(y \) in \(Y \), there is a sequence \(\{x_{n_k}\} \) converging to \(x_y \) in \(X \) with each \(x_{n_k} \in f^{-1}(y_{n_k}) \).

Remark 1.6. 1. Each compact map is a compact-boundary map.

2. Each 1-sequentially-quotient map is a finite subsequence-covering map.

Definition 1.7 ([11]). A function \(g : \mathbb{N} \times X \to \mathcal{P}(X) \) is a CWC-map, if it satisfies the following conditions.

1. \(x \in g(n,x) \) for all \(x \in X \) and \(n \in \mathbb{N} \).
2. \(g(n+1,x) \subset g(n,x) \) for all \(n \in \mathbb{N} \).
3. \(\{g(n,x) : n \in \mathbb{N}\} \) is a weak neighborhood base at \(x \) for all \(x \in X \).

2. Main results

Theorem 2.1. Let \(f : X \to Y \) be a boundary-compact map. If \(X \) is a g-metrizable space, then \(f \) is a sequentially-quotient map if and only if it is a pseudo-sequence-covering map.

Proof. Necessity. Let \(f \) be a sequentially-quotient map and \(\{y_n\} \) be a non-trivial sequence converging to \(y \) in \(Y \). Since \(X \) is g-metrizable, it follows from Theorem 2.5 in [21] that there exists a CWC-map \(g \) on \(X \) satisfying for the sequences \(\{x_n\} \) and \(\{y_n\} \) of \(X \), if \(x_n \to x \) and \(y_n \in g(n,x_n) \) for all \(n \in \mathbb{N} \), then \(y_n \to x \). For \(n \in \mathbb{N} \), let

\[
U_{y,n} = \bigcup \{g(n,x) : x \in \partial f^{-1}(y)\}, \quad \text{and} \quad P_{y,n} = f(U_{y,n}).
\]

It is obvious that \(\{P_{y,n} : n \in \mathbb{N}\} \) is a decreasing sequence in \(X \). Furthermore, \(P_{n,y} \) is a sequential neighborhood of \(y \) in \(Y \) for all \(n \in \mathbb{N} \). If not, there exists \(n \in \mathbb{N} \) such that \(P_{y,n} \) is not a sequential neighborhood of \(y \) in \(Y \). Thus, there exists a sequence \(L \) converging to \(y \) in \(Y \) such that \(L \cap P_{y,n} = \emptyset \). Since \(f \) is sequentially-quotient, there exists a sequence \(S \) converging to \(x \in \partial f^{-1}(y) \) such that \(f(S) \) is a subsequence of \(L \). On the other hand, because \(g(n,x) \) is a sequential neighborhood of \(x \) in \(X \), \(S \) is eventually in \(g(n,x) \). Thus, \(S \) is eventually in \(U_{y,n} \). Therefore, \(L \) is frequently in \(P_{y,n} \). This contradicts to \(L \cap P_{y,n} = \emptyset \).

Then for each \(n \in \mathbb{N} \), there exists \(i_n \in \mathbb{N} \) such that \(y_i \in P_{y,n} \) for all \(i \geq i_n \). So \(f^{-1}(y_i) \cap U_{y,n} \neq \emptyset \). We can suppose that \(1 < i_n < i_{n+1} \). For each \(j \in \mathbb{N} \), we take

\[
x_j \in \begin{cases} f^{-1}(y_j), & \text{if } j < i_1, \\ f^{-1}(y_j) \cap U_{y,n}, & \text{if } i_n \leq j < i_{n+1}. \end{cases}
\]

Let \(K = \partial f^{-1}(y) \cup \{x_j : j \in \mathbb{N}\} \). Clearly, \(f(K) = \{y\} \cup \{y_n : n \in \mathbb{N}\} \). Furthermore, \(K \) is a compact subset in \(X \). In fact, let \(\mathcal{U} \) be an open cover for \(K \) in \(X \). Since \(\partial f^{-1}(y) \) is a compact subset in \(X \), there exists a finite subfamily \(\mathcal{H} \subset \mathcal{U} \) such that \(\partial f^{-1}(y) \subset \bigcup \mathcal{H} \). Then there exists \(m \in \mathbb{N} \) such that \(U_{n,y} \subset \bigcup \mathcal{H} \).
∪ ∀ \mathcal{H} \text{ for all } n \geq m. \text{ If not, for each } n \in \mathbb{N}, \text{ there exists } v_n \in U_{y,n} - \bigcup \mathcal{H}. \text{ It implies that } v_n \in g(n, u_n) - \bigcup \mathcal{H} \text{ for some } u_n \in \partial f^{-1}(y). \text{ Since } \{u_n\} \subset \partial f^{-1}(y) \text{ and each compact subset of } X \text{ is metrizable, there exists a subsequence } \{u_{n_k}\} \text{ of } \{u_n\} \text{ such that } u_{n_k} \rightarrow x \in \partial f^{-1}(y). \text{ Now, for each } i \in \mathbb{N}, \text{ we put }

a_i = \begin{cases} u_{n_1} & \text{if } i \leq n_1 \\ u_{n_k+1} & \text{if } n_k < i \leq n_{k+1}; \end{cases}

b_i = \begin{cases} v_{n_1} & \text{if } i \leq n_1 \\ v_{n_k+1} & \text{if } n_k < i \leq n_{k+1}. \end{cases}

Then } a_i \rightarrow x. \text{ Because } g(n+1, x) \subset g(n, x) \text{ for all } x \in X \text{ and } n \in \mathbb{N}, \text{ it implies that } b_i \in g(i, a_i) \text{ for all } i \in \mathbb{N}. \text{ By property of } g, \text{ it implies that } b_i \rightarrow x. \text{ Thus, } v_{n_k} \rightarrow x. \text{ This contradicts to } \bigcup \mathcal{H} \text{ is a neighborhood of } x \text{ and } v_{n_k} \notin \bigcup \mathcal{H} \text{ for all } k \in \mathbb{N}.

Because } P_{y,i+1} \subset P_{y,i} \text{ for all } i \in \mathbb{N}, \text{ it implies that } \partial f^{-1}(y) \cup \{x_i : i \geq m\} \subset \bigcup \mathcal{H}. \text{ For each } i < m, \text{ take } V_i \in \mathcal{U} \text{ such that } x_i \in V_i. \text{ Put } V = \mathcal{U} \cup \{V_i : i < m\}. \text{ Then } V \subset \mathcal{U} \text{ and } K \subset \bigcup V. \text{ Therefore, } K \text{ is compact in } X, \text{ and } f \text{ is pseudo-sequence-covering.}

Sufficiency. Suppose that } f \text{ is a pseudo-sequence-covering map. If } \{y_n\} \text{ is a convergent sequence in } Y, \text{ then there is a compact subset } K \text{ in } X \text{ such that } f(K) = \overline{\{y_1\}}. \text{ For each } n \in \mathbb{N}, \text{ take a point } x_n \in f^{-1}(y_n) \cap K. \text{ Since } K \text{ is compact and metrizable, } \{x_n\} \text{ has a convergent subsequence } \{x_{n_k}\}, \text{ and } \{f(x_{n_k})\} \text{ is a subsequence of } \{y_n\}. \text{ Therefore, } f \text{ is sequentially-quotient.} \quad \square

By Remark 1.3, Remark 1.6 and Theorem 2.1, the following corollaries.

Corollary 2.2. Let } f : X \rightarrow Y \text{ be a boundary-compact map. If } X \text{ is strongly } g\text{-developable, then } f \text{ is sequentially-quotient if and only if it is pseudo-sequence-covering.}

Corollary 2.3. Let } f : X \rightarrow Y \text{ be a compact map. If } X \text{ is } g\text{-metrizable, then } f \text{ is sequentially-quotient if and only if it is pseudo-sequence-covering.}

Corollary 2.4. Let } f : X \rightarrow Y \text{ be a compact map. If } X \text{ is strongly } g\text{-developable, then } f \text{ is sequentially-quotient if and only if it is pseudo-sequence-covering.}

Theorem 2.5. Let } f : X \rightarrow Y \text{ be a finite subsequence-covering map. If } X \text{ is an snf-countable space, then } f \text{ is a pseudo-sequence-covering map.}

Proof. Let } \{y_n\} \text{ be a non-trivial sequence converging to } y \text{ in } Y \text{ and } \mathcal{B} = \bigcup \{\mathcal{B}_x : x \in X\} \text{ be an sn-network for } X \text{ such that each } \mathcal{B}_x \text{ is countable. Since } f \text{ is finite subsequence-covering, there exists a finite subset } F_y \subset f^{-1}(y) \text{ such that for each sequence } S \text{ converging to } y \text{ in } Y, \text{ there is a sequence } L \text{ in } X \text{ such that } L \text{ converging to some } x \in F_y \text{ and } f(L) \text{ is a subsequence of } S. \text{ Since each } \mathcal{B}_x \text{ is a countable sn-network at } x, \text{ for each } x \in X, \text{ we can choose a decreasing countable network } \{\mathcal{B}_{x,n} : n \in \mathbb{N}\} \subset \mathcal{B}_x. \text{ Put }
\[U_y, n = \bigcup \{ B_{x, n} : x \in F_y \} \text{ and } P_{y, n} = f(U_{y, n}). \]

Then \(P_{y, n+1} \subset P_{y, n} \) for all \(n \in \mathbb{N} \). Furthermore, each \(P_{y, n} \) is a sequential neighborhood of \(y \) in \(Y \). If not, there exists \(n \in \mathbb{N} \) such that \(P_{y, n} \) is not a sequential neighborhood of \(y \) in \(Y \). Thus, there exists a sequence \(L \) converging to \(y \) in \(Y \) such that \(L \cap P_{y, n} = \emptyset \). Since \(f \) is finite subsequence-covering, there exists a sequence \(S \) in \(X \) such that \(S \) converges to some \(x \in F_y \) and \(f(S) \) is a subsequence of \(L \). On the other hand, because \(B_{x, n} \) is a sequential neighborhood of \(x \) in \(X \), \(S \) is eventually in \(B_{x, n} \). It implies that \(S \) is eventually in \(U_{y, n} \). Therefore, \(L \) is frequently in \(P_{y, n} \). This contradicts to \(L \cap P_{y, n} = \emptyset \).

Thus, for each \(n \in \mathbb{N} \), there exists \(i_n \in \mathbb{N} \) such that \(y_{i_n} \in f(U_{y, n}) \) for all \(i \geq i_n \). So \(g^{-1}(y_i) \cap U_{y, n} \neq \emptyset \). We can suppose that \(1 < i_n < i_{n+1} \). For each \(j \in \mathbb{N} \), we take

\[x_j \in \begin{cases} f^{-1}(y_j), & \text{if } j < i_1, \\ f^{-1}(y_j) \cap U_{y, n}, & \text{if } i_n \leq j < i_{n+1}. \end{cases} \]

Let \(K = F_y \cup \{ x_j : j \in \mathbb{N} \} \). Clearly, \(f(K) = \{ y \} \cup \{ y_n : n \in \mathbb{N} \} \). Furthermore, \(K \) is a compact subset in \(X \). In fact, let \(U \) be an open cover for \(K \) in \(X \). Since \(F_y \) is finite, there exists a finite subfamily \(\mathcal{H} \subset \mathcal{U} \) such that \(F_y \subset \bigcup \mathcal{H} \).

For each \(x \in F_y \), since \(\{ B_{x, n} : n \in \mathbb{N} \} \) is a decreasing network at \(x \) and \(\bigcup \mathcal{H} \) is a neighborhood of \(x \) in \(X \), \(B_{x, n_x} \subset \bigcup \mathcal{H} \) for some \(n_x \in \mathbb{N} \). If put \(k = \max \{ n_x : x \in F_y \} \), then \(U_{y, k} \subset \bigcup \mathcal{H} \). Furthermore, because \(U_{y, i+1} \subset U_{y, i} \) for all \(i \in \mathbb{N} \), \(F_y \cup \{ x_i : i \geq k \} \subset \bigcup \mathcal{H} \). For each \(i < k \), take \(V_i \in \mathcal{U} \) such that \(x_i \in V_i \), and put \(\mathcal{V} = \mathcal{H} \cup \{ V_i : i < k \} \). Then \(\mathcal{V} \subset \mathcal{U} \), \(K \subset \bigcup \mathcal{V} \) and \(K \) is compact in \(X \). Therefore, \(f \) is a pseudo-sequence-covering map.

By Remark 1.3, Remark 1.4 and Theorem 2.3, we have

Corollary 2.6. Let \(f : X \to Y \) be a 1-sequentially-quotient map. If \(X \) is an snf-countable space, then \(f \) is a pseudo-sequence-covering map.

Corollary 2.7. Let \(f : X \to Y \) be a finite subsequence-covering map. If \(X \) is a gf-countable space, then \(f \) is a pseudo-sequence-covering map.

References

