Abstract. An algebraic integer whose other conjugates over the field of the rationals \mathbb{Q} are of modulus less than ε, where $0 < \varepsilon \leq 1$, is called an ε-Pisot number. A Salem number is a real algebraic integer greater than 1 all of whose other conjugates over \mathbb{Q} belong to the closed unit disc, with at least one of them of modulus 1. Let K be a number field generated over \mathbb{Q} by a Salem number. We prove that there is a finite subset, say F_ε, of the integers of K such that each Salem number generating K over \mathbb{Q} can be written as a sum of an element of F_ε and an ε-Pisot number. We also show some analytic properties of the set of ε-Pisot numbers.