On Φ-Mori modules

Ahmad Yousefian Darani and Mahdi Rahmatinia

Abstract. In this paper we introduce the concept of Mori module. An R-module M is said to be a Mori module if it satisfies the ascending chain condition on divisorial submodules. Then we introduce a new class of modules which is closely related to the class of Mori modules. Let R be a commutative ring with identity and set

$$
\mathbb{H} = \{ M \mid M \text{ is an } R\text{-module and } \Nil(M) \text{ is a divided prime submodule of } M \}.
$$

For an R-module $M \in \mathbb{H}$, set

$$
T = (R \setminus Z(M)) \cap (R \setminus Z(R)),
$$

$$
T(M) = T^{-1}(M),
$$

$$
P := [\Nil(M) : R M].
$$

In this case the mapping $\Phi : T(M) \longrightarrow M_P$ given by $\Phi(x/s) = x/s$ is an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M in to M_P given by $\Phi(m/1) = m/1$ for every $m \in M$. A nonnil submodule N of M is Φ-divisorial if $\Phi(N)$ is divisorial submodule of $\Phi(M)$. An R-module $M \in \mathbb{H}$ is called Φ-Mori module if it satisfies the ascending chain condition on Φ-divisorial submodules. This paper is devoted to study the properties of Φ-Mori modules.

Contents

1. Introduction \quad 1269
2. Mori modules \quad 1272
3. Φ-Mori modules \quad 1274
References \quad 1280

1. Introduction

We assume throughout this paper all rings are commmutative with $1 \neq 0$ and all modules are unitary. Let R be a ring with identity and $\Nil(R)$ be the set of nilpotent elements of R. Recall from [Dobb76] and [Bada99-b], that a prime ideal P of R is called a divided prime ideal if $P \subset (x)$ for

Received July 18, 2015.

2010 Mathematics Subject Classification. 16D10, 16D80.

Key words and phrases. Mori module; divisorial submodule; Φ-Mori module, Φ-divisorial submodule.
every \(x \in R \setminus P \); thus a divided prime ideal is comparable to every ideal of \(R \). Badawi in [Bada99-a], [Bada00], [Bada99-b], [Bada01], [Bada02] and [Bada03] investigated the class of rings

\[\mathcal{H} = \{ R \mid R \text{ is a commutative ring with } 1 \neq 0 \text{ and } \]
\[\text{Nil}(R) \text{ is a divided prime ideal of } R \}. \]

Anderson and Badawi in [AB04] and [AB05] generalized the concept of Prüfer, Dedekind, Krull and Bezout domain to context of rings that are in the class \(\mathcal{H} \). Also, Lucas and Badawi in [BadaL06] generalized the concept of Mori domains to the context of rings that are in the class \(\mathcal{H} \). Let \(R \) be a ring, \(Z(R) \) the set of zero divisors of \(R \) and \(S = R \setminus Z(R) \). Then \(T(R) := S^{-1}R \) denoted the total quotient ring of \(R \). We start by recalling some background material. A nonzero divisor of a ring \(R \) is called a regular element and an ideal of \(R \) is said to be regular if it contains a regular element. An ideal \(I \) of a ring \(R \) is said to be a nonnil ideal if \(I \not\subseteq \text{Nil}(R) \). If \(I \) is a nonnil ideal of \(R \in \mathcal{H} \), then \(\text{Nil}(R) \subseteq I \). In particular, it holds if \(I \) is a regular ideal of a ring \(R \in \mathcal{H} \). Recall from [AB04] that for a ring \(R \in \mathcal{H} \), the map \(\phi : T(R) \rightarrow R_{\text{Nil}(R)} \) given by \(\phi(a/b) = a/b, \) for \(a \in R \) and \(b \in R \setminus Z(R) \), is a ring homomorphism from \(T(R) \) into \(R_{\text{Nil}(R)} \) and \(\phi \) restricted to \(R \) is also a ring homomorphism from \(R \) into \(R_{\text{Nil}(R)} \) given by \(\phi(x) = x/1 \) for every \(x \in R \).

For a nonzero ideal \(I \) of \(R \) let \(I^{-1} = \{ x \in T(R) : xI \subseteq R \} \) and let \(I_\nu = (I^{-1})^{-1} \). It is obvious that \(II^{-1} \subseteq R \). An ideal \(I \) of \(R \) is called invertible, if \(II^{-1} = R \) and also \(I \) is called divisorial ideal if \(I_\nu = I \). \(I \) is said to be a divisorial ideal of finite type if \(I = J_\nu \) for some finitely generated ideal \(J \) of \(R \). A Mori domain is an integral domain that satisfies the ascending chain condition on divisorial ideals. Lucas in [Luc02], generalized the concept of Mori domains to the context of commutative rings with zero divisors. According to [Luc02] a ring is called a Mori ring if it satisfies a.c.c on divisorial regular ideals. Let \(R \in \mathcal{H} \). Then a nonnil ideal \(I \) of \(R \) is called \(\phi \)-invertible if \(\phi(I) \) is an invertible ideal of \(\phi(R) \). A nonnil ideal \(I \) is \(\phi \)-divisorial if \(\phi(I) \) is a divisorial ideal of \(\phi(R) \) [BadaL06]. Recall from [BadaL06] that \(R \) is called \(\phi \)-Mori ring if it satisfies a.c.c on \(\phi \)-divisorial ideals.

Let \(R \) be a ring and \(M \) be an \(R \)-module. Then \(M \) is a multiplication \(R \)-module if every submodule \(N \) of \(M \) has the form \(IM \) for some ideal \(I \) of \(R \). If \(M \) is a multiplication \(R \)-module and \(N \) a submodule of \(M \), then \(N = IM \) for some ideal \(I \) of \(R \). Hence \(I \subseteq (N :_R M) \) and so \(N = IM \subseteq (N :_R M)M \subseteq N \). Therefore \(N = (N :_R M)M \) [Bar81]. Let \(M \) be a multiplication \(R \)-module, \(N = IM \) and \(L = JM \) be submodules of \(M \) for ideals \(I \) and \(J \) of \(R \). Then, the product of \(N \) and \(L \) is denoted by \(NL \) and is defined by \(IJM \) [Ame03]. An \(R \)-module \(M \) is called a cancellation module if \(IM = JM \) for two ideals \(I \) and \(J \) of \(R \) implies \(I = J \) [Ali08-a]. By [Smi88, Corollary 1 to Theorem 9], finitely generated faithful multiplication modules are cancellation modules. It follows that if \(M \) is a finitely generated
faithful multiplication R-module, then $(IN :_RM) = I(N :_RM)$ for all ideals I of R and all submodules N of M. If R is an integral domain and M a faithful multiplication R-module, then M is a finitely generated R-module [ES98]. Let M be an R-module and set

$$T = \{ t \in S : \text{ for all } m \in M, tm = 0 \text{ implies } m = 0 \}$$

$$= (R \setminus Z(M)) \cap (R \setminus Z(R)).$$

Then T is a multiplicatively closed subset of R with $T \subseteq S$, and if M is torsion-free then $T = S$. In particular, $T = S$ if M is a faithful multiplication R-module [ES98, Lemma 4.1]. Let N be a nonzero submodule of M. Then we write $N^{-1} = (M :_{RT} N) = \{ x \in RT : xN \subseteq M \}$ and $N_{\nu} = (N^{-1})^{-1}$. Then N^{-1} is an R-submodule of RT, $R \subseteq N^{-1}$ and $NN^{-1} \subseteq M$. We say that N is invertible in M if $NN^{-1} = M$. Clearly $0 \neq M$ is invertible in M. Following [Ali08-a], a submodule N of M is called a divisorial submodule of M in case $N = N_{\nu}M$. We say that N is a divisorial submodule of finite type if $N = L_{\nu}M$ for some finitely generated submodule L of M. Let R be a ring and M a finitely generated faithful multiplication R-module. Let N be a submodule of M, then it is obviously that, N is a divisorial submodule of finite type if and only if $[N :_RM]$ is a divisorial ideal of finite type. If M is a finitely generated faithful multiplication R-module, then $N_{\nu} = (N :_RM)$. Consequently, $M_{\nu} = R$. Let M be a finitely generated faithful multiplication R-module, N a submodule of M and I an ideal of R. Then N is a divisorial submodule of M if and only if $(N :_RM)$ is a divisorial ideal of R. Also I is divisorial ideal of R if and only if IM is a divisorial submodule of M [Ali09-a]. If N is an invertible submodule of a faithful multiplication module M over an integral domain R, then $(N :_RM)$ is invertible and hence is a divisorial ideal of R. So N is a divisorial submodule of M [Ali09-a]. If R is an integral domain, M a faithful multiplication R-module and N a nonzero submodule of M, then $N_{\nu} = (N :_RM)_{\nu}$ [Ali09-a, Lemma 1]. We say that a submodule N of M is a radical submodule of M if $N = \sqrt{N}$, where $\sqrt{N} = \sqrt{(N :_RM)M}$.

Let M be an R-module. An element $r \in R$ is said to be zero divisor on M if $rm = 0$ for some $0 \neq m \in M$. The set of zero divisors of M is denoted by $Z_R(M)$ (briefly, $Z(M)$). It is easy to see that $Z(M)$ is not necessarily an ideal of R, but it has the property that if $a, b \in R$ with $ab \in Z(M)$, then either $a \in Z(M)$ or $b \in Z(M)$. A submodule N of M is called a nilpotent submodule if $[N :_RM]^nN = 0$ for some positive integer n. An element $m \in M$ is said to be nilpotent if Rm is a nilpotent submodule of M [Ali08-b]. We let $\text{Nil}(M)$ to denote the set of all nilpotent elements of M; then $\text{Nil}(M)$ is a submodule of M provided that M is a faithful module, and if in addition M is multiplication, then $\text{Nil}(M) = \text{Nil}(R)M = \bigcap P$, where the intersection runs over all prime submodules of M, [Ali08-b, Theorem 6]. If M contains no nonzero nilpotent elements, then M is called a reduced R-module. A submodule N of M is said to be a nonnil submodule if $N \not\subseteq \text{Nil}(M)$. Recall
that a submodule N of M is prime if whenever $rm \in N$ for some $r \in R$ and $m \in M$, then either $m \in N$ or $rM \subseteq N$. If N is a prime submodule of M, then $p := [N :_R M]$ is a prime ideal of R. In this case we say that N is a p-prime submodule of M. Let N be a submodule of multiplication R-module M, then N is a prime submodule of M if and only if $[N :_R M]$ is a prime ideal of R if and only if $N = pM$ for some prime ideal p of R with $[0 :_R M] \subseteq p$, [ES98, Corollary 2.11]. Recall from [Ali09-b] that a prime submodule P of M is called a divided prime submodule if $P \subset Rm$ for every $m \in M \setminus P$; thus a divided prime submodule is comparable to every submodule of M.

Now assume that $T^{-1}(M) = \mathfrak{T}(M)$. Set

$$\mathbb{H} = \{ M \mid M \text{ is an } R\text{-module and } \text{Nil}(M) \text{ is a divided prime submodule of } M \}.$$

For an R-module $M \in \mathbb{H}$, $\text{Nil}(M)$ is a prime submodule of M. So

$$P := [\text{Nil}(M) :_R M]$$

is a prime ideal of R. If M is an R-module and $\text{Nil}(M)$ is a proper submodule of M, then $[\text{Nil}(M) :_R M] \subseteq Z(R)$. Consequently,

$$R \setminus Z(R) \subseteq R \setminus [\text{Nil}(M) :_R M].$$

In particular, $T \subseteq R \setminus [\text{Nil}(M) :_R M]$ [Yous]. Recall from [Yous] that we can define a mapping $\Phi : \mathfrak{T}(M) \rightarrow M_P$ given by $\Phi(x/s) = x/s$ which is clearly an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M in to M_P given by $\Phi(m/1) = m/1$ for every $m \in M$. A nonnil submodule N of M is said to be Φ-invertible if $\Phi(N)$ is an invertible submodule of $\Phi(M)$ [MY]. An R-module M is called a Nonnil-Noetherian module if every nonnil submodule of M is finitely generated [Yous]. In this paper, we define concept of a Mori module and obtain some properties of this module. Then we introduce a generalization of ϕ-Mori rings.

2. Mori modules

Definition 2.1. Let R be a ring and M be an R-module. Then M is said to be a Mori module if it satisfies on divisorial submodules.

It is clear that, if M is a Noetherian R-module, then M is a Mori R-module.

Theorem 2.2. Let R be an integral domain and M a faithful multiplication R-module. Then M is a Mori module if and only if R is a Mori domain.

Proof. Let M be a Mori module and $\{I_m\}$ be an ascending chain of divisorial ideals of R. Then $\{(I_m)M\}$ is an ascending chain of divisorial submodules of M. Thus there exists an integer $n \geq 1$ such that $(I_n)M = (I_m)M$ for each $m \geq n$. Hence $[(I_n)M :_R M] = [(I_m)M :_R M]$ and so $I_n = I_m$ for each $m \geq n$. Therefore R is a Mori domain.
Conversely, let R be a Mori ring and $\{N_m\}$ be an ascending chain of divisorial submodules of M. Thus $\{[N_m : R M]\}$ is an ascending chain of divisorial ideals of R. Then there exists an integer $n \geq 1$ such that $[N_n : R M] = [N_m : R M]$ for each $m \geq n$. Hence $[N_n : R M]M = [N_m : R M]M$ and so $N_n = N_m$. Therefore M is a Mori module.

Theorem 2.3. Let R be an integral domain and M a faithful multiplication R-module. Then M is a Mori module if and only if for every strictly descending chain of divisorial submodule $\{N_m\}$ of M, $\bigcap N_m = (0)$.

Proof. Let M be a Mori module and $\{N_m\}$ is a strictly descending chain of divisorial submodule of M. Then, by Theorem 2.2, R is a Mori domain and $\{[N_m : R M]\}$ is a strictly descending chain of divisorial ideals of R. So, by [Raill75, Theorem A.0], $\bigcap [N_m : R M] = (0)$. Therefore

$$\bigcap N_m = \bigcap ([N_m : R M])M = (0).$$

Conversely, let $\{N_m\}$ be a strictly descending chain of divisorial submodule of M such that $\bigcap N_m = (0)$. Then $\{[N_m : R M]\}$ is a strictly descending chain of divisorial ideals of R such that $\bigcap [N_m : R M] = (0)$. Hence, by [Raill75, Theorem A.0], R is a Mori domain and therefore by Theorem 2.2, M is a Mori module.

Corollary 2.4. Let R be an integral domain and M a faithful multiplication R-module. If M is a Mori module, then every divisorial submodule of M is contained in only a finite number of maximal divisorial submodules.

Proof. Let M be a Mori module and N a divisorial submodule of M. Then by Theorem 2.2, R is a Mori domain and $[N : R M]$ is a divisorial submodule of R. So, by [BG87], $[N : R M]$ is contained in only a finite number of maximal divisorial ideals. Since M is faithful multiplication module, N is contained in only a finite number of maximal divisorial submodules of M.

Note that if N is a divisorial submodule of R-module M, then N_S is a divisorial submodule of R_S-module M_S for each multiplicatively closed subset of R, because $N = N_vM$ and therefore $N_S = (N_vM)_S = (N_v)_S M_S$.

Theorem 2.5. Let M be an Mori R-module. Then M_S is a Mori R_S-module for each multiplicatively closed subset of R.

Proof. Let $\{N_m\}$ be an ascending chain of divisorial submodules of M_S. Then $\{N_m^c\}$ is an ascending chain of divisorial submodules of M. Thus there exits an integer $n \geq 1$ such that $N_n^c = N_m^c$ for each $m \geq n$. Therefore $N_n = N_n^c = N_m^c = N_m$ for each $m \geq n$. So M_S is a Mori module.

Definition 2.6. A submodule N of M is said to be strong if $NN^{-1} = N$. N is strongly divisorial if it is both strong and divisorial.

Lemma 2.7. Let R be an integral domain an M be a faithful multiplication R-module. Let I be an ideal of R and N be a submodule of M. Then:
(1) \(N \) is strong (strong divisorial) submodule if and only if \([N :_R M]\) is strong (strong divisorial) ideal.

(2) \(I \) is strong (strong divisorial) ideal if and only if \(IM \) is strong (strong divisorial) submodule.

Proof. It is obvious by [Ali09-a, Lemma 1]. □

Proposition 2.8. Let \(R \) be an integral domain and \(M \) a faithful multiplication \(R \)-module. Let \(M \) be a Mori module and \(P \) be a prime submodule of \(M \) with \(\text{ht}(P) = 1 \). Then \(P \) is a divisorial submodule of \(M \). If \(\text{ht}(P) \geq 2 \), then either \(P^{-1} = R \) or \(P_{\nu} \) is a strong divisorial submodule of \(M \).

Proof. Let \(M \) be a Mori module and \(P \) be a prime submodule of \(M \) with \(\text{ht}(P) = 1 \). Then, by Theorem 2.2, \(R \) is a Mori domain and \([P :_R M]\) is a prime ideal of \(R \) such that \(\text{ht}([P :_R M]) = 1 \). Therefore, by [Querr71, Proposition 1], \([P :_R M]\) is a divisorial ideal of \(R \) and so \(N \) is a divisorial submodule of \(M \). If \(\text{ht}(P) \geq 2 \), then \(\text{ht}([P :_R M]) \geq 2 \). So, by [BG87],
\[[P :_R M]^{-1} = R \text{ or } [P :_R M]_{\nu} \] is a strong divisorial ideal of \(R \). Therefore, by [Ali09-a, Lemma 1], \(P^{-1} = R \) or \(P_{\nu} \) is a strong divisorial submodule of \(M \). □

Theorem 2.9. Let \(R \) be an integral domain and \(M \) a faithful multiplication \(R \)-module. Then \(M \) is a Mori module if and only if for each nonzero submodule \(N \) of \(M \), there is a finitely generated submodule \(L \subset N \) such that \(N^{-1} = L^{-1} \), equivalently, \(N_{\nu} = L_{\nu} \).

Proof. Let \(M \) be a Mori module and \(N \) be a nonzero submodule of \(M \). Then, by Theorem 2.2, \(R \) is a Mori domain and \([N :_R M]\) is a nonzero ideal of \(R \). Thus, by [Querr71, Theorem 1], there is a finitely generated ideal \(J \subset [N :_R M] := I \) such that \(J^{-1} = I^{-1} \). Hence there is a finitely generated submodule \(L := JM \subset IM = N \) such that \(N^{-1} = L^{-1} \) by [Ali09-a, Lemma 1].

Conversely, if for each nonzero submodule \(N \) of \(M \), there is a finitely generated submodule \(L \subset N \) such that \(N^{-1} = L^{-1} \), then for each nonzero ideal \([N :_R M]\) of \(R \), there is a finitely generated ideal \([L :_R M]\subset [N :_R M]\) such that \([N :_R M]^{-1} = [L :_R M]^{-1} \) by [Ali09-a, Lemma 1]. Thus, by [Querr71, Theorem 1], \(R \) is a Mori domain and so by Theorem 2.2, \(M \) is a Mori module. □

Corollary 2.10. Let \(R \) be an integral domain and \(M \) a faithful multiplication \(R \)-module. If \(M \) is a Mori module, then every divisorial submodule of \(M \) is a divisorial submodule of finite type.

3. \(\phi \)-Mori modules

In this section, we define the concept of \(\Phi \)-Mori module and give some results of this class of modules.
Definition 3.1. Let R be a ring and $M \in \mathbb{H}$ be an R-module. A nonnil submodule N of M is said to be a Φ-divisorial if $\Phi(N)$ is divisorial submodule of $\Phi(M)$. Also, N is called a Φ-divisorial of finite type of M if $\Phi(N)$ is a divisorial submodule of finite type of $\Phi(M)$.

Definition 3.2. Let R be a ring and $M \in \mathbb{H}$ be an R-module. Then M is said to be a Φ-Mori module if it satisfies the ascending chain condition on Φ-divisorial submodules.

Lemma 3.3. Let $M \in \mathbb{H}$ be an R-module and N,L be nonnil submodules of M. Then $N = L$ if and only if $\Phi(N) = \Phi(L)$.

Proof. It is clear that $N = L$ follows $\Phi(N) = \Phi(L)$. Conversely, since $\text{Nil}(M)$ is a divided prime submodule of M and neither N nor L is contained in $\text{Nil}(M)$, both properly contain $\text{Nil}(M)$. Thus both contain $\text{Ker}(\Phi)$, by [MY, Proposition 2.1]. The result follows from standard module theory.

Proposition 3.4 ([MY, Proposition 2.2]). Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Then:

1. $\text{Nil}(\Phi(M)) = \Phi(\text{Nil}(M)) = \text{Nil}(\Phi(M))$.
2. $\text{Nil}(\Phi(M)) = \text{Nil}(M)$.
3. $\Phi(M) \in \mathbb{H}$.

Theorem 3.5. Let $M \in \mathbb{H}$. Then M is a Φ-Mori module if and only if $\Phi(M)$ is a Mori module.

Proof. Each submodule of $\Phi(M)$ is the image of a unique nonnil submodule of M and $\Phi(N)$ is a submodule of $\Phi(M)$ for each nonnil submodule N of M. Moreover, by definition, if $L = \Phi(N)$, then L is a divisorial submodule of $\Phi(M)$ if and only if N is a Φ-divisorial submodule of M. Thus a chain of Φ-divisorial submodules of M stabilizes if and only if the corresponding chain of divisorial submodules of $\Phi(M)$ stabilizes. It follows that M is a Φ-Mori module if and only if $\Phi(M)$ is a Mori module.

It is worthwhile to note that if R is a commutative ring and $M \in \mathbb{H}$ is an R-module, then $\frac{N}{\text{Nil}(M)}$ is a divisorial submodule of $\frac{M}{\text{Nil}(M)}$ if and only if $\frac{\Phi(N)}{\text{Nil}(\Phi(M))}$ is a divisorial submodule of $\frac{\Phi(M)}{\text{Nil}(\Phi(M))}$. For if $\frac{\Phi(N)}{\text{Nil}(\Phi(M))}$ is not divisorial, then $\frac{\Phi(N)}{\text{Nil}(\Phi(M))} \neq \frac{\Phi(N)_\nu}{\text{Nil}(\Phi(M))} \frac{\Phi(M)}{\text{Nil}(\Phi(M))}$. So $\Phi(N) \neq \Phi(N)_\nu \Phi(M) = \Phi(N_\nu M)$. Thus, by Lemma 3.3, $N \neq N_\nu M$. Therefore,

$$\frac{N}{\text{Nil}(M)} \neq \frac{N_\nu M}{\text{Nil}(M)} = \left(\frac{N}{\text{Nil}(M)}\right)_\nu \frac{M}{\text{Nil}(M)},$$

which is a contradiction.

Lemma 3.6. Let $M \in \mathbb{H}$. For each nonnil submodule N of M, N is Φ-divisorial if and only if $\frac{N}{\text{Nil}(M)}$ is a divisorial submodule of $\frac{M}{\text{Nil}(M)}$. Moreover, $\Phi(N)$ is invertible if and only if $\frac{N}{\text{Nil}(M)}$ is invertible.
Proof. Let N be a divisorial submodule of M. Then $\Phi(N)$ is divisorial and so $\Phi(N) = \Phi(N)\nu\Phi(M)$. Thus $\frac{\Phi(N)}{\text{Nil}(\Phi(M))} = \frac{\Phi(N)\nu}{\text{Nil}(\Phi(M))}\frac{\Phi(M)}{\text{Nil}(\Phi(M))}$. Therefore $\frac{\Phi(N)}{\text{Nil}(\Phi(M))}$ is a divisorial submodule of $\frac{\Phi(M)}{\text{Nil}(\Phi(M))}$. Thus $\frac{N}{\text{Nil}(M)}$ is a divisorial submodule of $\frac{M}{\text{Nil}(M)}$. Conversely, is same. □

Theorem 3.7. Let $M \in \mathbb{H}$. Then M is a Φ-Mori module if and only if $\frac{M}{\text{Nil}(M)}$ is a Mori module.

Proof. Suppose that M is a Φ-Mori module. Let $\{N_m\}$ be an ascending chain of divisorial submodules of M. Hence $\{\Phi(N_m)\}$ is an ascending chain of divisorial submodules of $\Phi(M)$, by Lemma 3.6. Thus there exists an integer $n \geq 1$ such that $\Phi(N_m) = \Phi(N_n)$ for each $m \geq n$ and so $N_m = N_n$ by Lemma 3.3. It follows that $\frac{N_n}{\text{Nil}(M)} = \frac{N_m}{\text{Nil}(M)}$ as well.

Conversely, suppose that $\frac{M}{\text{Nil}(M)}$ is a Mori module. Let $\{N_m\}$ be an ascending chain of non-nil divisorial submodules of M. Thus, by Lemma 3.6, $\{\frac{N_m}{\text{Nil}(M)}\}$ is an ascending chain of divisorial submodules of $\frac{M}{\text{Nil}(M)}$. Hence there exists an integer $n \geq 1$ such that $\frac{N_n}{\text{Nil}(M)} = \frac{N_m}{\text{Nil}(M)}$ for each $m \geq n$. As above, we have $N_n = N_m$ for each $m \geq n$. So M is a Φ-Mori module. □

Theorem 3.8. Let R be a ring and M be a finitely generated faithful multiplication R-module. The following statements are equivalent:

1. If $R \in \mathbb{H}$ is a ϕ-Mori ring, then M is a Φ-Mori module.
2. If $M \in \mathbb{H}$ is a Φ-Mori module, then R is a ϕ-Mori ring.

Proof. Since $\text{Nil}(R) \subseteq \text{Ann}(\frac{M}{\text{Nil}(M)}) = \text{Ann}(\frac{M}{\text{Nil}(M)})$, we have:

1. \Rightarrow (2) Let $R \in \mathbb{H}$. Then, by [Yous, Proposition 3], $M \in \mathbb{H}$. If R is a ϕ-Mori ring, then by [BadaL06, Theorem 2.5], $\frac{R}{\text{Nil}(R)}$ is a Mori domain. So, by Theorem 2.2, $\frac{M}{\text{Nil}(M)}$ is a Mori module. Therefore, by Theorem 3.7, M is a Φ-Mori module.

2. \Rightarrow (1) Let $M \in \mathbb{H}$. Then, by [Yous, Proposition 3], $R \in \mathbb{H}$. If M is a Φ-Mori module, then by Theorem 3.7, $\frac{M}{\text{Nil}(M)}$ is a Mori module. So, by Theorem 2.2, $\frac{R}{\text{Nil}(R)}$ is a Mori domain. Therefore, by [BadaL06, Theorem 2.5], R is a ϕ-Mori ring. □

Theorem 3.9 ([MY, Lemma 2.6]). Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Then $\frac{\Phi(M)}{\text{Nil}(\Phi(M))}$ is isomorphic to $\frac{\Phi(M)}{\text{Nil}(\Phi(M))}$ as R-module.

Corollary 3.10. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Then M is a Φ-Mori module if and only if $\frac{\Phi(M)}{\text{Nil}(\Phi(M))}$ is a Mori module.
Lemma 3.11. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Suppose that a nonnil submodule N of M is a divisorial submodule of M. Then $\Phi(N)$ is a divisorial submodule of $\Phi(M)$, i.e., N is a Φ-divisorial submodule of M.

Proof. We must show that $\Phi(N) = \Phi(N) \cdot \Phi(M)$. Since
$$[\Phi(N) : R \Phi(M)] \subseteq [\Phi(N) : R \Phi(M)]_\nu,$$

and
$$[\Phi(N) : R \Phi(M)] \Phi(M) \subseteq [\Phi(N) : R \Phi(M)]_\nu \Phi(M).$$

Hence
$$\Phi(N) \subseteq \Phi(N)_\nu \Phi(M)$$

by [Ali09-a, Lemma 1]. Now, let $y \in \Phi(N)_\nu \Phi(M)$. Then $y = \sum a_im_i$ where $a_i \in \Phi(N)_\nu$ and $m_i = \Phi(m_i) \in \Phi(M)$. Since $\Phi(N)_\nu \subseteq R$, $a_i \in R$. If $x \in N^{-1}$ then $\Phi(x) \in \Phi(N)^{-1} = [\Phi(M) : R \Phi(N)]$. Therefore

$$y\Phi(x) = \left(\sum a_im_i\right)\Phi(x) = \left(\sum a_i\Phi(m_i)\right)\Phi(x) = \sum a_i\Phi(m_ix)$$

$$= \sum \Phi(a_im_ix) = \Phi\left(\sum a_im_ix\right).$$

Since $\Phi(N)_\nu \Phi(N)^{-1} \subseteq \Phi(M)$, $y\Phi(x) = \Phi(\sum a_im_ix) \in \Phi(M)$. Hence
$$\left(\sum a_im_ix\right) \in M.$$

Since N is a divisorial submodule and $x \in N^{-1}$ is arbitrary,
$$\sum a_im_i \in N.$$

Thus $\Phi(\sum a_im_i) = \sum \Phi(a_im_i) = \sum a_i\Phi(m_i) \in \Phi(N)$. Therefore $y = \sum a_im_i \in \Phi(N)$ as well. □

Theorem 3.12. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. If M is a Φ-Mori module, then M satisfies the A.C.C on nonnil divisorial submodules of M. In particular M is a Mori module.

Proof. Let N_m be an ascending chain of nonnil divisorial submodules of M. Hence, by Lemma 3.11, $\Phi(N_m)$ is an ascending chain of divisorial submodules of $\Phi(M)$. Since $\Phi(M)$ is a Mori module by Theorem 3.5, there exists an integer $n \geq 1$ such that $\Phi(N_n) = \Phi(N_m)$ for each $m \geq n$. Thus $N_n = N_m$ by Lemma 3.3. The "In particular" statement is now clear. □

Theorem 3.13. Let $M \in \mathbb{H}$ be a Φ-Noetherian module. Then M is a Φ-Mori module.

Proof. It is clear by [Yous, Theorem 10]. □

Theorem 3.14. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathbb{H}$. Let M be a Φ-Mori module and N be a Φ-divisorial submodule of M. Then N contains a power of its radical.

Proof. Let M be a Φ-Mori module. Then, by Theorem 3.7, $\frac{M}{\text{Nil}(M)}$ is a Mori module and so R is a Mori domain. Since N is a Φ-divisorial submodule of M, then $\frac{N}{\text{Nil}(M)}$ is a divisorial submodule of $\frac{M}{\text{Nil}(M)}$ by Lemma 3.6. Hence
$$\left[\frac{N}{\text{Nil}(M)} : R \frac{M}{\text{Nil}(M)}\right]$$

is a divisorial ideal of R and therefore contains a power of
its radical by [Raill75, Theorem 5]. In other words, there exists a positive integer \(n \) such that
\[
\left(\sqrt{\left[\frac{N}{\text{Nil}(M)} : R \right] \frac{M}{\text{Nil}(M)}} \right)^n \subseteq \left[\frac{N}{\text{Nil}(M)} : R \right] \frac{M}{\text{Nil}(M)}.
\]
Hence \(\sqrt{\frac{N}{\text{Nil}(M)}} \subseteq \frac{N}{\text{Nil}(M)} \). Since Nil\((M)\) is divided, \(N \) contains a power of its radical.

We will extend concepts of definition 2.6 to the module in \(H \).

Definition 3.15. Let \(M \in H \) and \(N \) be a nonnil submodule of \(M \). Then \(N \) is \(\Phi \)-strong if \(\Phi(N) \) is strong, i.e., \(\Phi(N)\Phi(N)^{-1} = \Phi(N) \). Also, \(N \) is strongly \(\Phi \)-divisorial if \(N \) is both \(\Phi \)-strong and \(\Phi \)-divisorial.

Obviously, \(N \) is \(\Phi \)-strong (or strongly \(\Phi \)-divisorial) if and only if \(\Phi(N) \) is strong (or strongly divisorial).

Lemma 3.16. Let \(M \in H \) be a \(\Phi \)-Mori module and \(N \) be a nonnil submodule of \(M \). Then the following hold:

1. \(N \) is a \(\Phi \)-strong submodule of \(M \) if and only if \(\frac{N}{\text{Nil}(M)} \) is a strong submodule of \(\frac{M}{\text{Nil}(M)} \).
2. \(N \) is strongly \(\Phi \)-divisorial if and only if \(\frac{N}{\text{Nil}(M)} \) is a strongly divisorial submodule of \(\frac{M}{\text{Nil}(M)} \).

Proof.

1. \(N \) is a \(\Phi \)-strong if and only if \(\Phi(N) \) is strong if and only if \(\frac{\Phi(N)}{\text{Nil}(M)} \frac{\Phi(N)^{-1}}{\text{Nil}(M)} = \Phi(N) \) if and only if \(\frac{\Phi(N)}{\text{Nil}(M)} \) is strong if and only if \(\frac{N}{\text{Nil}(M)} \) is strong.

2. \(N \) is strongly \(\Phi \)-divisorial if and only if \(N \) is both \(\Phi \)-strong and \(\Phi \)-divisorial if and only if \(\frac{\Phi(N)}{\text{Nil}(M)} \) is both strong and divisorial if and only if \(\frac{N}{\text{Nil}(M)} \) is a strongly divisorial.

Set \(P := (\text{Nil}(M) : R M) \). Then \(P \) is a prime ideal of \(R \) and we have
\[
\left(\frac{M}{\text{Nil}(M)} \right)_P = \frac{M_P}{\text{Nil}(M_P)},
\]
[MY].

Theorem 3.17. Let \(M \in H \) be a \(\Phi \)-Mori module. Then \(M_P \) is a \(\Phi \)-Mori module.

Proof. Let \(M \) be a \(\Phi \)-Mori module. Then, by Theorem 3.7, \(\frac{M}{\text{Nil}(M)} \) is a Mori module. Hence \(\left(\frac{M}{\text{Nil}(M)} \right)_P = \frac{M_P}{\text{Nil}(M_P)} \) is a Mori module by Theorem 2.5. Therefore, by Theorem 3.7, \(M_P \) is a \(\Phi \)-Mori module.
Theorem 3.18. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathcal{H}$. Let M be a Φ-Mori module and P be a nonnil prime submodule of M minimal over a nonnil principal submodule N of M. If P is finitely generated, then $\text{ht}(P) = 1$.

Proof. Let M be a Φ-Mori module. Then, by Theorem 3.7, $\frac{M}{\text{nil}(M)}$ is a Mori module and so R is a Mori domain. Also, by [MY, Theorem 2.8 and Corollary 2.9], we have $\frac{P}{\text{nil}(M)}$ is a minimal finitely generated prime submodule of $\frac{M}{\text{nil}(M)}$ over the principal submodule $\frac{N}{\text{nil}(M)}$ of $\frac{M}{\text{nil}(M)}$. Thus $[\frac{P}{\text{nil}(M)} : R \frac{M}{\text{nil}(M)}]$ is a minimal finitely generated prime ideal of R over the principal ideal $[\frac{N}{\text{nil}(M)} : R \frac{M}{\text{nil}(M)}]$ of R. Then, by [BAD87, Theorem 3.4], $\text{ht}(\frac{P}{\text{nil}(M)}) = 1$. Therefore $\text{ht}(\frac{P}{\text{nil}(M)}) = 1$ and so $\text{ht}(P) = 1$. □

Proposition 3.19. Let R be an integral domain and M a faithful multiplication R-module with $M \in \mathcal{H}$. Let M be a Φ-Mori R-module and P be a nonnil prime submodule of M such that $\text{ht}(P) = 1$. Then P is a Φ-divisorial submodule of M. If $\text{ht}(P) \geq 2$, then either $P^{-1} = R$ or P_ν is a strong divisorial submodule of M.

Proof. Let M be a Φ-Mori R-module and P be a nonnil prime submodule of M. Then, by Theorem 3.7, $\frac{M}{\text{nil}(M)}$ is a Mori module and $\frac{P}{\text{nil}(M)}$ is a prime submodule of $\frac{M}{\text{nil}(M)}$ with $\text{ht}(\frac{P}{\text{nil}(M)}) = 1$. Therefore, by Proposition 2.8, $\frac{P}{\text{nil}(M)}$ is a divisorial submodule of $\frac{M}{\text{nil}(M)}$ and so by Theorem 3.6, P is a Φ-divisorial submodule of M. Now, let $\text{ht}(P) \geq 2$. Then $\text{ht}(\frac{P}{\text{nil}(M)}) \geq 2$ and so by Proposition 2.8, $P^{-1} = R$ or $(\frac{P}{\text{nil}(M)})_\nu$ is a strong divisorial submodule of M. Therefore, $P^{-1} = R$ or P_ν is a strong divisorial submodule of M. □

Theorem 3.20. Let R be a ring and M a finitely generated faithful multiplication R-module with $M \in \mathcal{H}$. Then M is a Φ-Mori module if and only if for each nonnil submodule N of M, there exists a nonnil finitely generated submodule $L \subset N$ such that $\Phi(N)^{-1} = \Phi(L)^{-1}$, equivalently $\Phi(N)_\nu = \Phi(L)_\nu$.

Proof. Suppose that M is a Φ-Mori module and N is a nonnil submodule of M. Since by Theorem 3.7, $\frac{M}{\text{nil}(M)}$ is a Mori module and $F := \frac{N}{\text{nil}(M)}$ is a nonzero submodule of $\frac{M}{\text{nil}(M)}$, there exists a finitely generated submodule $L \subset F$ such that $F^{-1} = L^{-1}$. Since $L = \frac{K}{\text{nil}(M)}$ for some nonnil finitely generated submodule K of M by [MY, Theorem 2.8], and $\mathcal{T}(\frac{M}{\text{nil}(M)}) = \mathcal{T}(\frac{\Phi(M)}{\text{nil}(\Phi(M))})$, we conclude that $\Phi(N)^{-1} = \Phi(L)^{-1}$.

Conversely, suppose that for each nonnil submodule N of M, there exists a nonnil finitely generated submodule $L \subset N$ such that $\Phi(N)^{-1} = \Phi(L)^{-1}$. Then for each nonzero submodule $F := \frac{N}{\text{nil}(M)}$ of $\frac{M}{\text{nil}(M)}$, there exists a finitely generated submodule $K \subset F$ such that $F^{-1} = K^{-1}$. Hence $\frac{M}{\text{nil}(M)}$ is a...
Mori module by Theorem 2.9. Therefore, by Theorem 3.7, \(M \) is a \(\Phi \)-Mori module.

Corollary 3.21. Let \(R \) be a ring and \(M \) a finitely generated faithful multiplication \(R \)-module with \(M \in \mathbb{H} \). If \(M \) is a \(\Phi \)-Mori module, then every \(\Phi \)-divisorial submodule of \(M \) is a \(\Phi \)-divisorial submodule of finite type.

Proof. Let \(M \) be a \(\Phi \)-Mori module and \(N \) be a \(\Phi \)-divisorial submodule of \(M \). Then, by Theorem 3.5, \(\Phi(M) \) is a Mori module and \(\Phi(N) \) is a divisorial submodule of \(\Phi(M) \). Thus, by Theorem 2.9, there is a finitely generated submodule \(\Phi(L) \subseteq \Phi(N) \) such that \(\Phi(N) = \Phi(L)_\nu \). Since \(\Phi(N) \) is divisorial, \(\Phi(N) = \Phi(L)_\nu \). Therefore \(N \) is a \(\Phi \)-divisorial submodule of finite type.

Theorem 3.22. Let \(R \) be a ring and \(M \) a finitely generated faithful multiplication \(R \)-module with \(M \in \mathbb{H} \). Then the following statements are equivalent:

1. \(M \) is a \(\Phi \)-Mori module.
2. \(R \) is a \(\phi \)-Mori ring.
3. \(\Phi(M) \) is a Mori module.
4. \(\frac{M}{\text{Nil}(M)} \) is a Mori module.
5. \(\frac{\Phi(M)}{\text{Nil}(\Phi(M))} \) is a Mori module.
6. For each nonnil submodule \(N \) of \(M \), there exists a nonnil finitely generated submodule \(L \subset N \) such that \(\Phi(N)^{-1} = \Phi(L)^{-1} \).
7. For each nonnil submodule \(N \) of \(M \), there exists a nonnil finitely generated submodule \(L \subset N \) such that \(\Phi(N)_\nu = \Phi(L)_\nu \).

Acknowledgments. We thank the referees for their careful reading of the whole manuscript and their helpful suggestions.

References

ON Φ-MORI MODULES

This paper is available via http://nyjm.albany.edu/j/2015/21-57.html.