A short proof that $\text{Diff}_c(M)$ is perfect

Kathryn Mann

Abstract. In this note, we follow the strategy of Haller, Rybicki and Teichmann to give a short, self contained, and elementary proof that $\text{Diff}_0(M)$ is a perfect group, given a theorem of Herman on diffeomorphisms of the circle.

Contents

1. Introduction 49
2. Reduction to $M = \mathbb{R}^n$ and diffeomorphisms near identity 50
3. Proof for S^1 and diffeomorphisms preserving vertical lines 51
4. Proof for \mathbb{R}^n 53
References 54

1. Introduction

Let M be a smooth manifold of dimension $n > 1$ and let $\text{Diff}_c(M)$ denote the group of diffeomorphisms supported on compact sets and isotopic to the identity through a compactly supported isotopy. Note that if M is compact, then $\text{Diff}_c(M) = \text{Diff}_0(M)$, the group of isotopically trivial diffeomorphisms. That $\text{Diff}_c(M)$ is a perfect group was first proved by Thurston, as announced in [Th74]. The proof relies on the relationship between the homology of $\text{Diff}_c(M)$ and certain classifying spaces of foliations. Recently, Haller, Rybicki and Teichmann gave a fundamentally different proof in [HT03] and [HRT13]. In fact, they prove a stronger form of “smooth perfection” and give bounds on commutator width of $\text{Diff}_c(M)$ for some manifolds.

Bounds on commutator width have also been given in [BIP08], [Ts09] and [Ts12]. In particular, given the result that $\text{Diff}_c(\mathbb{R}^n)$ is perfect, Burago, Ivanov, and Polterovich show in [BIP08, Lemma 2.2] that any element of $\text{Diff}_c(\mathbb{R}^n)$ can be written as a product of two commutators; an isotopically trivial diffeomorphism of a compact 3-manifold can be written as a product of 10 commutators, and an element of $\text{Diff}_0(S^n)$ as a product of 4 commutators. Related results were obtained by Tsuboi in [Ts08], who later gave general bounds on commutator width of $\text{Diff}_0(M)$, depending on M ([Ts09], [Ts12]).
The purpose of this note is to show that if one only wants to show that $\text{Diff}_c(M)$ is perfect, then the techniques of Haller, Rybicki and Teichmann provide a remarkably simple proof. Our exposition closely follows the strategy of [HT03], but avoids discussion of the tame Fréchet manifold structure on $\text{Diff}_0(M)$. As the perfectness of these diffeomorphism groups is widely cited, we thought it worthwhile to make available this short and widely accessible proof. We show the following.

Theorem 1.1. Let M be a smooth manifold, $M \neq \mathbb{R}$. Then $\text{Diff}_c(M)$ is perfect. In fact, any compactly supported diffeomorphism g can be written as a product of commutators $g = [g_1, f_1][g_2, f_2] \cdots [g_r, f_r]$ where each f_i is the time one map of a (time independent) vector field X_i on M.

In particular, this result can then be fed into Lemma 2.2 of [BIP08] to obtain their bounds on commutator width. The assumption $M \neq \mathbb{R}$ seems essential to this proof, although $\text{Diff}_c(\mathbb{R})$ is also perfect. The proof uses only one deep theorem, a result of Herman on circle diffeomorphisms.

Theorem 1.2 ([He79]). There is a neighborhood U of the identity in $\text{Diff}_0(S^1)$ and a dense set of rotations R_θ by angles $\theta \in [0, 2\pi)$ such that any $g \in U$ can be written as $R_\lambda[g_0, R_\theta]$ for some rotation R_λ and some $g_0 \in \text{Diff}_0(S^1)$. Moreover, λ and g_0 can be chosen to vary smoothly in g, with $\lambda = 0$ and $g_0 = \text{id}$ at $g = \text{id}$.

"Vary smoothly in g" can be made precise with reference to the Fréchet structure on $\text{Diff}_0(M)$, but for our purposes the reader may take it to mean the following.

Definition 1.3. A smooth family in $\text{Diff}_c(M)$ is a family $\{g_t : t \in [0, 1]\}$ such that the map $(x, t) \mapsto (g_t(x), t)$ is a smooth diffeomorphism of $M \times [0, 1]$. A map $\phi : \text{Diff}_c(M) \to \text{Diff}_c(N)$ varies smoothly if it maps smooth families to smooth families.

A more general version of Herman’s theorem on diffeomorphisms of the n-dimensional torus is used in both Thurston’s original proof and the Haller-Rybicki-Teichmann proof, though Haller, Rybicki and Teichmann state that their methods work using only Herman’s theorem for S^1. This note provides the details.

2. Reduction to $M = \mathbb{R}^n$ and diffeomorphisms near identity

Recall that the support of a diffeomorphism g is the closure of the set $\{x \in M \mid g(x) \neq x\}$. The first step in the proof of Theorem 1.1 is to reduce it to the case of compactly supported diffeomorphisms on $M = \mathbb{R}^n$. This reduction is a consequence of the well-known fragmentation property. For simplicity, we assume M is compact.

Lemma 2.1 (Fragmentation). Let $\{U_i\}$ be a finite open cover of M. Then any $g \in \text{Diff}_0(M)$ can be written as a composition $g_1 \circ g_2 \circ \cdots \circ g_n$ of
diffeomorphisms where each g_i has support contained in some element of $\{U_i\}$.

Proof. The proof is straightforward, for completeness we outline it here, following [Ba97, Ch. 2]. Let g_t be an isotopy from $g_0 = \text{id}$ to $g_1 = g$. By writing

$$g = g_{1/r} \circ (g_{1/r}^{-1} g_{2/r}) \circ \cdots \circ (g_{r-1/r}^{-1} g_1)$$

for r large, and working separately with each factor $g_{k-1/r} g_{k/r}$, we may assume that g and g_t lie in an arbitrarily small neighborhood of the identity.

Take a partition of unity λ_i subordinate to $\{U_i\}$ and define

$$\mu_k := \sum_{i \leq k} \lambda_i.$$

Now define $\psi_k(x) := g_{\mu_k(x)}(x)$. This is a C^∞ map, and can be made as close to the identity as we like by taking g_t close to the identity. Although ψ_k is not a priori invertible, being invertible with smooth inverse is an open condition. Thus, ψ_k being sufficiently close to the identity implies that it is a diffeomorphism. By definition, ψ_k agrees with ψ_{k-1} outside of U_k, and hence $g = (\psi_{0}^{-1} \psi_1)(\psi_1^{-1} \psi_2) \cdots (\psi_{n-1}^{-1} \psi_n)$ is the desired decomposition of g with each diffeomorphism $\psi_{k-1}^{-1} \psi_k$ supported on U_k.

To prove Theorem 1.1, it is also sufficient to prove that some neighborhood of the identity in $\text{Diff}_c(\mathbb{R}^n)$ is perfect, because any neighborhood of the identity generates $\text{Diff}_c(\mathbb{R}^n)$. The strategy is to first prove perfectness of a neighborhood of the identity for S^1, move to \mathbb{R}^2, and then induct on dimension.

3. **Proof for S^1 and diffeomorphisms preserving vertical lines**

Perfectness of $\text{Diff}_0(S^1)$ is a consequence of Herman’s theorem together with the fact that $\text{PSL}(2,\mathbb{R})$ is perfect, so any rotation can be written as a commutator.

Lemma 3.1 (Perfectness for S^1). There is a neighborhood \mathcal{U} of the identity in $\text{Diff}_0(S^1)$ and $f_1, \ldots, f_4 \in \text{Diff}_0(S^1)$ such that any $g \in \mathcal{U}$ can be written $g = [g_1, f_1] \cdots [g_4, f_4]$, with each g_i depending smoothly on g.

Furthermore, we may take $f_i = \exp(X_i)$ to be the time one map of a vector field, and may take $g_i = \text{id}$ when $g = \text{id}$.

Proof. Let \mathcal{U} be a neighborhood of the identity as in Herman’s theorem and let $g \in \mathcal{U}$. Then g can be written as $R_\lambda [g_0, R_\lambda]$ with λ and g_0 depending smoothly on g. Let $f_4 = R_\lambda$; this is indeed the time one map of a (constant) vector field. We need to write the rotation R_λ as a product of commutators $[g_1, f_1][g_2, f_2][g_3, f_3]$ with g_i depending smoothly on λ, and will do this working inside of $\text{PSL}(2,\mathbb{R}) \subset \text{Diff}_0(S^1)$. This can be done completely explicitly: take $f_1 = f_3 = \exp((0 1 \ 0 0))$ and $f_2 = \exp((0 1 \ 0 0))$, and define $g_0 = \left(\begin{array}{cc} a & 0 \\ 0 & a^{-1} \end{array} \right)$.

Then
\[[g_\alpha, f_1][g_\beta, f_2][g_\alpha, f_3] = \left(\frac{1}{0} \begin{pmatrix} \alpha^2 - 1 & 0 \\ \beta^2 - 1 & 1 \end{pmatrix} \frac{1}{0} \begin{pmatrix} \alpha^2 - 1 & 0 \\ \beta^2 - 1 & 1 \end{pmatrix} \right). \]

This is the matrix of rotation by \(\lambda := \sin^{-1}(\beta^2 - 1) \) provided that \(-\beta^2 - 1) = 2(\alpha^2 - 1) + (\alpha^2 - 1)^2(\beta^2 - 1)\). If \(\alpha \) is close to 1, then there exists \(\beta \) (close to 1) satisfying this equation, namely
\[
\beta = \left(\frac{-2(\alpha^2 - 1)}{1 + (\alpha^2 - 1)^2} + 1 \right)^{-1/2}.
\]

In fact, the inverse function theorem implies that \(\alpha \mapsto \left(\frac{-2(\alpha^2 - 1)}{1 + (\alpha^2 - 1)^2} + 1 \right)^{-1/2} \) is a local diffeomorphism of \(\mathbb{R} \) at \(\alpha = 1 \). Since \(\beta \mapsto \sin^{-1}(\beta^2 - 1) \) is also a local diffeomorphism at \(\beta = 1 \) onto a neighborhood of 0, this shows that \(\alpha \) and \(\beta \) can be chosen to smoothly depend on \(\lambda \), and approach \(1 \) as \(\lambda \to 0 \).

Alternatively, one can see that such \(f_i \) exist from the fact that \(\text{PSL}(2, \mathbb{R}) \) is a three dimensional perfect Lie group. See [HT03, Sect. 4] for details and further generalizations.

Remark 3.2. Above, we showed that every diffeomorphism in a neighborhood of the identity could be written as a product of four commutators of a specific form. Relaxing this condition allows one to (easily) write every element \(g \) in a neighborhood of \(\text{id} \) in \(\text{Diff}(S^1) \) as a product of two commutators, \(g = [a_1, b_1][a_2, b_2] \) with \(a_i \) and \(b_i \) depending smoothly on \(g \). To do so, Herman’s theorem again implies that it suffices to write a rotation \(R_\lambda \) as \([a_1, b_1] \), with \(a_1 \) and \(b_1 \) depending smoothly on \(\lambda \), and this can be done in \(\text{PSL}(2, \mathbb{R}) \), either explicitly or with an elementary argument using hyperbolic geometry as in [Gh01, Prop 5.11].

As a consequence, we now prove a perfectness result for compactly supported diffeomorphisms of \(\mathbb{R}^n \) that preserve vertical lines.

Proposition 3.3. Let \(U \subset \mathbb{R}^n = \mathbb{R}^{n-1} \times \mathbb{R} \) be precompact, and \(V \) a neighborhood of the closure of \(U \). There exist vector fields \(Y_1, \ldots, Y_4 \) supported on \(V \) with the following property:
- If \(g \in \text{Diff}_c(\mathbb{R}^n) \) is supported on \(U \), sufficiently close to the identity, and preserves each vertical line \(\mathbb{R}^{n-1} \times \{x\} \), then \(g \) can be decomposed as
 \[g = [g_1, \exp(Y_1)] \cdots [g_4, \exp(Y_4)] \]
 with \(g_i \) supported on \(V \) and depending smoothly on \(g \).

Proof. Let \(B^{n-1} \) be a ball in \(\mathbb{R}^{n-1} \). There exists an embedding \(\phi \) of \(S^1 \times B^{n-1} \) in \(\mathbb{R}^n \) with \(U \subset \phi(S^1 \times \{b\}) \subset V \), and such that for each \(b \in B^{n-1} \) the image \(\phi(S^1 \times \{b\}) \cap U \) is a vertical line segment as in Figure 1.
A SHORT PROOF THAT $\text{Diff}_c(M)$ IS PERFECT

If g preserves vertical lines, then we can consider it as a diffeomorphism $\mathbb{R} \times \mathbb{R}^{n-1} \to \mathbb{R} \times \mathbb{R}^{n-1}$ of the form $(x, y) \mapsto (x, \hat{g}(x, y))$. For each $x \in \mathbb{R}^{n-1}$ let $g_x(y)$ denote $\hat{g}(x, y)$. Then g_x has support on a vertical line in U so we can consider it as a diffeomorphism of S^1 by pulling it back to S^1 by ϕ. Using Lemma 3.1, write the pullback $\phi^*(g_x) = [g_{x,1}, \exp(X_1)] \ldots [g_{x,4}, \exp(X_4)]$. Now push the vector fields X_i on each $S^1 \times \{b\}$ forward to \mathbb{R}^n to get vector fields on $\phi(S^1 \times B)$ tangent to $\phi(S^1 \times \{b\})$ and extend these smoothly to vector fields Y_i with support in V. The smooth dependence of $g_{x,i}$ on g_x and hence on x means that the functions $\phi g_{x,i} \phi^{-1}$ on the vertical lines $\phi(S^1 \times \{b\})$ piece together to form smooth functions g_i on the image of ϕ. Since $g = \text{id}$ on the boundary of the image of ϕ, Lemma 3.1 implies that $g_i = \text{id}$ as well, so it can be extended (trivially) to a diffeomorphism of \mathbb{R}^n. Now $g = [g_1, \exp(Y_1)] \ldots [g_4, \exp(Y_4)]$ on the image of ϕ by construction, and both are equal to the identity everywhere else. \square

4. Proof for \mathbb{R}^n

The proof of Theorem 1.1 for \mathbb{R}^n will follow from a short inductive argument using Proposition 3.3 and the following lemma.

Lemma 4.1. There is a neighborhood U of the identity in $\text{Diff}_c(\mathbb{R}^n)$ such that any $f \in U$ can be written as $g \circ h$, where h preserves each vertical line and g preserves each horizontal hyperplane. Moreover, g and h can be chosen to depend smoothly on f.

In other words, if $x = (x_1, \ldots, x_{n-1})$, this Lemma says that we may take h to be of the form $h(x, y) = (x, \hat{h}(x, y))$ and g of the form $g(x, y) = (\hat{g}(x, y), y)$.

Proof. Let $\pi_i : \mathbb{R}^n \to \mathbb{R}$ denote projection to the i^{th} coordinate. Suppose $f : \mathbb{R}^n \to \mathbb{R}^n$ is compactly supported and sufficiently C^∞ close to the identity. Then for any point $(x, y) = (x_1, \ldots, x_{n-1}, y)$ the map $f_x : \mathbb{R} \to \mathbb{R}$ given by $f_x(y) = \pi_n f(x, y)$ is a diffeomorphism. (Injectivity follows from the fact that tangent vectors to vertical lines remain nearly vertical under a diffeomorphism close to the identity – if $\pi_n f(x, y_1) = \pi_n f(x, y_2)$ for some $y_1 \neq y_2$, then the image of f_x has horizontal tangent at some point $y \in [y_1, y_2]$.)
Now given \(f \), define \(h \) and \(g \):

\[
R^{n-1} \times \mathbb{R} \to R^{n-1} \times \mathbb{R}
\]

by

\[
h(x, y) = (x, f_x(y)),
\]

\[
g(x, y) = (g_1(x, y), \ldots, g_{n-1}(x, y), y),
\]

where \(g_i(x, y) = \pi_i(x, f_x^{-1}(y)) \in \mathbb{R} \). Then \(f = g \circ h \) and \(g \) and \(h \) vary smoothly with \(f \). \(\square \)

Proof of Theorem 1.1. We induct on the dimension \(n \). The case \(n = 2 \) follows from Lemma 4.1 using \(n = 2 \), together with Proposition 3.3 applied to \(g \) and \(h \) in the decomposition (Proposition 3.3 works just as well for the diffeomorphism \(g \), which preserves horizontal rather than vertical lines).

Now suppose Theorem 1.1 holds for \(n = k \), and let \(f \in \text{Diff}_c(R^{k+1}) \) be close to the identity. By Lemma 4.1, \(f = g \circ h \), where \(h \) preserves each vertical line and \(g \) preserves each horizontal hyperplane in \(R^{k+1} \), and \(g \) and \(h \) are close to the identity. By our inductive assumption, there are smooth vector fields \(X_1, \ldots, X_r(k) \) tangent to each horizontal hyperplane such that \(g = [g_1, \exp(X_1)] \cdots [g_r, \exp(X_r(k))] \) where the \(g_i \) preserve horizontal hyperplanes as well. Technically speaking, our hypothesis gives vector fields \(X_i \) and diffeomorphisms \(g_i \) defined separately on each \(R^k \)-hyperplane, but the proof of Proposition 3.3 allows us to choose them so that they vary smoothly and form global vector fields or diffeomorphisms on \(R^{k+1} \). By Proposition 3.3, there are also vector fields \(Y_1, \ldots, Y_4 \) supported on a neighborhood of \(\text{supp}(h) \) so that \(h = [h_1, \exp(Y_1)] \cdots [h_4, \exp(Y_4)] \). Thus, \(f = g \circ h \) is a product of commutators as desired. \(\square \)

References

A SHORT PROOF THAT Diff\(_r\)(\(M\)) IS PERFECT

(Kathryn Mann) Dept. of Mathematics, 970 Evans Hall. University of California, Berkeley, CA 94720
kpmann@math.berkeley.edu

This paper is available via http://nyjm.albany.edu/j/2016/22-3.html.