ON CONVERGENCE OF DERIVATIVES OF LINEAR COMBINATIONS
OF MODIFIED LUPAS OPERATORS

P. N. Agrawal, Vijay Gupta and A. Sahai

Abstract. We study some direct theorems in the simultaneous approximation by certain linear combinations of modified Lupas operators. We also consider a class of unbounded functions with growth of order of t^q.

1. Introduction

Motivated by Derriennic [1], Sahai and Prasad [4] proposed modified Lupas operators defined, for functions integrable on $[0, \infty)$ by

$$(L_n f)(x) = (n - 1) \sum_{\nu=0}^{\infty} p_{n, \nu}(x) \int_{0}^{\infty} p_{n, \nu}(t) f(t) dt,$$

where

$$p_{n, \nu}(x) = \binom{n + \nu - 1}{\nu} x^{\nu} (1 + x)^{-1 - \nu}.$$

It turns out that the order of approximation by these operators is at best $O(1/n)$, howsoever smooth the function may be. With the aim of bettering the said rate of approximation, May [2] and Rathore [3] have described a method for forming linear combination linear of positive operators. The approximation process follows:

$$L_n f, k, x = \sum_{j=0}^{k} C(j, k) L_{d_j n} f, x,$$

where $d_0, d_1, d_2, \ldots d_k$ are arbitrary but fixed distinct positive integers. We define

$$C(j, k) = \prod_{i=0}^{k} \frac{d_j}{d_j - d_i}, \quad k \neq 0 \text{ and } C(0, 0) = 1.$$

AMS Subject Classification (1980): Primary 41 A25; 41 A36
The object of the present paper is to study the problem of simultaneous approximation by the above linear combination of modified Lupas operators.

Throughout this paper \((a, b) \subset [0, \infty)\) denotes an open interval containing the closed interval \([a, b]\). The superscript \((r)\), \([\lambda]\) and \(\|\cdot\|\) stand for the \(r\)-th derivative of the function, maximum integer not exceeding \(\lambda\) and the sup-norm on \([a, b]\) respectively.

2. Auxiliary results

We shall need the following results:

Lemma 2.1. [4]. Let

\[
T_{n,m} = (n - r - 1) \sum_{\nu=0}^{\infty} p_{n+r,\nu}(x) \int_{0}^{\infty} p_{n-r,\nu+r}(t)(t - x)^m dt.
\]

Then

\[
T_{n,0} = 1, \quad T_{n,1} = \frac{(r + 1)(1 + 2x)}{(n - r - 2)}, \quad n > (r + 2)
\]

\[
(n - m - r - 2)T_{n,m+1} = x(1 + x)T_{n,m}^1 + 2mT_{n,m-1} + (m + r + 1)(1 + 2x)T_{n,m}; \quad n > m + r + 2.
\]

And hence \(T_{n,m} = O(n^{-(m+1)/2})\).

Lemma 2.2. [4]. For \(r = 0, 1, 2, \ldots\) we have

\[
(L_n^{(r)}f)(x) = \frac{(n - r - 1)(n + r - 1)}{(n - 1)(n - 2)} \sum_{\nu=0}^{\infty} p_{n+r,\nu}(x) \int_{0}^{\infty} p_{n-r,\nu+r}(t)f^{(r)}(t)dt.
\]

Lemma 2.3. [2]. If \(C(j,k), j = 0, 1, 2 \ldots k\) are defined as in (1.3), then

\[
\sum_{j=0}^{k} C(j,k)d_j^m = \begin{cases} 1 & m = 0 \\ 0 & m = 1, 2, \ldots k. \end{cases}
\]

3. Main results

Theorem 3.1. Let \(f\) be integrable on \([0, \infty)\) admitting \((2k + r + 2)\)-th derivative at a point \(x \in [0, \infty)\) with \(f^{(r)}(x) = O(x^\alpha)\), where \(\alpha\) is a positive integer not less that \(2k + 2\), as \(x \to \infty\). Then

\[
\lim_{n \to \infty} n^{k+1} [L_n^{(r)}(f, k, x) - f^{(r)}(x)] = \sum_{i=1}^{2k+2} Q(i, k, r, x) f^{(i+r)}(x), \quad (3.1)
\]

\[
\lim_{n \to \infty} n^{k+1} [L_n^{(r)}(f, k + 1, x) - f^{(r)}(x)] = 0, \quad (3.2)
\]
where \(Q(i,k,r,x) \) are certain polynomials in \(x \) of degree at most \(i \). Furthermore if \(f^{(2k+r+2)} \) exists and is continuous on \((1,b) \) then (3.1) and (3.2) hold uniformly on \([a,b]\).

Proof. By Lemma 2.2. and Taylor’s expansion of \(f \), we are led to

\[
\sum_{j=0}^{k} C(j,k) \frac{(d_jn - 1)! (d_jn - 2)!}{(d_jn + r - 1)! (d_jn - r - 2)!} L_{d_jn}(f;x) - f^{(r)}(x)
\]

\[
= \sum_{j=0}^{k} C(j,k) \left[(d_jn - r - 1) \sum_{\nu=0}^{\infty} p_{d_jn+r,\nu}(x) \int_{0}^{\infty} p_{d_jn-r,\nu+r}(t) \left[f^{(r)}(t) - f^{(r)}(x) \right] dt \right]
\]

\[
= \sum_{j=0}^{k} C(j,k)(d_jn - r - 1) \sum_{\nu=0}^{\infty} p_{d_jn+r,\nu}(x) \int_{0}^{\infty} p_{d_jn-r,\nu+r}(t) \left\{ \sum_{i=1}^{2k+2} \frac{f^{(i+r)}(x)}{i!} (t-x)^i + \varepsilon(t-x)(t-x)^{2k+2} \right\} dt
\]

\[
= \sum_{i=1}^{2k+2} \frac{f^{(i+r)}(x)}{i!} \sum_{j=0}^{k} C(j,k)(d_jn - r - 1) \sum_{\nu=0}^{\infty} p_{d_jn+r,\nu}(x) \int_{0}^{\infty} p_{d_jn-r,\nu+r}(t) (t-x)^i dt
\]

\[+ \sum_{j=0}^{k} C(j,k)(d_jn - r - 1) \sum_{\nu=0}^{\infty} p_{d_jn+r,\nu}(x) \int_{0}^{\infty} p_{d_jn-r,\nu+r}(t) \varepsilon(t-x)(t-x)^{2k+2} dt
\]

\[= \sum_{i=1}^{2k+2} \frac{f^{(i+r)}(x)}{i!} \sum_{j=0}^{k} C(j,k) T_{d_jn,i}(x) + E_{n,r,k}(x),
\]

where

\[
\varepsilon(t-x) = (t-x)^{2k+2} \left(f^{(r)}(t) - \sum_{i=0}^{2k+2} \frac{f^{(i+r)}(x)}{i!} (t-x)^i \right) \text{ for } t \neq x
\]

\[= 0, \text{ otherwise.}
\]

Using Lemma 2.1 and 2.3,

\[
\sum_{i=1}^{2k+2} \frac{f^{(i+r)}(x)}{i!} \sum_{j=0}^{k} C(j,k) T_{d_jn,i}(x)
\]

\[= \sum_{i=0}^{2k+2} \frac{f^{(i+r)}(x)}{i!} \sum_{j=0}^{k} C(j,k) O \left(\frac{1}{(d_jn)^{(i+1)}/2} \right)
\]

\[= n^{-k-1} \sum_{i=1}^{2k+2} Q(i,k,r,x) f^{(i+r)}(x),
\]
where $Q(i, k, r, x)$ are certain polynomials in x of degree at most i.

To prove (3.1) it suffices to show that $n^{k+1} E_{n, r, k}(x) \to 0$ for sufficiently large n. For arbitrary $\varepsilon > 0, A > 0$, there exists a $\delta > 0$ such that $|\varepsilon(T - X)| < \varepsilon$ for $x \leq A$ and $|t - x| < \delta$. Now

$$
E_{n, r, k}(x) = \sum_{j=0}^{k} C(j, k) (d_{jn} - r - 1) \sum_{\nu=0}^{\infty} p_{d_{jn} + r, \nu}(x) \\
\left(\int_{|t-x|<\delta} p_{d_{jn} - r, \nu + r}(t) \varepsilon(t-x)(t-x)^{2k+2} dt \\
+ \int_{|t-x|>\delta} p_{d_{jn} - r, \nu + r}(t) \varepsilon(t-x)(t-x)^{2k+2} dt \right) \\
= I_1 + I_2 \quad \text{(say)}.
$$

To estimate I_1, using Lemma 2.1 we get

$$
|I_1| \leq \sum_{j=0}^{k} \left| C(j, k) \right| (d_{jn} - r - 1) \sum_{\nu=0}^{\infty} p_{d_{jn} + r, \nu}(x) \int_{|t-x|<\delta} p_{d_{jn} - r, \nu + r}(t) \\
|\varepsilon(t-x)| (t-x)^{2k+2} dt \\
< \sum_{j=0}^{k} \left| C(j, k) \right| (d_{jn} - r - 1) \sum_{\nu=0}^{\infty} p_{d_{jn} + r, \nu}(x) \int_{0}^{\infty} p_{d_{jn} - r, \nu + r}(t) (t-x)^{2k+2} dt \\
= \varepsilon \sum_{j=0}^{k} \left| C(j, k) \right| T_{d_{jn}, 2k+2}(x) \\
= \varepsilon \sum_{j=0}^{k} \left| C(j, k) \right| o((d_{jn})^{-k-1}) \\
= \varepsilon O(n^{-k-1}).
$$

Finally,

$$
I_2 = \sum_{j=0}^{k} C(j, k) (d_{jn} - r - 1) \sum_{\nu=0}^{\infty} p_{d_{jn} + r, \nu}(x) \int_{|t-x|\geq\delta} p_{d_{jn} - r, \nu + r}(t) \varepsilon(t-x)(t-x)^{2k+2} dt \\
= \sum_{j=0}^{k} C(j, k) \left((d_{jn} - r - 1) \sum_{\nu=0}^{\infty} p_{d_{jn} + r, \nu}(x) \int_{|t-x|\geq\delta} p_{d_{jn} - r, \nu + r}(t) t^\alpha dt \right) \\
= \sum_{j=0}^{k} C(j, k) \left((d_{jn} - r - 1) \sum_{\nu=0}^{\infty} p_{d_{jn} + r, \nu}(x) \int_{|t-x|\geq\delta} p_{d_{jn} - r, \nu + r}(t) \cdot \left(\sum_{i=0}^{\alpha} \frac{(\alpha)!}{i!(\alpha-i)!} dt \right) \right)
$$

Agrawal, Gupta, Sahai
\[
= \sum_{j=0}^{k} C(j,k) \left((d_j n - r - 1) \sum_{\nu=0}^{\infty} p d_j n + r, p (x) \int_{|t-x|\geq \delta} p d_j n - r, p + r(t) \frac{(t-x)^{2k+3}}{\delta^{2k+3}} \left(\sum_{i=0}^{\infty} \left(\frac{q}{i} \right) (t-x)^i z^{-i} \right) dt \right) \\
= \sum_{j=0}^{k} C(j,k) \sum_{i=0}^{n} \left(\frac{q}{i} \right) x^{-i} \cdot O(T_d_j n, 2k+3+3(x)) = O \left(\frac{1}{n^{k+2}} \right)
\]
and (3.1) follows.

The assertion (3.2) can be proved along similar lines using \(L_n((t-x)^i, k + 1, x) = O(n^{-(k+2)}) \), \(i = 1, 2, \ldots \) which follows from Lemma 2.3.

The last assertion follows due to the uniform continuity of \(f^{(2k+r+2)} \) on \([a,b]\) (enabling \(\delta \) to become independent of \(x \in [a,b] \)).

This completes the proof.

Remark. We may note here that \(\frac{(d_j n-1)!(d_j n-2)!}{(d_j n+r-1)!(d_j n+r-2)!} \to 1 \) as \(n \to \infty \).

Theorem 3.2. Let \(1 \leq p \leq 2k+2 \) and \(f \) be integrable on \([0,\infty)\). If \(f^{(p+r)} \) exists and is continuous on \([a,b] \) having the modulus of continuity \(\omega_f^{(p+r)}(\delta) \) on \((a,b)\) and \(f^{(r)}(x) = O(x^\alpha)(\alpha \text{ is a positive integer} \geq p) \) then for \(n \) sufficiently large

\[
||L_n^{(p)}(f,k,x) - f^{(r)}|| \leq \text{Max}\{C_1 n^{-p/2} \omega_f^{(p+r)}(n^{-1/2}), C_2 n^{-k+1}\}
\]

where \(C_1 = C_1(k, p, r) \) and \(C_2 = C_2(k, p, r, f) \).

Proof. For every \(t \in [0,\infty) \) and \(x \in [a,b] \) we have

\[
f^{(r)}(t) = \sum_{i=0}^{p} \frac{f^{(i+r)}(x)}{i!} (t-x)^i + \frac{f^{(p+r)}(\xi) - f^{(p+r)}(x)}{p!} (t-x)^p + h(t,x)\chi(t),
\]

where \(\xi \) lies between \(t \) and \(x \) and \(\chi(t) \) is the characteristic function of the set \([0,\infty)\setminus(a,b)\). The function \(h(t,x) \) for \(x \in [a,b] \) is bounded by \(M t^\alpha \| t - x \|^p \) for some constant \(M \). Using (3.3) we get

\[
\sum_{j=0}^{k} C(j,k) \frac{(d_j n-1)!(d_j n-2)!}{(d_j n+r-1)!(d_j n+r-2)!} T_d_j n^{(r)}(f;x) \\
= \sum_{j=0}^{k} C(j,k)(d_j n - r - 1) \sum_{\nu=0}^{\infty} p d_j n + r, p (x) \int_{0}^{\infty} p d_j n - r, p + r(t) f^{(r)}(t) dt \\
= \sum_{j=0}^{k} C(j,k)(d_j n - r - 1) \sum_{\nu=0}^{\infty} p d_j n + r, p (x) \int_{0}^{\infty} p d_j n - r, p + r(t) \left\{ \sum_{i=0}^{p} \frac{f^{(i+r)}(x)}{i!} (t-x)^i + \frac{f^{(p+r)}(\xi) - f^{(p+r)}(x)}{p!} (t-x)^p + h(t,x)\chi(t) \right\} dt
\]
\[\begin{align*}
= & \sum_{j=0}^{k} C(j, k)(d_j n - r - 1) \sum_{\nu=0}^{\infty} p_{d_j n + r, \nu}(x) \int_{0}^{\infty} p_{d_j n - r, \nu + r}(t) \sum_{i=0}^{r} \frac{f^{(i+r)}(x)}{i!} (t - x)^i dt + \\
& \sum_{j=0}^{k} C(j, k)(d_j n - r - 1) \sum_{\nu=0}^{\infty} p_{d_j n + r, \nu}(x) \int_{0}^{\infty} p_{d_j n - r, \nu + r}(t) \left(\frac{f^{(p+r)}(\xi) - f^{(p+r)}(x)}{p!} \right) (t - x)^p dt \\
+ & \sum_{j=0}^{k} C(j, k)(d_j n - r - 1) \sum_{\nu=0}^{\infty} p_{d_j n + r, \nu}(x) \int_{0}^{\infty} p_{d_j n - r, \nu + r}(t) h(t, x) \chi(t) dt \\
= & I_1 + I_2 + I_3 \quad (say)
\end{align*}\]

An application of Lemma 2.1 gives us \(I_1 = f^{(r)}(x) + O(n^{-k+1}) \) uniformly in \(x \in [a, b] \).

To estimate \(I_2 \), for every \(\delta > 0 \), we have

\[\begin{align*}
| f^{(p+r)}(\xi) - f^{(p+r)}(x) | & \leq \omega_f^{(p+r)}(| x - \xi |) \\
& \leq (1 + | t - x |) \omega_f^{(p+r)}(\delta).
\end{align*}\]

Hence

\[\begin{align*}
| I_2 | & \leq \frac{1}{p!} \sum_{j=0}^{k} | C(j, k) | (d_j n - r - 1) \sum_{\nu=0}^{\infty} p_{d_j n + r, \nu}(x) \int_{0}^{\infty} p_{d_j n - r, \nu + r}(t) \\
& \quad \times (1 + | t - x |) | t - x |^p \omega_f^{(p+r)}(\delta) dt \\
= & \frac{\omega_f^{(p+r)}(\delta)}{p!} \sum_{j=0}^{k} | C(j, k) | (d_j n - r - 1) \sum_{\nu=0}^{\infty} p_{d_j n + r, \nu}(x) \int_{0}^{\infty} p_{d_j n - r, \nu + r}(t) \cdot | t - x |^p + | t + x |^{p+1} \omega_f^{(p+r)}(\delta) dt.
\end{align*}\]

Using Schwarz inequality for summation and then for integration we find that

\[\begin{align*}
\sum_{\nu=0}^{\infty} p_{d_j n + r, \nu}(x) \int_{0}^{\infty} p_{d_j n - r, \nu + r}(t) | t - x |^p dt & \leq \left\{ \sum_{\nu=0}^{\infty} p_{d_j n + r, \nu}(x) \right\} \left(\int_{0}^{\infty} p_{d_j n - r, \nu + r}(t) | t - x |^p dt \right)^{1/2} \\
& \leq \left\{ \sum_{\nu=0}^{\infty} p_{d_j n + r, \nu}(x) \right\}^{1/(d_j n - r - 1)} \left(\int_{0}^{\infty} p_{d_j n - r, \nu + r}(t) | t - x |^{2p} dt \right)^{1/2}.
\end{align*}\]
It may be remarked that (3.4) is true when p is replaced by $p+1$ and consequently

$$
|I_2| \leq \frac{\omega_{f^{(p+1)}}(\delta)}{p!} \sum_{j=0}^{k} C(j, k) \left\{ (d_j n - r - 1) \sum_{\nu=0}^{\infty} p_dj,n+r,\nu(x) \int_{0}^{\infty} p_{d_j,n-r,\nu+r}(t)((t-x)^{2p} + (t-x)^{2(p+1)} / \delta)dt \right\}^{1/2}
$$

$$
= \frac{\omega_{f^{(p+1)}}(\delta)}{p!} \sum_{j=0}^{k} C(j, k) \left\{ O(T_d j n, 2p + \delta^{-1} T_d j n, 2(p+1)) \right\}^{1/2}
$$

$$
= \frac{\omega_{f^{(p+1)}}(\delta)}{p!} \sum_{j=0}^{k} C(j, k) \left\{ O((d_j n)^{-p}) + \delta^{-1} O((d_j n)^{-p-1}) \right\}^{1/2},
$$

Choosing $\delta = n^{-1/2}$ we get $|I_2| \leq C_1 n^{-p/2} \omega_{f^{(p+1)}}(n^{-1/2})$.

Finally, choosing a positive number η such that $|t-x| \geq \eta$ we get

$$
|I_3| \leq \sum_{j=0}^{k} C(j, k) \left\{ O((d_j n - r - 1) \sum_{\nu=0}^{\infty} p_{d_j,n+r,\nu}(x) \int_{|t-x| \geq \eta} p_{d_j,n-r,\nu+r}(t) |t-x|^p dt \right\}
$$

$$
= \sum_{j=0}^{k} C(j, k) \left\{ O((d_j n - r - 1) \sum_{\nu=0}^{\infty} p_{d_j,n+r,\nu}(x) \int_{|t-x| \geq \eta} p_{d_j,n-r,\nu+r}(t) \left(\sum_{\xi=0}^{\alpha} (\eta^2)^{\xi} |t-x|^\alpha \right) |t-x|^p dt \right\}
$$

$$
= \sum_{j=0}^{k} C(j, k) \left\{ O((d_j n - r - 1) \sum_{\nu=0}^{\infty} p_{d_j,n+r,\nu}(x) \int_{|t-x| \geq \eta} p_{d_j,n-r,\nu+r}(t) \left(\sum_{\xi=0}^{\alpha} (\eta^2)^{\xi} |t-x|^\alpha \right) |t-x|^m dt \right\}, m > k+1
$$

$$
= \sum_{j=0}^{k} \frac{C(j, k)}{\eta^{2n-p}} O((d_j n - r - 1) \sum_{\nu=0}^{\infty} p_{d_j,n+r,\nu}(x) \int_{0}^{\infty} p_{d_j,n-r,\nu+r}(t) \left(\sum_{\xi=0}^{\alpha} (\eta^2)^{\xi} |t-x|^\alpha \right) dt)
$$

$$
= \sum_{j=0}^{k} \frac{C(j, k)}{\eta^{2n-p}} \cdot O((d_j n)^{-m}) = C_3 n^{-m}
$$

uniformly in $x \in [a, b]$. Combining the estimates of $I_1 - I_3$, we obtain the required result.
REFERENCES

Department of Mathematics
University of Roorkee
Roorkee, 247667 (U. P.)
India

(Received 08 01 1988)