ON A DENSE $G_δ$-DIAGONAL

A. V. Arhangel’skiĭ and Lj. D. Kočinac

Abstract. We study topological spaces the diagonal of which contains a dense set which is a $G_δ$-set in $X \times X$.

We use the usual notation and terminology as in [6], [7], [2]. All spaces are at least T_2.

Let us say that X is a space with a dense $G_δ$-diagonal if there exists a $G_δ$-subset U of the space $X \times X$ such that $U \subset Δ_X$ and $\overline{U} = Δ_X$. Here $Δ_X = \{(x,x) : x \in X\}$ is the diagonal in $X \times X$.

This notion was introduced in [11] under the name “weak $G_δ$-diagonal” (see also [12] about related subjects). In the same paper it was proved that if the space $\exp X$ of all closed subsets of X with the Vietoris topology is weakly perfect, then X has a dense $G_δ$-diagonal. A space X is called weakly perfect [11], [13] if every closed subset of X contains a dense set which is a $G_δ$-set in X. Note that there are spaces which are weakly perfect but not perfect [9].

Proposition 1. X is a space with a dense $G_δ$-diagonal if and only if there exists a subspace $Y \subset X$ such that $\overline{Y} = X$, Y is a $G_δ$-set in X and Y has a $G_δ$-diagonal.

Proof. (\implies) Let $\{U_n : n \in \mathbb{N}^+\}$ be a family of open subsets in $X \times X$ such that $\bigcap\{U_n : n \in \mathbb{N}^+\} \subset Δ_X$ and $\bigcap\{U_n : n \in \mathbb{N}^+\}$ is dense in $Δ_X$. Put $V_n = \{x \in X : (x,x) \in U_n\}$. Clearly, each V_n is open in X and $Y = \bigcap\{V_n : n \in \mathbb{N}^+\}$ is the subspace we are looking for.

(\impliedby) Let Y be a $G_δ$-subset of X. Then $Y \times Y$ is a $G_δ$-subset of $X \times X$. Indeed, let $Y = \bigcap\{V_n : n \in \mathbb{N}^+\}$ where each V_n is open in X. We can choose V_n to satisfy the condition: $V_{n+1} \subset V_n$ for all $n \in \mathbb{N}^+$. Then $Y \times Y = \bigcap\{V_n \times V_n : n \in \mathbb{N}^+\}$.

AMS Subject Classification (1980): Primary 54D15, 54D30, 54E50

The second author was supported by RZN Srbije
If Y is dense in X then Δ_Y is dense in Δ_X. If the diagonal Δ_Y is a G_δ-subset of $Y \times Y$ then Δ_Y is a G_δ-subset of $X \times X$ as $Y \times Y$ is a G_δ-subset of $X \times X$.

Theorem 1. Let X be a Čech-complete space. Then X has a dense G_δ-diagonal if and only if it contains a dense subspace metrizable by a complete metric.

Proof. (\Leftarrow) If Y is dense in X and the space Y is metrizable by a complete metric then Y has a G_δ-diagonal and Y is a G_δ-subset of Y (see [6], [7]). Then by Proposition 1, X is a space with a dense G_δ-diagonal. (We didn’t use in this part of the argument Čech-completeness of X).

(\Rightarrow) Assume that X has a dense G_δ-diagonal. By Proposition 1 there exists a G_δ-subset Y of X which is dense in X and is a space with a G_δ-diagonal. As X is Čech-complete and Y is a G_δ in X the space Y is also Čech-complete. By a result of Šapirovskii (see [15]), there exists a paracompact Čech-complete subspace Z of Y which is dense in Y. Then Z is also dense in X. The space Z also has a G_δ-diagonal (this property is obviously inherited by arbitrary subspaces). But it is well known that every paracompact Čech-complete space with G_δ-diagonal is metrizable (see [7]). Moreover if a metrizable space is Čech-complete then it is metrizable by a complete metric [6], [7]. It follows that Z is metrizable by a complete metric. The theorem is proved.

Remark 1. From the proof of the first part of Theorem 1 and the fact that countable product of complete metric spaces is complete we have: if a space X contains a dense subspace metrizable by a complete metric, then the spaces X^n, $n \in \mathbb{N}^+$, and X^ω have a dense G_δ-diagonal.

Question 1. Can a space X^ω be weakly perfect?

Corollary 1. Let X be a Čech-complete space with a dense G_δ-diagonal such that the Souslin number of X is countable. Then X has a countable π-base. Hence X is separable and every dense subspace of X is separable.

Recall that a π-base of a space X is a family \mathcal{V} of non-empty open subsets of X such that every open subset U of X contains some $V \in \mathcal{V}$ (see [2], [6], [10]).

Proof of Corollary 1. By Theorem 1 there exists a dense metrizable subspace Y of the space X. As $X = Y$, the Souslin number of X does not exceed the Souslin number of X (see [2], [10]). Hence $c(Y) \leq \omega$. As Y is metrizable it follows that Y has a countable base \mathcal{B}. For each $U \in \mathcal{B}$ fix an open subset \bar{U} of X such that $\bar{U} \cap Y = U$. Then the countable family $\{\bar{U} : U \in \mathcal{B}\}$ of open subsets of X is a π-base of X — this is shown easily using the fact that Y is dense in X.

Corollary 2. Let X be a Čech-complete space such that the space $X \times X$ is weakly perfect. Then in every closed subspace of X there exists a dense subspace metrizable by a complete metric.

Proof. Let X_1 be a closed subspace of X. Then X_1 is Čech-complete and weakly perfect — both properties are inherited by closed subspaces. Obviously if
the space $X_1 \times X_1$ is weakly perfect, then X_1 has a dense \mathbb{G}_δ-diagonal. Hence X_1 satisfies the assumptions in Theorem 1 and thus there exists a dense subspace in X_1 metrizable by a complete metric.

Recall that spread $s(X)$ of a space X is the supremum of cardinalities of discrete subspaces of X.

Theorem 2. Let X be a Čech-complete space such that the space $X \times X$ is weakly perfect. Then spread of X is equal to hereditary density of X: $s(X) = \text{hd}(X)$. In particular, if all discrete subspaces of X are countable, then X is hereditarily separable.

Proof. For metrizable spaces spread is equal to density. We also have $s(Y) \leq s(X)$ for every subspace $Y \subset X$. From Corollary 2 it follows now that density of every closed subspace of X does not exceed spread of X. As X is Čech-complete it is a k-space and for k-spaces the following inequality (of Arhangel’skii-Šapirovskii) holds: tightness is not greater than spread (see [2]). Thus $t(X) \leq s(X)$. Put $s(X) = \tau$ and let Y be any subspace of X. Then $t(Y) \leq \tau$ and $d(Y) \leq \tau$ as Y is closed in X. Fix a subset $A \subset X$ such that $A = \overline{A}$ and $|A| \leq \tau$. For each $a \in A$ we can fix a subset $B_a \subset Y$ such that $|B_a| \leq \tau$ and $a \in \overline{B_a}$. Then for the set $M = \bigcup \{B_a : a \in A\}$ we have: $|M| \leq \tau \cdot \tau = \tau$, $M \subset Y$ and $\overline{M} = \overline{Y} \supset Y$. Thus $d(Y) \leq \tau = s(X)$, i.e. $\text{hd}(X) \leq s(X)$. It is always true that $s(X) \leq \text{hd}(X)$. Hence $\text{hd}(X) = s(X)$.

Remark 2. Our results on weakly perfect $X \times X$ remain true under weaker assumption that every closed subspace F of Δ_X contains a subset A which is a G_δ-set in F and is dense in F.

From Corollary 2 we derive

Corollary 3. Let X be a compact non-separable space, the Souslin number of which is countable. Then X does not have a dense \mathbb{G}_δ-diagonal. Hence $X \times X$ is not weakly perfect.

From Theorem 1 we get

Corollary 4. If X is a Čech-complete space with a dense \mathbb{G}_δ-diagonal, then X satisfies the first axiom of countability at a dense G_δ-set of points.

Proof. There exists a dense subspace Y of X metrizable by a complete metric. Then Y is a G_δ-subset of X and X is first countable at every point of Y (as X is regular and Y is dense in X — see [10]).

Every dyadic compactum which is first countable at a dense set of points is metrizable — this is the well known result of Efimov (see [7]). Now Corollary 4 implies the following assertion:

Corollary 5. If a dyadic compactum X has a dense \mathbb{G}_δ-diagonal then X is metrizable.
Let us recall that a space X is called \aleph_0-monolithic if closure of every countable subset $A \subset X$ is a space with a countable network [1] (see also [4], [5]). Every compact space with a countable network is metrizable [6], [7]. Applying Corollary 1 we get

Corollary 6. If X is an \aleph_0-monolithic compact space the Souslin number of which is countable and X has a dense G_δ-diagonal, then X is metrizable.

Of course the last assertion is also true for Čech-complete spaces.

In connection with Corollary 4 we have the following assertion which can be proved in a similar way as one proves the fact that every space with a G_δ-diagonal has countable pseudo-character.

Proposition 2. If a space X has a dense G_δ-diagonal, then the set of points of countable pseudocharacter is dense in X.

From this proposition and the fact that for every topological group G one has $\psi(G) = \Delta(G)$ [3] we derive

Corollary 7. If G is a topological group with a dense G_δ-diagonal, then G has a G_δ-diagonal.

There is an interesting necessary and sufficient condition for a space X to have a dense G_δ-diagonal.

Proposition 3. A space (X, \mathcal{T}) has a dense G_δ-diagonal if and only if there exist a subset $Y \subset X$ dense in (X, \mathcal{T}) and a topology \mathcal{T}_1 on X such that $\mathcal{T} \subset \mathcal{T}_1$, the space (X, \mathcal{T}_1) has a G_δ-diagonal and \mathcal{T} is a base of (X, \mathcal{T}_1) at all points $y \in Y$.

Proof. (\Leftarrow) There exist open sets $U_n, n \in \mathbb{N}^+$, in the product space $(X, \mathcal{T}_1) \times (X, \mathcal{T})$ such that $\bigcap \{U_n : n \in \mathbb{N}^+\} = \Delta_X$. For each $y \in Y$ and each $n \in \mathbb{N}^+$ we can fix a $V(y, n) \in \mathcal{T}$ such that $y \in V(y, n)$ and $V(y, n) \times V(y, n) \subset U_n$. Put $G_n = \bigcup \{V(y, n)^2 : y \in Y\}$ for every $n \in \mathbb{N}^+$. Obviously $\Delta_Y \subset G_n \subset U_n$ and G_n is open in $(X, \mathcal{T}) \times (X, \mathcal{T})$. Hence $\Delta_Y \subset \bigcap \{G_n : n \in \mathbb{N}^+\} \subset \Delta_X$. As Δ_Y is dense in Δ_X, the set $\bigcap \{G_n : n \in \mathbb{N}^+\}$ is the one we were looking for. Thus X has a dense G_δ-diagonal.

(\Rightarrow) Let B be a dense subset of Δ_X which is a G_δ-subset in the space $(X, \mathcal{T}) \times (X, \mathcal{T})$. Fix open sets U_n in $(X, \mathcal{T}) \times (X, \mathcal{T})$ for $n \in \mathbb{N}^+$ such that $\bigcap \{U_n : n \in \mathbb{N}^+\} = B$. Put $Y = \{x \in X : (x, x) \in B\}$ and $B_1 = \mathcal{T} \cup \{\{x\} : x \in X \setminus Y\}$. Then B_1 is a base of a topology \mathcal{T}_1 on X. It is clear that $\mathcal{T} \subset \mathcal{T}_1$ and that \mathcal{T} is a base of the space (X, \mathcal{T}_1) at all points of the set Y. It remains to check that the space (X, \mathcal{T}_1) has a G_δ-diagonal.

Let $W_n = U_n \cup \Delta_X$. Then W_n is open in the product space $(X, \mathcal{T}_1) \times (X, \mathcal{T}_1)$ by the definition of \mathcal{T}_1. Clearly, $\bigcap \{W_n : n \in \mathbb{N}^+\} = \Delta_X$. Hence (X, \mathcal{T}_1) has a G_δ-diagonal. The proposition is proved.

As every metrizable space has a G_δ-diagonal the following assertion is a direct corollary of Proposition 3.
Theorem 3. A space \((X, \mathcal{T})\) has a dense \(G_\delta\)-diagonal if there exists a metrizable topology \(\mathcal{T}_1\) on \(X\) such that \(\mathcal{T} \subset \mathcal{T}_1\) and the set of all points at which \(\mathcal{T}\) is a base of the topology \(\mathcal{T}_1\) is dense in the space \((X, \mathcal{T})\).

The conditions in Theorem 3 are satisfied by every Eberlein compactum (see T.4.3 in [4]). Thus we have

Corollary 8. Every Eberlein compactum has a dense \(G_\delta\)-diagonal.

One could derive Corollary 8 from Theorem 1 on the following fact — Namio-ka’s theorem (see [2]): in every Eberlein compactum there exists a dense subspace metrizable by a complete metric.

Every Gul’ko compact space [5] also has a dense subspace metrizable by a complete metric (Leiderman-Gruenhage; see [14], [8] or [5]. Thus applying Theorem 1 we get.

Corollary 9. Every Gul’ko compact space has a dense \(G_\delta\)-diagonal.

Remark 3. S. Todorčević has shown that not in each Corson compactum [5] there exists a dense metrizable subspace. It follows from Theorem 1 that not every Corson compactum has a dense \(G_\delta\)-diagonal.

Remark 4. If the set of all isolated points of a space \(X\) is dense in \(X\), then \(X\) has a dense \(G_\delta\)-diagonal. This is evident. Thus if \(X\) is a scattered space then every subspace of \(X\) has a dense \(G_\delta\)-diagonal while \(X\) itself need not have a \(G_\delta\)-diagonal (take a compact non-metrizable scattered space — for example, the space \(T(\omega_1 + 1)\)).

We conclude the paper with several questions on weakly perfect spaces and spaces with a dense \(G_\delta\)-diagonal.

Question 2 [11]. What can we say on density of weakly perfect compact spaces? Is it true that density of each such space is \(\leq \aleph_1\)?

Question 3 [11]. Is it true that for every weakly perfect countably compact space \(X\) spread of \(X\) is countable?

Question 4. Is it true that every symmetrizable space \(X\) has a dense \(G_\delta\)-diagonal? is weakly perfect?

In connection with this question it should be noted that there are symmetrizable spaces without a \(G_\delta\)-diagonal and non-perfect.

Question 5. Let \(X\) be a weakly perfect compact space. Is it true then that \(X\) contains a dense metrizable subspace?

Question 6. Is every weakly perfect compact space of countable Souslin number separable?

Question 7. Let \(X\) be a compact space such that \(X \times X\) is weakly perfect. What about \(X\)? Is \(X\) perfect?
Question 8. When there exists a countable family \mathcal{U} of open sets in $X \times X$ such that $\bigcap \mathcal{U}$ is dense in Δ_X and for each open neighborhood V of Δ_X in $X \times X$ one can find $U \in \mathcal{U}$ such that $U \subset V$? Such \mathcal{U} will be called a dense Δ-base of X.

Let us note that if X has a dense discrete subspace then X has a countable dense Δ-base.

Question 9. Let X be a compact space with a countable dense Δ-base. Does there exist a dense open metrizable subspace $Y \subset X$? dense separable metrizable subspace $Z \subset X$?

REFERENCES

Chair of General Topology and Geometry, Department of Mathematics, Moscow State University, Moscow, USSR

Filozofski fakultet
18000 Niš, p.p. 91
Yugoslavia

(Received 19 05 1989)